
ii 4411
11~11

II lll
11 ~ ll
II ~ii J II
II SUPERCOMPUffli II

ultigrid algorithms
run on
supercomputers*

At the Center for Mathematics and Computer Science
(CWI), multigrid algorithms are used to solve ellip­
tic partial differential equations. Emphasis is laid on
portability of the implementation, allowing programs
to run fast on a broad class of (super)computers.

Piet Hemker

CWI
Kruislaan 4 13
I 098 SJ Amsterdam

©Supercomputer 4, November 1984

The aim of research at the CWI on multigrid methods in elliptic partial differential
equations is the construction of algorithms that efficiently yield a numerical solution
of these problems. This kind of research is motivated by numerous applications,
mainly in physics and in the engineering sciences. Except for a few very simple
cases, it is impossible to find explicit mathematical expressions for the• solutions, so
that one has to rely on a numerical approximation to the solution.

By the very nature of partial differential equations, their solutions are continuous
functions of several variables. In the numerical approach, these functions are ap­
proximated by only a finite set of numbers. Usually, these numbers represent the
function values of the solution at an evenly spaced set of gridpoints in the domain
of definition of the equation.

In practice, many problems appear in the form of an equation for the function
u(x,y), with (x,y) in a rectangle 0. The form of this equation is

with additional conditions for u (x,y) on the boundary of 0. The coefficients aiJ, b;, c
and fare given functions of x and y. Much of the research on multigrid methods
is restricted to this equation. The computer programs that have been recently con-

:j:Adapted from CW! Newsletter 3 with kind permission.

structed at the CWI are almost all intended for equations of this type.

For those who are not familiar with elliptic partial differential equations a simple
example is given by the Poisson equation:

with u(x,y) prescribed on the boundary of the 2-dimensional domain fJ. For this
equation we can imagine the solution z = u(x,y) as a surface in 3-dimensional
space. On- the boundary of f.l its position (x,y, z) is given and in the interior of Q
the surface behaves like a soap-film between the prescribed boundary values.

Figure J.

/ / (I
I

I I
I I I I v __ ------11~

z

This example illustrates some essential properties of elliptic partial diffential equa­
tions: boundary conditions are to be given all along the boundary and the solution
in the interior is a smooth function.

The usual technique for finding an approximation to u (x,y) is to replace equation

ii 46•'
I~ . Con1r111ut1c>n$ II

'~ 111 II ill
II ~II
II ~II

II SUPeRCOMPUTER II

(l) by a set of N linear equations for N unknown values uiJ which are meant to
represent the function values u (x,y) where (x;,yj) is a gridpoint. All these grid points
form a grid (or net) for the discretization of (1). The approximation u, for u(x;,yj)
becomes more accurate as the number of gridpoints N becomes larger. Therefore,
it is often necessary to solve linear systems with N very large. N may be so large
that - with conventional solution methods such as Gaussian elimination - it can
take many days to solve these systems on a computer.

Therefore, the usual way to solve the large systems is by relaxation methods, i.e.
iterative methods in which an initial guess of the solution is improved step by
step. Well-known relaxation methods are Gauss-Seidel relaxation, SOR, zebra­
relaxation, and Incomplete (Line) LU-decomposition-relaxation. Successful research
in recent years has resulted in other, much faster converging, iteration methods such
as ICCG (preconditional conjugate gradient methods, cf. [6]). A disadvantage of
all these methods is that the rate of convergence of the iterations decreases for larger
N.

A significant improvement in solving these (very large) systems of equations is found
in the multigrid method. This is a technique which accelerates the convergence
of the relaxation methods so that the rate is independent of N. This is done by
introducing coarser grid discretizations (linear systems with N := N/4,N/16 etc.)
and by combining relaxation for the large system with the (less laborious and fas­
ter converging) relaxation on the coarser grids. A good account of the multigrid
method is found in [2] .

For those to whom the basic idea of the multigrid method is new, a very short
explanation is given. The principle of this method is based on three facts:

The simple relaxation methods such as Gauss - Seidel damp the rapidly varying
components in the error much faster than the slowly varying components. In other
words: they can be considered as efficient smoothers for the error rather than as
reducers of the overall error.

2
The remaining (smooth) error components can be represented on coarser grids,
where the number of gridpoints is much smaller. Consequently, the remaining error
components can be reduced there much more efficiently.

3
On the coarse grid the solution is most efficiently reduced by a simple relaxation
method and, again, by coarser grid corrections. Thus, a recursive procedure can be
defined where on the coarsest grid the linear system to be solved has a very small
number of unknowns.

It will be clear that the above principle is rather general and that many variants
are possible. The idea can also be applied to other equations in which the original
problem has continuous solutions. The idea can, for instance, be used for integral
equations [4]. Attempts are even made to use the multigrid idea in cases where the
linear systems do not originally stem from a continuous equation [5].

The convergence of the multigrid method for equation (I) depends on the coeffi­
cients in the equation, on the operators that take care of the interaction between the
various grids, and on the relaxation method used. On the one hand the efficiency
of a multigrid algorithm depends on this convergence and on the other hand on the
amount of arithmetic operations in each iteration. In recent years, some research
at the CWI was devoted to the selection of optimal efficient multigrid strategies for
different equations (I), cf. (3, 7].

It appears that for different classes of (I), different relaxation methods give optimal
efficiency. For problems like the Poisson problem zebra- and !LU-relaxation are
successful (zebra is slightly more efficient, but ILU performs better for a larger class
of equations), while ILLU-relaxation is particulary suited for problems where the
coefficients b; dominate the coefficients aij.

Several implementations of multigrid algorithms have been constructed at the CWI.
Besides a comprehensive program for experimental purposes written in Algol 68,
a number of programs was written in Fortran with efficient execution in practical
applications in mind. Two particular programs, developed in cooperation with the

Numerical Group of the Delft University of Technology, are called MGDl (ILU
relaxation) and MGD5 (ILLU).

In practice, the speed of these programs depends not only on the convergence rates
or the number of arithmetic operations per iteration cycle, but also on the architec­
ture of the computer used.

Here, the programmer has to decide whether his aim is to develop a program for
a particular machine or to pursue an efficient program for a general class of com­
puters. We decided in favor of the latter and wrote two versions, one aimed at the
usual sequential (=scalar) computer and one at vector computers (Cray- I or Cyber
205) . In both cases we did not use features that are available only on one particular
machine and we wrote the programs in a most elementary and portable Fortran.
For the vector computers it meant that we used the auto-vectorization capabilities
of the Fortran compilers.

Thus for ILU- and ILLU-relaxation we constructed a scalar version (MGDlS,
MGD5S) and a vector version (MGDlV, MGD5V). For the scalar architecture the
computing time for an iteration cycle is proportional to the number of gridpoints
in the finest grid. For different machines the execution times are given in Table 1 .
From this, we see that for an equation like Poisson's equation (for which 3 iterations
and a preparational phase corresponding to 3 iteration cycles are necessary) a linear
system with N = 257 X 257 ~ 66000 equations can be solved in less than a second.

MGDl MGD5
Relaxation ILU ILLU

IBM 3081K 16.7 25.7
Cyber 170 I5.4 24.9
Cray-IS 9.1 I2.7
Cyber 205 8.1 11. l

Table 1. CPU-times for the scalar versions on scalar architecture
in µsec/(cycle X meshpoint).

-- -- --------------------------------------

It is interesting to see to what extent the arithmetic operations in MGDl and MGD5
can be arranged so as to make effective use of the vector architecture of the Cray-
1 or the Cyber 205 (i.e. to what extent the algorithms are vectorizable). The ac­
celeration factors of the vector programs run (if possible) in vector mode over the
scalar programs (run in scalar mode) are given in Table 2.

N MGDl MGDS

Cyber 170 65 x 65 0.86 0.95
(scalar mode)

Cray-IS 65 x 65 3.2 2.7
(vector mode) 129 x 129 3.6 2.9

257 x 257 3.8 3. 1

Cyber 205 65 x 65 3.2 2.2
(vector mode; 129 x 129 4.2 2.5
two pipes) 257 x 257 4.8 2.6

Table 2. Acceleration factor of the vector version over the scalar version for the algo­
rithms MGDJ and MGD5.

We see that vectorization of the MGD5 algorithm has more effect on the Cray than
on the Cyber. The other algorithm, MGDl, is better vectorizable, especially on the
Cyber 205. Now a Poisson type problem with N = 257 X 257 is solved in 0.2 sec.

Other programs were made for zebra-relaxation. By its nature, this relaxation meth­
od seems better suited for vectorization than ILU- or ILLU-relaxation, and o.n
the Cray- I better acceleration factors were indeed found. However, to make this
method efficient on the Cyber the data structures in the program had to be changed
drastically. In the MOD-programs the data (uiJ) are stored in a natural way in a
rectangular array, corresponding to the location of the gridpoints (x;,yj) in the rec­
tangle Q. In order to prevent the frequent use of strides > I in the zebra program
(which is necessary for efficient vectorization on the Cyber), the data uiJ had to be

II 5QBI
II ContrlbUllonS 11

II ~II
II 1i 11

:: n _,

I~ SUPERCOMPUTER ~I
'

re-ordered by even and odd lines. In this way the program could be accelerated by
a factor 7. 3 on the Cyber. The same program runs without problems on the Cray.

For efficient implementation of an algorithm, the structure of the program has to
be tuned to a great extent to the computer architecture. We are willing to do this
as long as our programs remain portable.

A program can generally be made faster if one tunes the programming really to one
particular machine and even more if one restricts its use to only one particular case
of equation (1). Such a program has been constructed by Barkai and Brandt [l].
It solves (only) the Poisson equation on a Cyber 205. In this program, a checker­
board relaxation is used and the data structures have been specially adapted for
this relaxation on this particular computer. The result is a non-portable program
which is extremely fast. In [1] it is mentioned that the Poisson equation with N =
129 X 129 can be solved in 0.006 seconds.

At the CWI we do not plan to proceed in the direction of non-portable programs.
At the moment, we are more interested in efficient algorithms for solving wider
classes of equations. Besides our special interest in the solution of equations (1) of
singular pertubation type, we are considering the implementation of an algorithm
for (1) with (strongly) discontinuous coefficients.

Acknowledgements

I would like to thank Paul de Zeeuw who did most of the programming, and Walter
Lioen who implemented the Fortran programs with zebra-relaxation. Furthermore,
I would like to thank Drs. I. P. Jones and C. P. Thompson from AERE, Harwell
(England), for their kind cooperation in running the programs on the Cray-1 and
the IBM 3081K.

References

1
D. Barkai & A. Brandt, Vectorized Multi­
grid Poisson Solver for the CDC Cyber
205, J. Appl. Math. & Computat. 13,
1983, 215-227.

3
P. W. Hemker, R. Kettler, P. Wesseling
& P. M. de Zeeuw, Multi grid methods:
Development of Fast Solvers, J. Appl.
Math. & Computat. 13, 1983, 311-326.

5
K. Stiiben, Algebraic Multigrid (AMG):
Experiences and Comparisons, J. Appl.
Math. & Computat. 13, 1983, 419-451.

7

P.W. Hemker & and P.M. de Zeeuw,
Some implementations of multigrid linear
system solvers, CWI Report NM-R8401,
1984; to appear in Proceedings Multigrid
Conference, Bristol, September 1983, IMA
Publication, Academic Press, London, 1984.

2
W. Hackbusch & U. Trottenberg (Eds),
Multigrid Methods. LNM 960, Springer
Verlag, 1982.

4
H. Schippers, Multiple Grid Methods for
Equations of the Second Kind with Appli­
cations in Fluid Mechanics, Mathematical
Centre Tract 163, CWI, Amsterdam, 1983.

6
H . A. van der V orst, Preconditioning by
Incomplete Decompositions, Ph. D. The­
sis, University of Utrecht, 1982.

