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A mixed defect-correction iteration process (MDCP) is applied for the implicit 
numerical solution of steady Euler flows. The iterative procedure gives two 
solutions that are both 2nd order accurate for smooth parts of the flow, but 
may differ up to El(l) at discontinuities. In practice it is shown that the discon­
tinuities (shocks and contact discontinuities) are well monitored, and that the 
influence of the discontinuity on the smooth part of the solution is limited to a 
few meshwidths. Without stability problems, MDCP can be applied with a 
straightforward 2nd order scheme such as central differences. A nearly mono­
tonous representation of the thin layers is obtained by application of a 2nd 
order scheme with a proper flux-limiter. When combined with nonlinear mul­
tigrid (FAS-) cycles, a few FAS-MDCP iteration steps are sufficient to deter­
mine the two solutions up to truncation-error accuracy. 

INTRODUCTION 

A Mixed Defect Correction (MDCP) iteration of the form 

i; u~2n +I) = i; u~2n) - L~ u~2n) + fi, , (1) 

i; u~2n +2) = L; u'tn + 1) _ Lt u~1n + 1) + Ji, , 

was introduced in [l] for the solution of the linear convection diffusion equa­
tion. The iterative process (1) has two different limit solutions, 

u~ = limn-.oo u~2n) , 

uf :::: limn-.oo u~2n +I) . 

With the choice Lt = i~, it is derived from (l) that~ satisfies 

M~ ~ = [L~ + Lt(L;)- 1(Lt - Lh)] ~ =Ji,, 

and for the difference u~ - ~ we have 

uf - ~ == (L;)- 1(Lt - L~)~. 

(2) 

(3) 

(4) 

In [l) it was shown that with an accurate but unstable (central difference) 
~erator L~, with a stable (artificial diffusion) operator Ll = i~, and with L; = 2.diag(Ll), the process (1) converges rapidly and it yields ~ and uf 
that are both 2nd order accurate. Both solutions yield a reasonably sharp 
representation of thin boundary and interior layers, and these layers can be 
monitored by the difference u~ - Ui:. Here we apply a similar iteration 

320 



process to an upwind discretization of the steady Euler equations. 

THE PROCESS FOR THE EULER EQUATIONS 

We select two different discretizations of the steady (non-isentropic) two­
dimensional Euler equations. First, for the stable operator we take the first 
order upwind discretization Nh(qh) = 0, a finite volume scheme with Osher's 
approximate Riemann solver as described in [4] . Further, for the accurate 
operator we take a 2nd order discretization N~(qh) = 0, e.g. the central 
difference scheme (but also other finite volume schemes as described in (2, 5] 
can be used). 

The first order scheme is well suited to represent interior layers (both shocks 
and contact discontinuities) if they are aligned with the grid. As soon as they 
are not, the solutions are seriously smeared out. Oblique discontinuities, 
require schemes with a higher order of accuracy. Here stability problems may 
arise. The stability of the discrete operator is not only Aesired to prevent 
spurious oscillations in the discrete solution, but also to bffi.ciently solve the 
discrete equations by a multigrid method [4, 3] . To circumvent stability prob­
lems during the solution process, defect-correction iteration can be applied. 
Then, full use can be made of the fast FAS multigrid convergence for the lst 
order problem [2] . In this paper we apply the MDCP process in order to sta­
bilize the process further and to obtain additional information. 

The non-linear MDCP iteration is described by 

Nk(qh2n -1)) = Nh<qh2n -2)) - N~(qh2n -2)) ' 

qh2n) = qh2n - I) _ +Di: I (Nh(qh2n -1))) , 

(5.a) 

(5.b) 

where Dh = Dh(qh2n -J» = diag(Nk(qh2n - 1>)) is the non-linear block diagonal 
operator derived from Nk- The diagonal contains 4X4 blocks, that (only) take 
care of the coupling between the unknowns that are associated with the same 
cell (finite volume) in the mesh. In this way (5.a) represents a simple defect­
correction sweep towards the solution of N~(qh) = 0, by means of the approxi­
mate operator NA. The second step, (5.b), describes a damped collective 
Jacobi relaxation sweep for the solution of Nh(qh) = 0. Analogous to (1), the 
iteration (5) has two limit solutions qi! and qf. 

These two solutions -computed in alternation- are both 2nd order accurate. 
The iteration converges with an optimal rate of f!(h) per cycle, for almost all 
smooth components in the error. Hence, the higher order of accuracy is 
already obtained in the first iteration steps. For high frequency components, 
or frequencies along characteristic directions, the method converges more 
slowly (cf. eq. (6)). Away from layers, the convergence seems independent of 
the strength of the discontinuities. Starting from the monotonous lst order 
approximation, the final solution is approached without significant overshoot 
in the intermediate results. Depending on the 2nd order scheme used, (nearly) 
monotonous solutions can be computed in the layers. In practice, for an 
efficient computation, the iterands q~2n - I) in (5.a) are approximated by a single 
FAS-cycle. This does not harm the convergence of the MDCP iteration 
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process. 

SOME LOCAL MODE ANALYSIS 

To get a rough idea of the behaviour of (5), we consider the simple linear, 
constant coefficient equation 

u, = a1ux + a2uy. 

To its upwind discretization we apply Local Mode Analysis. The discretiza­
tion stencils are: 

N}. = ah1 [ -1 ' 1, 0] + ah2 [ 11] ' 
N~ = ;~ [ - 1 , 0 , 1 ] + ;~ [ J 1] , 

a 1 [ ] a2 [ 0 l Dh = h 0 , 1 , 0 + h 6 . 
Hence, we have for a mode qh,.,(k,/) = exp(i(w1hk + w2h/)) the amplification 
factors 

A 2 2i 
Nh(w) = h(a1S1C1 + a2S2C2), 

A I A 2 2 
Nh(w) = Nh(w) + h(a 1S[ + a2Sf), 

A 1 
Dh(w) = h (a1 + a2), 

"{here Sm = sin(wmhm / 2), and Cm = cos(wmhm / 2), m = 1,2, and we find 
it,, (w), the amplification factor corresponding with Mt, to be equal to 

2i [ a1Sf + a2S} l 2 [a1Sf + a2S}] 2 
-h [a1S1C1 +a2S2C2] l + + -h + 

a 1+a2 a1 a2 

Thus, we see that Mt is consistent of order 2 and has a 4th order damping 
term that is effective for all high frequencies. Further, 

AB ,A [a1Sf +a2Si l AA 
uh - uh = uh , 

a1 + a2 

i.e. the difference between uf and u1 is large (only) where high frequencies are 
significant. The modulus of 

Al - -2 'I 1 A - ·I A 

(Nh(w)) 1 (Nh(w) - Nh(w))T(Dh(w)) 1 (~h(w) - 2Dh(w)) = 

2 -2 
-,;<a1CI + a2C~) - Nh(w) 

2 2 2 A 2 
h(a1S1 + a2S2) + Nh(w) 

= (6) 
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determines the convergence of the MDCP iteration. Generally, for low fre­
q~encies this is fi..h ), but notice the characteristic frequencies w for which 
Nh(w) ~ fJ<..h) ! 

NUMERICAL RESULTS 

To give an impression of the effect of the process (5), we show some results 
(i) for a problem with a smooth solution, (ii) for a problem with a oblique con­
tact discontinuity, and (iii) for a problem with a oblique shock. The precise 
description of these problems can be found in [2] . 

We use the MDCP process with two different choices of the 2nd order 
operator, viz. with the central difference scheme (unstable!) and with the 2nd 
order upwind scheme with the Van Albada limiter. For both instances, for 
problem (i) the order of accuracy of the method was determined. Therefore, 
the problem was solved independently on 3 different grids, with resp. 8X 16, 
16 X 32 and 32 X 64 cells, and the corresponding solutions were compared. In 
all cases the coarsest mesh in the FAS-algorithm was a 2 X 4 grid. The results 
are shown in the Tables l and 2. 

qh I INk(qh)l I I INt(qh)l I I IMt(qh)l I I IMff(qh)l I p 
q'),UJ 2.7(-3) 8.6(-3) 7.8(-3) 9.2(-3) 1.2 
qhl) 8.0(-3) 2.7(-3) 4.7(-3) 3.5(-3) 2.4 
qh2) 6.7(-3) 3.6(-3) 2.4(-3) 3.7(-3) 2.3 
q~> 7.5(-3) 1.9(-3) 3.4(-3) 1.4(-3) 1.9 
qh4) 6.5(-3) 2.7(-3) 1.0(-3) 2.8(-3) 1.8 
qi,.)> 6.6(-3) 1.5(-3) 2.4(-3) 5.2(-4) 2.0 
qh6) 6.0(-3) 2.9(-3) 3.7(-4) 3.0(-3) 1.8 

qi,.'' 6.6(-3) 1.5(-3) 2.5(-3) 4.2(-4) 1.9 
qh8) 6.0(-3) 2.9(-3) 3.4(-4) 2.8(-3) 1.8 

q'i:' 6.6(-3) 1.5(-3) 2.5(-3) 3.4(-4) 1.9 
qhlO) 6.0(-3) 2.9(-3) 3.0(-4) 2.8(-3) 1.8 

Table 1. Accuracy during the MDCP iteration for problem (i); MDCP with 
N~(qh) the central difference scheme; p is the observed order of accuracy. The 
norms are / 1 -norms on the 16 X 32 grid. 1 
M~(qh) = N~(qh) - Nk(qh - f Dh" 1(Nk(qh))) + Nk(qh - 2Dh" 1(Nhqh))), 

Mf(qh) = Nk(qh) - Nkcqh - f Dh" 1(Nk(qh))) + N~(qh - f Dh" 1(Nk(qh))). 

The iteration is started with an approximate solution of the lst order 
scheme: Nk(qh) = 0. From this equation, the ap~roxim_ation q~0> i~ con:iputed 
by the FMG method, starting on the 2X4 grid, with a smgle FAS 1terat10n on 
each level of discretization. 

In the tables we see that the process converges rapidly in the first steps of 
the iteration. Both, I IM~(q~2nl)l I and I 1Mf(q~2n+I>)i I decrease by a factor 
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qh llNJ.(qh)ll 11 Nt(q/,)11 I IMg(qh)l I I IM:(qh)l I p 
q},VJ 2.7(-3) 9.8(-3) 8.5(-3) 9.8(-3) 1.2 
q~I) 8.7(-3) 5.4(-3) 6.5(-3) 5.0(-3) 2.4 
q~2) 7.3(-3) 5.0(-3) 3.5(-3) 4.9(-3) 2.3 

qifl 7.4(-3) 3.1(-3) 4.4(-3) 1.9(-3) 2.1 
q~4) 6.2(-3) 3.7(-3) 1.5(-3) 3.6(-3) 1.9 

q'(l 6.8(-3) 2.0(-3) 3.4(-3) 9.5(-4) 2.2 
q~6) 6.1(-3) 3.4(-3) 7.0(-4) 3.2(-3) 1.9 

q'>,'l 6.7(-3) 1.9(-3) 3.4(-3) 5.5(-4) 2.2 
q~8) 6.0(-3) 3.3(-3) 4.3(-4) 3.1(-3) 2.0 
q'(l 6.7(-3) 1.8(-3) 3.2(-3) 3.8(-4) 2.1 
q~IO) 6.0(-3) 3.2(-3) 3.2(-4) 3.0(-3) 1.9 

Table 2. Accuracy during the MDCP iteration for problem (i); MDCP with 
N~(qh) the upwind one-sided scheme with Van Albada limiter. The meaning 
of the figures is the same as in Table 1. 

of approx. 0.6. In about 3 iteration steps the truncation error accuracy is 
obtained. Later, for MDCP with the unstable central difference scheme, this 
convergence factor slows down to 0.8; with the stable one-sided van Albada 
scheme it remains <0.7 in the first 5 steps. 

We notice that, with both schemes, the order of accuracy after the first 
defect-correction step amply exceeds the expected value of 2. This is a 
phenomenon observed for a large variety of practical problems as well. As yet 
it is unsatisfactorily explained. 
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Figure I. Entropy discontinuity for problem (ii): the oblique contact discon­
tinuity. 
(a): q~7) with N~(qh) the central difference scheme. 
(b): q~7> with N~(qh) the upwind 2nd order scheme with Van Albada limiter. 
(c): q~7> -q~8l, with N~(qh) the upwind 2nd order scheme with Van Albada 

limiter (20X enlargement of the z-schale). 

Figure 2. Pressure discontinuity for problem (iii): the oblique shock. 
(a): q~8l with N~(qh) the central difference scheme. 
(b): q~8> with N~(qh) the upwind 2nd order scheme with Van Albada limiter. 
(c): q~7> -q~8>, with N~(qh) the central difference scheme (20 X enlargement of 

the z-schale ). 
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