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The aim of research at the CWI on multigrid methods in elliptic partial differential 
equations is the construction of algorithms that efficiently yield a numerical solution 
of these problems. This kind of research is motivated by numerous applications, 
mainly in physics and in the engineering sciences. Except for a few very simple 
cases, it is impossible to find explicit mathematical expressions for the• solutions, so 
that one has to rely on a numerical approximation to the solution. 

By the very nature of partial differential equations, their solutions are continuous 
functions of several variables. In the numerical approach, these functions are ap
proximated by only a finite set of numbers. Usually, these numbers represent the 
function values of the solution at an evenly spaced set of gridpoints in the domain 
of definition of the equation. 

In practice, many problems appear in the form of an equation for the function 
u(x,y), with (x,y) in a rectangle 0. The form of this equation is 

with additional conditions for u ( x,y) on the boundary of 0. The coefficients aiJ, b;, c 
and fare given functions of x and y. Much of the research on multigrid methods 
is restricted to this equation. The computer programs that have been recently con-

:j:Adapted from CW! Newsletter 3 with kind permission. 



structed at the CWI are almost all intended for equations of this type. 

For those who are not familiar with elliptic partial differential equations a simple 
example is given by the Poisson equation: 

with u(x,y) prescribed on the boundary of the 2-dimensional domain fJ. For this 
equation we can imagine the solution z = u(x,y) as a surface in 3-dimensional 
space. On- the boundary of f.l its position ( x,y, z) is given and in the interior of Q 
the surface behaves like a soap-film between the prescribed boundary values. 

Figure J. 
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This example illustrates some essential properties of elliptic partial diffential equa
tions: boundary conditions are to be given all along the boundary and the solution 
in the interior is a smooth function. 

The usual technique for finding an approximation to u ( x,y) is to replace equation 
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( l) by a set of N linear equations for N unknown values uiJ which are meant to 
represent the function values u ( x,y) where ( x;,yj) is a gridpoint. All these grid points 
form a grid (or net) for the discretization of (1). The approximation u, for u(x;,yj) 
becomes more accurate as the number of gridpoints N becomes larger. Therefore, 
it is often necessary to solve linear systems with N very large. N may be so large 
that - with conventional solution methods such as Gaussian elimination - it can 
take many days to solve these systems on a computer. 

Therefore, the usual way to solve the large systems is by relaxation methods, i.e. 
iterative methods in which an initial guess of the solution is improved step by 
step. Well-known relaxation methods are Gauss-Seidel relaxation, SOR, zebra
relaxation, and Incomplete (Line) LU-decomposition-relaxation. Successful research 
in recent years has resulted in other, much faster converging, iteration methods such 
as ICCG (preconditional conjugate gradient methods, cf. [6]). A disadvantage of 
all these methods is that the rate of convergence of the iterations decreases for larger 
N. 

A significant improvement in solving these (very large) systems of equations is found 
in the multigrid method. This is a technique which accelerates the convergence 
of the relaxation methods so that the rate is independent of N. This is done by 
introducing coarser grid discretizations (linear systems with N := N/4,N/16 etc.) 
and by combining relaxation for the large system with the (less laborious and fas
ter converging) relaxation on the coarser grids. A good account of the multigrid 
method is found in [2] . 

For those to whom the basic idea of the multigrid method is new, a very short 
explanation is given. The principle of this method is based on three facts: 

The simple relaxation methods such as Gauss - Seidel damp the rapidly varying 
components in the error much faster than the slowly varying components. In other 
words: they can be considered as efficient smoothers for the error rather than as 
reducers of the overall error. 



2 
The remaining (smooth) error components can be represented on coarser grids, 
where the number of gridpoints is much smaller. Consequently, the remaining error 
components can be reduced there much more efficiently. 

3 
On the coarse grid the solution is most efficiently reduced by a simple relaxation 
method and, again, by coarser grid corrections. Thus, a recursive procedure can be 
defined where on the coarsest grid the linear system to be solved has a very small 
number of unknowns. 

It will be clear that the above principle is rather general and that many variants 
are possible. The idea can also be applied to other equations in which the original 
problem has continuous solutions. The idea can, for instance, be used for integral 
equations [4]. Attempts are even made to use the multigrid idea in cases where the 
linear systems do not originally stem from a continuous equation [5]. 

The convergence of the multigrid method for equation (I) depends on the coeffi
cients in the equation, on the operators that take care of the interaction between the 
various grids, and on the relaxation method used. On the one hand the efficiency 
of a multigrid algorithm depends on this convergence and on the other hand on the 
amount of arithmetic operations in each iteration. In recent years, some research 
at the CWI was devoted to the selection of optimal efficient multigrid strategies for 
different equations (I), cf. (3, 7]. 

It appears that for different classes of (I), different relaxation methods give optimal 
efficiency. For problems like the Poisson problem zebra- and !LU-relaxation are 
successful (zebra is slightly more efficient, but ILU performs better for a larger class 
of equations), while ILLU-relaxation is particulary suited for problems where the 
coefficients b; dominate the coefficients aij. 

Several implementations of multigrid algorithms have been constructed at the CWI. 
Besides a comprehensive program for experimental purposes written in Algol 68, 
a number of programs was written in Fortran with efficient execution in practical 
applications in mind. Two particular programs, developed in cooperation with the 



Numerical Group of the Delft University of Technology, are called MGDl (ILU 
relaxation) and MGD5 (ILLU). 

In practice, the speed of these programs depends not only on the convergence rates 
or the number of arithmetic operations per iteration cycle, but also on the architec
ture of the computer used. 

Here, the programmer has to decide whether his aim is to develop a program for 
a particular machine or to pursue an efficient program for a general class of com
puters. We decided in favor of the latter and wrote two versions, one aimed at the 
usual sequential (=scalar) computer and one at vector computers (Cray- I or Cyber 
205) . In both cases we did not use features that are available only on one particular 
machine and we wrote the programs in a most elementary and portable Fortran. 
For the vector computers it meant that we used the auto-vectorization capabilities 
of the Fortran compilers. 

Thus for ILU- and ILLU-relaxation we constructed a scalar version (MGDlS, 
MGD5S) and a vector version (MGDlV, MGD5V). For the scalar architecture the 
computing time for an iteration cycle is proportional to the number of gridpoints 
in the finest grid. For different machines the execution times are given in Table 1 . 
From this, we see that for an equation like Poisson's equation (for which 3 iterations 
and a preparational phase corresponding to 3 iteration cycles are necessary) a linear 
system with N = 257 X 257 ~ 66000 equations can be solved in less than a second. 

MGDl MGD5 
Relaxation ILU ILLU 

IBM 3081K 16.7 25.7 
Cyber 170 I5.4 24.9 
Cray-IS 9.1 I2.7 
Cyber 205 8.1 11. l 

Table 1. CPU-times for the scalar versions on scalar architecture 
in µsec/(cycle X meshpoint). 
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It is interesting to see to what extent the arithmetic operations in MGDl and MGD5 
can be arranged so as to make effective use of the vector architecture of the Cray-
1 or the Cyber 205 (i.e. to what extent the algorithms are vectorizable). The ac
celeration factors of the vector programs run (if possible) in vector mode over the 
scalar programs (run in scalar mode) are given in Table 2. 

N MGDl MGDS 

Cyber 170 65 x 65 0.86 0.95 
(scalar mode) 

Cray-IS 65 x 65 3.2 2.7 
(vector mode) 129 x 129 3.6 2.9 

257 x 257 3.8 3. 1 

Cyber 205 65 x 65 3.2 2.2 
(vector mode; 129 x 129 4.2 2.5 
two pipes) 257 x 257 4.8 2.6 

Table 2. Acceleration factor of the vector version over the scalar version for the algo
rithms MGDJ and MGD5. 

We see that vectorization of the MGD5 algorithm has more effect on the Cray than 
on the Cyber. The other algorithm, MGDl, is better vectorizable, especially on the 
Cyber 205. Now a Poisson type problem with N = 257 X 257 is solved in 0.2 sec. 

Other programs were made for zebra-relaxation. By its nature, this relaxation meth
od seems better suited for vectorization than ILU- or ILLU-relaxation, and o.n 
the Cray- I better acceleration factors were indeed found. However, to make this 
method efficient on the Cyber the data structures in the program had to be changed 
drastically. In the MOD-programs the data ( uiJ) are stored in a natural way in a 
rectangular array, corresponding to the location of the gridpoints ( x;,yj) in the rec
tangle Q. In order to prevent the frequent use of strides > I in the zebra program 
(which is necessary for efficient vectorization on the Cyber), the data uiJ had to be 
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re-ordered by even and odd lines. In this way the program could be accelerated by 
a factor 7. 3 on the Cyber. The same program runs without problems on the Cray. 

For efficient implementation of an algorithm, the structure of the program has to 
be tuned to a great extent to the computer architecture. We are willing to do this 
as long as our programs remain portable. 

A program can generally be made faster if one tunes the programming really to one 
particular machine and even more if one restricts its use to only one particular case 
of equation (1). Such a program has been constructed by Barkai and Brandt [l]. 
It solves (only) the Poisson equation on a Cyber 205. In this program, a checker
board relaxation is used and the data structures have been specially adapted for 
this relaxation on this particular computer. The result is a non-portable program 
which is extremely fast. In [1] it is mentioned that the Poisson equation with N = 
129 X 129 can be solved in 0.006 seconds. 

At the CWI we do not plan to proceed in the direction of non-portable programs. 
At the moment, we are more interested in efficient algorithms for solving wider 
classes of equations. Besides our special interest in the solution of equations (1) of 
singular pertubation type, we are considering the implementation of an algorithm 
for (1) with (strongly) discontinuous coefficients. 
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