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1. INTRODUCTION 
In April 1984, at the 16th Annual ACM Symposium on Theory of Computing, 
NARENDRA KARMARKAR of AT&T Bell Laboratories presented a new algo
rithm for linear programming. The algorithm was not only shown to be 
theoretically efficient (i.e., its running time is bounded by a polynomial in the 
input size}, but was also claimed to be very fast in practice - about 50 times 
faster than Dantzig's classical simple~ method, for the largest problems 
evaluated. 

This news created much excitement among computer scientists and 
mathematical programmers, and subsequent reports, inter alia in Science maga
zine and on the front page of the New York Times, contributed to a further 
propagation of the sensation. Linear programming is one of the mathematical 
fields most applied in practice. Linear programming problems occur in such 
diverse areas as engineering, transportation, agriculture, distribution, schedul
ing, nutrition, management, and a reduction of the computer time needed 
would not only speed up solving linear programming problems, but also would 
allow one to solve larger LP-problems than before. In situations like oil pro
cessing and automatic control, quick, almost forthwith, solution of LP
problems is essential. 

In 1979, L.G. KHACHIYAN published the first polynomial-time method for 
linear programming, the ellipsoid method. This method, though theoretically 
efficient, turned out to behave rather disappointingly in practice. So 
Karmarkar's claim that he now has found a method which is both theoretically 
and practically efficient, was much welcomed. Karmarkar's paper was pub
lished in the December issue of Combinatorica [5]. However, no computational 
details were given. 

Next, KARMARKAR was invited to give plenary lectures at two international 



conferences, the ORSA/TIMS-meeting in November 1984 in Dallas, and the 
12th International Symposium on Mathematical Programming in August 1985 
at MIT. KARMARKAR described his method and variants, explaining some of 
the tricks used in practice, claiming superiority of his method over the simplex 
method, and giving a few comparisons, but he refused to give full disclosure of 
test problems, computer programs and running times. This has led to much 
uncertainty and discussion among mathematical programmers with respect to 
the practical value of the new method. It led to a report 'Founding father of 
just a footnote?' in the Boston Globe of August 9, 1985: 

'This week in Cambridge, the 28-year-old KARMARKAR came under 
mounting fire from his colleagues at the 12th International Sympo
sium on Mathematical Programming. They snorted at his scientific 
manners, scoffed at his claims and derided his results as being 
everything from 'frisky' to 'majestic'. Mostly, they said that his 
accounts of super-fast solutions to difficult problems couldn't be 
replicated ..... 
... 'He may have some wonderful method after all, but I habitually 
mistrust all secret mathematics', said E.M.L. BEALE, a pioneer in 
the commercial applications of linear programming .... 
... KARMARKAR himself didn't advance his cause much in a talk 
before an unusual plenary session of the MIT meeting of some 800 
scientists from around the world. He began by observing that while 
mathematicians agree on what constitutes convincing proof of a 
mathematical proposition, there is no corresponding consensus as 
to what makes a persuasive presentation of experimental results -
a contention that was immediately disputed by many of his 
listeners.' 

Indeed, there is some generally accepted standard in presenting computional 
results. One gives (or makes available) the computer program, the test data, 
the type of computer, the output, and the CPU-time. In essence, the results are 
replicable, possibly making due allowance for the running time. Generally, one 
tries to give as much information as possible within the compass of a lecture 
or report. 

Although this consensus differs from that holding in mathematics, with its 
strict rules for definitions, theorems and proofs, it essentially is comparable 
with the praxis in other branches of sciences, such as physics and chemistry, 
when reporting on experiments. 

Karmarkar's reservedness in presenting computational details may have 
respectable reasons, for instance that Bell Labs has propriety of the actual 
computer program, which might not yet be ready as a marketable package, but 
the scientific community turns out to sputter if despite that a similar reserved
ness in making claims is not observed. 
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In this account of the new method I will restrict myself to the theoretical 
aspects. 

In Section 2 and 3 we briefly discuss the simplex method and Khachiyan's 
ellipsoid method. In Section 4 and 5 we describe Karmarkars method, while 
in Sections 6 and 7 we show that the method has polynomially bounded run
ning time. 

2. LINEAR PROGRAMMING AND THE SIMPLEX METHOD 
The linear programming problem (or LP-problem) is as follows: 

given A El.m Xn, b Elm, c El.n, (1) 

find a vector x eon attaining max { CT x I Ax .;;;;b }. 

So it is asked to maximize the linear function c T x where x ranges over the 
polyhedron { x I Ax .;;;;b}. The practical relevance of this problem was revealed 
in the 1940s by the work of L.V. KANTOROVICH, TJ.C. KOOPMANS and G.B. 
DANTZIG. 

In 1947 DANTZIG designed his famous simplex method for solving ( 1 ). The 
idea is to make a trip over the polyhedron P: = { x I Ax.;;;;; b} from vertex to ver
tex along edges, on which c T x increases, until an optimum vertex is attained. 
The correctness of this algorithm is based on the property that if a vertex x 0 

of a polytope P does not maximize c T x over P, then there exists a vertex x 1 

adjacent to-x0 for wich cTx 1>cTx0• (Here x 1 adjacent to x 0 means that the 
segment x 0x 1 forms an edge of P.) 

Roots of this idea occur already in FOURIER [3], describing a method for 
minimizing llAx - b 11 00 (where II* 11 00 denotes the maximum absolute value of 
the entries in * ): 

'Pour atteindre promptement le point inferieur du vase, on eleve en 
un point quelconque du plan horizontal, par exemple a l'origine 
des x et y, une ordonnee verticale jusqu'a la rencontre du plan le 
plus eleve, c'est-a-dire que parmi tous les points d'intersection que 
l'on trouve sur cette verticale, on choisit le plus distant du plan des 
x et y. Soit m 1, ce point d'intersection place sur le plan extreme. 
On descend sur ce meme plan depuis le point m 1 jusqu'a un point 
m2 d'une arete du polyedre, et en suivant cette arete, on descend 
depuis le point m2 jusqu'au sommet m 3 commun a trois plans 
extremes. Apartir du point m3 on continue de descendre suivant 
une seconde arete jusqu'a un nouveau sommet m 4 , et !'on continue 
l'application du meme precede, en suivant toujours celle des deux 
aretes qui conduit a un sommet moins eleve. On arrive ainsi tres
prochainement au point le plus bas du polyedre.' 

According to FOURIER, this description suffices to understand the method in 
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more dimensions. DE LA VALLEE PoussIN [9) gave a similar method. 
DANTZIG [2] algebraized the method, obtaining an attractive compact 

scheme (simplex tableau) and iterative procedure (pivoting), which facilitates 
computer implementation. This simplex method turns out to be very efficient 
in practice and enables one to solve LP-problems in several thousands of vari
ables. 

However, it could not be proved theoretically that the simplex method is 
efficient. That is, no proof has been found that the running time of the simplex 
method is bounded by a polynomial in the size of the problem, i.e. in 

2: log( I aij I+ 1) + 2: log (I b; I + l) + 2: log (I c1 I + 1). (2) 
0 j 

In fact, KLEE and MINTY [7] showed, by giving a bad class of LP-problems, 
that with Dantzig's pivoting rule, the simplex method can require exponential 
running time. Their examples have as feasible regions a deformation of the n
dimensional cube (described by 2n inequalities), for which Dantzig's rule leads 
to a trip along all 2n vertices. Several alternative pivot selection rules have 
been proposed, but none of them could be proved to yield a polynomial-time 
method. 

On the other hand, BORGWARDT [l] recently gave a pivoting rule which he 
showed to yield a polynomial-time algorithm on the average, in a certain 
natural probabilistic model. His result very much agrees with practical experi
ence, where data seem to be more 'random' than structural. 

3. THE ELLIPSOID METHOD 

It has been an open question for a long time whether linear programming is 
solvable in polynomial time. Although the simplex method works well for 
present-day practical problems, one never knows whether the barycenter of 
practical problems will change, and it would then be good to have a method 
which can be proved to perform well always. 

It was a big surprise when in 1979 the Soviet mathematician L.G. KHACHI
YAN answered this question affirmatively, showing that the ellipsoid method for 
nonlinear programming has polynomially bounded running time when applied 
to LP-problems. Also this result was reported on the front page of the New 
York Times. 

Khachiyan's method can be described by application to the following prob
lem: 
given 

A ezmxn, bezm, find xeOn such that Ax.;;;;,b. (3) 

This problem is polynomially equivalent to problem (1), i.e., any polynomial
tirne algorithm for problem (1) yields a polynomial-time algorithm for problem 
(3), and conversely. Indeed, (3) easily reduces to (I) by taking c-o. Con
versely, by the Duality theorem of linear programming, solving ( 1) is 
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A deformation of the n-dimensional cube, with a simplex path along 2n vertices 
(n =3) 

equivalent to solving the following system of linear inequalities: 

Ax:;;;;;b, yT;;;.o, yTA = c, yTb,;;;;cT x (4) 

(clearly, equations can be split into two opposite inequalities). This is a special 
case of (3). 

To sketch Khachiyan's method, we assume that the polyhedron {x IAx,;;;;b} 
is bounded and full-dimensional (KHACHIYAN showed that we without loss of 
generality may restrict ourselves to this case). Let T be the maximum absolute 
value of the entries in A and b (w.l.o.g. T;;;.n ;;;.2). With Cramer's rule, one 
may show that the components of the vertices { x I Ax,;;;; b} are at most n n Tn 
in absolute value. Hence {xlAx,;;;;b} is contained in the ball £ 0 : = B(O,R) 
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around the origin of radius R : = n n +I rn. 
E o is the first ellipsoid. Next ellipsoids E 1> E 2, ••• are determined with the 

following rule. If Ek has been found, with center say zk> check if Azk';;;;,b holds. 
If so, we have found a solution of Ax ..;;,b as required. If not, we can choose an 
inequality, say aTx..;;,b; in Ax:s;;;;.b violated by zk. Let Ek+I be the ellipsoid 
such that 

Ek+1~Ekn(xlafx:s;;;;.aTzk} (5) 

and such that Ek+ 1 has smallest volume (there exist simple updating formulas 
for obtaining the parameters describing Ek+ 1 from those describing Ek and 
from a;). Since (xlAx..;;,b}~(xlaTx..;;,aTzk}, it follows by induction on k 
from (5) that 

Ek~ (x IAx..;;,b }. (6) 

Moreover, it can be proved that 

volume Ek+J <e-l/4n ·volume Ek. (7) 

Since one easily sees that volume E 0 ..;;,(2Rf<n 2n'rn', inductively from (7) we 
have: 

(8) 

On the other hand, with Cramer's rule, using the boundedness and fulldi
mensionality of { x !Ax ..;;,b }, we know: 

volume {x IAx..;;,b};;;;i.n- 2n'r-n'. 

(6), (8) and (9) imply: 

i.e., 

(9) 

(10) 

(11) 

So after a polynomially bounded number of iterations we will have found a 
solution of Ax :s;;;;.b . Updating the ellipsoid parameters can be done in 0(n 2) 

arithmetic operations, while all calculations have to be done with a precision 
of 0(n 3 log T) digits. Altogether this amounts to 0(n 8 log2 T) bit operations 
(excluding data-handling, which takes 0(loglog T · logloglog T) for each bit 
operation). 

Although KHACHIYAN showed the polynomial solvability of the linear pro
gramming problem, his method turned out to perform badly in practice. This 
is caused, among others, by the facts that the upper bound (11) of iterative 
steps, though polynomial in the input size, can be rather big also for moderate 
problems, and that the precision required to describe the successive ellipsoids 
is huge. (The ellipsoid method has implications in combinatorial optimization 
- see [4].) 
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Thus the question remained if there is a method for linear programming 
which is both practically and theoretically efficient. K.ARMARKAR claims that 
the following method is so. 

4. l<ARMARKAR'S FORM OF THE LINEAR PROGRAMMING PROBLEM 

Karmarkar's method applies to problems of the following form: 

given A Ezmxn, cEZn such that A 1 = 0, 

findxEQnsuchthatx~O, Ax= 0, 1Tx = 1, cTx~O. 

(12) 

(Here 1 denotes an all-one column vector of appropriate dimension.) This is a 
problem equivalent to (1) and (3). Indeed, (12) clearly is a special case of (1), 
as (12) amounts to finding x attaining max{-crxlx~O,Ax =O, 1Tx =l}. 
Conversely, (3) can be reduced to solving a system of linear equations in non
negative variables: 

given A Ezmxn, b E"ll.m, ( 13) 

find a vector x EO!n such that x ~O, Ax = b. 

This follows by replacing Ax ~b by the system: 
Ax'-Ax" + x"' = b, x',x",x'"~O. Now (13) can be reduced to (12) as fol
lows. Let A,b as in (13) be given. Let T be the maximum absolute value of the 
entries in A and b. With Cramer's rule we can prove that if x ~O, Ax= b has a 
solution, it has one satisfying 1Tx~nn+ 1 yn. So we wish to solve: 

By adding one extra variable we may assume we must solve: 

x~O, Ax=b, 1Tx=nn+Iyn. 

(14) 

(15) 

By subtracting multiples of the last equation in (15) from the equations in 
Ax =band by scaling equations, this is equivalent to: 

x~O, Ax= 0, 1Tx = 1. (16) 

If A 1 = 0 then n - 11 is a solution. Otherwise, by elementary changes of the 
system we may assume A 1=1. So we wish to find a solution x, A. for: 

x~O, A.;;?;0, Ax-IA= 0, 1Tx+A. = 1, such that A.~O. (17) 

Since Al-1-1=0, this is a special case of (12) (taking 
A:=[A,-1], c:=(O, ... ,O,l)TEzn+1). 

So Karmarkar's method applied to (12) solves linear programming in gen
eral. 
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5.KARMARKAR's METHOD 

Karmarkar's method consists of constructing a sequence of vectors x 0 ,x 1 ,x 2 , ... 

converging to a solution of (12) (provided (12) has a solution). The essence of 
the method is to replace the condition x ;;;;.o by a stronger condition x EE, for 
some ellipsoid E contained in ~"+-. As we shall see, minimizing c T x over 
{xlxEE,Ax=O,lTx=l} is easy, while minimizing c7 x over 
{x Ix EIR "+-,Ax =O, 1T x = l} is the original problem ( 12). 

Let A and c as in (12) be given. We may assume without loss of generality 
that the rows of A are linearly independent, and that n ;;;;.2. Throughout we use 

r:=~ (18) 

Let 

1 
XO : =-·1. 

n 
(19) 

So Ax 0 =0, 1Tx0 =I, x 0 >0. Next a sequence of vectors x 0 ,x 1,x 2 , ... such 
that Axk =O, 1Txk=I, xk>O is determined, with the following recursion: 
denote xk = :(x\k>, ... , x~k))T, and let D be the diagonal matrix: 

D : = diag(x\kl, ... , x~k >). (20) 

Define zk+l and xk+l as: 

z k + 1 is the vector attaining 

min {(cTD)zl(AD)z = O;lTz=n; zEB(l,+r)}, 

xk+l : = (lTDzk+1)-1·Dzk+1. 

(21) 

I 
Note that if we replace in the minimization problem the condition z EB(l, 2r) 

by the weaker condition z ;;;;.o, then we would obtain a minimization problem 
with optimum value at most 0 if and only if min 
{ c T x I Ax =O, 1Tx=1, x ;;;;.Q} ,,;;;;O, which is our original problem (12). 

As z k + 1 minimizes ( c TD )z over the intersection of a ball with an affine 
space, we can write down a formula for z k + 1 : 

PROPOSITION 1. 

I (J-DA T(AD 2A T)- 1 AD-n - 1·1 · lT)Dc 
z k + 1 - 1 - - r .~-=----=-:...::_~=-.::...:.......L-_.:;_=------'--

- 2 11(1-DA T(AD 2AT)- 1AD-n - 1 ·l · l7)Dcll. 

PROOF. The minimum in (21) can be determined by projecting De onto the 
space { z I (AD)z =O, t7 z = 0 }, thus obtaining the vector: 

p: = (J-DAT(AD 2AT)- 11·1T)Dc. (22) 

(Indeed, ADp = 0, tTp = 0, as one easily checks (using ADl=Axk=O), and 
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c TD -p T is a linear combination of rows of AD and of the row vector 1 T.) 
Then zk+I is the vector reached from 1 by going over a distance ; r in the 

direction - p, i.e., 

zk+I = 1 - l.r_E_ 
2 llpll" 

0 

This method describes Karmarkar's method. 

6. A LEMMA IN CALCULUS 

(23) 

In order to show correctness and convergence of the algorithm, we use the fol
lowing lemma in elementary calculus. For x=(xJ. ... ,xnf, we denote: 

LEMMA. Let nEN, H: ={xEIRn llTx=n}. Then: 
(i) HnB(l,r) cHnlR'+ cHnB(l,(n-l)r); 

(ii) if XEHnB(l, ~r), then IIx~+(l+ n~l r- 1. 

(24) 

(i) Let x =(xi. ... ,xnl eH nB(l,r). To show x EIR'+, suppose without loss 
of generality x 1 <0. Since x EB(l,r) we know: 
(x2 -1)2 + ... +(xn-1)2 .;;;;r2-(x 1 - I)2<r2 - l = 1 / (n-1). Hence, with 
Cauchy-Schwarz: 

(x2- l)+ ... +(xn-1).;;;; y;;=-}. V(x2 -1)2 + ... +(xn -1)2 <I. 

Therefore, x 1 + ... + Xn <x 2 + ... + Xn <n, contradicting the fact that x belongs 
to H. 
Next let xEHnlRr+. Then 

(xi-1)2 + ... +(xn-1)2 =(xt + x~)-2(x1 + ... +xn)+n 

.;;;;(x1 + ... +xn)2-2(x1 + ... +xn)+n 

= n2 -2n+n = (n-1)2r 2 . 

(The last inequality follows from the fact that x ~O.) Sox EB(l,(n - l)r). 

(ii) We first show an auxiliary result: 

let A.,µelR; if x*,y*,z* achieve 

min {xyz lx+y+z=A., x 2 +y 2 +z2 =µ},and 

x*.;;;;y*.;;;;z*, theny*=z*. 

(25) 

By replacing x,y,z by x-fA., y-fA.,z-~A., we may assume 

A.=O.Then it is clear that the minimum is nonpositive, and hence 
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x' ~O~v' ~='. Therefore . . 
"' " "' . .. . r --+-·::. ~ x r :: ~x 1-----. --r 

Thi'.' !irsl inequality here follows fmm 
quality (note that x • and the 
x--rr+;; O.x 2 ..... r 2 +::==µ.. 

On the other hand. (x. 

_1!:_ \---. 
18 

(26) 

that if 

satisfies 

x ~.1· +:: =: O .. x 2 + +::: = u. :c:: = - L \ Hence \Ve haH~ equal it\ . . l8 . 
throughout in (2.6t Therefore. r' '"':: •. proving (25 ). 

We now prove 
Let x attain 

of the Lemma. The case n = 2 heing easy. assume 1; 

mm l Ilx Ix EH B(l. 0 

Without k)SS of generality. \ i ~x: ~ ... ~xn. Then for all l ~1 < </... ~n. 
vector ) attains 

nun{xr::ix+_r-r;; (281 

(otherwise we could replace the componenb .t, .. \.X1. of x by better1 values). 
Hence bv (25). x,-='x,. Therefore x 2 =x1 = ... -=x,.. A:-. xEHi"IB(l.-::;r). this 
. 1· . l , .I . . l Th' h ,-.-imp !CS X1 =2· anu X: = ... =xn =(I +2 (n ·-- l l). lS s OWS LJ 

7. OPERATIVENESS OF THE Al GORlTHM 

The operativeness of the algorithm now follows from the following proposi
tion: 

PROPOSITION 2. ~f ( 1:;) hus lJ solutwn Ihen 

(c r_. .. x· ; )n < l. ~c Tx'- t 
al! k ~O: 

nx" TI e Ilx' 

PROOF. First note: 

(crx•~1)" 

nx' + l 

rJxk (c 1 D::i.•l)" 

(cr_\.i. )" - m.D::' • i l 
I er D::' •I n 

llxA 
(cr,.i. l" 

1 t'rDI 11.:p\1-"l. 

using (21) and ll(D.::' ~ 1 l = (Hx' )(II::'· 1 ) and x' = Dl. 
We next show that, if ( 11) has a s•.)lution. then 

I I 

(29) 

(30) 



1/2 ---
n-1" 

(31) 

Indeed, if(12) has a solution then ADz=O, z;;;.O, cTDzo;;;,O for some z=f:O. We 
may assume lrz=n. Hence, 

Q;;a.min{(crD)zlzER'!i.,ADz=O, lrz=n} (32) 

;;a.min{(crD)z lz EB(l,(n - l)r),ADz =O, lr z =n} 

(the last inequality follows from (i) of the Lemma). 

The last minimum in (32) is attained by the vector 1-(n - l)r~, as 

1- ~ r~ attains the minimum in (21), (cf. (22)). 

Therefore, cTD(l-(n - l)r~,,;;;,o. 
This implies 

CT Dzk+ I =cTD(l-l.r_p__) (33) 
2 llpll 

=(I - ___12_ )c TD 1 + _Zi_c T D(l -(n - 1 )r_p__) 
n-1 n-1 llpll 

o;;;,(l - ___'2_l) (cTD)l, 
n-

proving (31 ). 
Therefore, as Ilzk+ 1 ;;a.f(l ++ / (n - l)t- 1• by (ii) of the Lemma, 

[ crDzk+1 Jn 1 .;;;;;(1 - _V2_r. < 1. (34) 
cTDl IIzk+I n-1 'h(l+_Zi_)n-1 e 

n-1 

(as (l-x)/(l+x),,;;;,e-2x for x;;a.O, since the function e- 2x-(l-x)/(l+x) 
is 0 for x =O, and has nonnegative derivative if x ;a.Q). (30) and (34) combined 
give (29). 0 

By induction on k, Proposition 2 implies, if c r x 0 ;a.O, c T x 1 ;;;.o, ... , c T xk ;a.O, 
(using 

l n I 
(IIxk)l/n.;;;;;- ~ xf = -o;;;,1): 

n i=I n 

cTxk,,;;;, c < - · :s;:::: - ·nT Txk [2]k/n CTXO [2]k/n 
(IIxk)l/n e (IIxO)l/n"""' e ' 

(35) 

where T denotes the maximum absolute value of the entries in A and c (w. 
I.o.g.T;;a.n). 

This gives, if we take 
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N : = I [ l -2/n2] n2ln(nT)l, 

the following theorem. 

(36) 

THEOREM. If ( 12) has a solution, then CT xk <n --n T-n for some k =O, ... , N. 

PROOF. Suppose cTx0 , ... ,cTxN~n-nT-n. Then (35) holds for k=N, 
implying c T XN <(21 et In ·nT~n -n T-n. Contradiction. D 

So supfose (12) has a solution. Then with Karmarkar's method we find a vec
tor x satisfying xk~O,Ax=O, lTx=I, cTxk<n-nT-n. By elementary 
linear algebra, it is easy to find a vertex x • of the polytope 
{x~OIAx=O, lTx=l} with cTx·~cTxk. Hence, cTx*<n-nT-n. By 
Cramer's rule, the entries in x • have a common denominator at most nn T". 
As c is integral, this implies c T x * ~O. So x • is a solution of ( l 2). 

Karmarkar's method consists of O(n 2logT) iterations, each consisting of l9(n 3) 

arithmetic operations (due to the updating formula given by Proposition 1). 
All calculations have to be made with a precision of O(n 2 log T) digits. Alto
gether this amounts to 0(n 7 log2 T) bit operations (excluding data-handling, 
which takes l9(loglog T · logloglogT) for each bit operation). 

Parts of the description above are taken from the forthcoming book [8]. 
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