Journée annuelle
2004, p. 59-74

POLYHEDRAL COMBINATORICS AND
COMBINATORIAL OPTIMIZATION

by

Alexander Schrijver

1. Introduction

Combinatorial optimization searches for an optimum object in a finite
collection of objects. Typically, the collection has a concise representation
(like a graph). while the number of objects is huge — more precisely.
grows expounentially in the size of the representation (like all matchings
or all Hamiltonian circuits). So scanning all objects one by one and
selecting the best one is not an option. More efficient methods should be
found. :

In the 1960s. Edmonds advocated the idea to call a method efficient if
its running time is bounded by a polynomial in the size of the represen-
tation. Since then. this criterion has won broad acceptance. also because
Edmonds found polynomial-time algorithms for several important com-
binatorial optimization problems (like the matching problem). The class
of polynomial-time solvable problems is denoted by P.

Further relief in the landscape of combinatorial optimization was dis-
covered around 1970 when Cook and Karp found out that several other
prominent combinatorial optimization problems (including the traveling
salesman problem) are the hardest in a large natural class of problems.
the class NP. The class NP includes most combinatorial optimization
problems. Any problem in NP can be reduced to such ‘NP-complete’
problems. All NP-complete problems are equivalent in the sense that
the polynomial-time solvability of one of them implies the same for all of
them.
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Almost every combinatorial optimization problem has since been either
proved to be polynomial-time solvable or NP-complete — and none of the
problems have been proved to be both. This spotlights the big mystery:
are the two properties disjoint (equivalently, P#NP). or do they coincide
(P=NP)?

Polyvhedral and linear programming techniques have turned out to be
essential in solving combinatorial optimization problems and studying
their complexity. Often a polynomial-time algorithm yields, as a by-
product, a description (in terms of inequalities) of an associated poly-
hedron. Conversely. an appropriate description of the polyhedron often
implies the polynomial-time solvability of the associated optimization
problem. by applying linear programming techniques. With the duality
theorem of linear programming. polyhedral characterizations yield min-
max relations. and vice versa. This area of discrete mathematics is called
polyhedral combinatorics. We give some basic, illustrative examples. For
an extensive survey, we refer to Schrijver [39]. Background on linear
programming can be found in [38].

2. Perfect matchings
Let ¢ = (V. E) be an undirected graph. A perfect matching in G is a
set M/ of disjoint edges covering all vertices. Let w : F — R,. For any
perfect matching 1/, denote

(1) w(M) = Z w(e).

€€/

We will call w(A) the weight of M.
Suppose now that we want to find a perfect matching M in G with
weight w(A/) as small as possible. In notation. we want to “solve’

(2) min{w(A) | M perfect matching in G}.
This problem shows up in several practical situation. for instance when
an optimum assignment or schedule has to be determined.

We can formulate problem (2) equivalently as follows. For any perfect
matching A/. denote the incidence vector of A/ in RF by y*/; that is.
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(3) ,\'AI(G) - 1 lf e € M,
0 ife g M,

for e € E. Cousidering w as a vector in RE, we have w(}M) = w\*.
Hence problem (2) can be rewritten as

(4) min{w "\ | A/ perfect matching in G}.
This amounts to minimizing the linear function w'x over a finite set of

vectors. Therefore, the optimum value does not change if we minimize
over the convex hull of these vectors:

(5) min{w 2 | 2 € conv.hull{x" | M perfect matching in G}}.
The set
(6) conv.hull{x** | M perfect matching in G}

is a polytope in RE| called the perfect matching polytope of G
As it is a polytope, there exist a matrix - and a vector b such that

(7) conv.hull{x™ | M perfect matching in G} = {r € B |
Ar < b}

Then problem (5) is equivalent to

Ar < b}

(8) min{w 'z

roblem (21

In this way we have formulated the Ol‘iglll‘dl combinatorial P ‘
linear pro-

as a linear programming problem. This enables us to apply
gramming methods to study the original problent. .
The question at this point is, however. how to finc
the vector b. We know that 4 and b do exist. but we
in order to apply linear progranuning methods"
For bipartite graphs, such an 4 and b can easily
bipartite if its vertices can be split into Two class
connects a vertex in one class with a vertexin the

1 the matrix 1 and
st know the

be found. (A graph is
s such that each edae
other dlass v I G as
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bipartite. the matching polvtope of (& is equal to the set of all vectors
x € RE satisfving

(9) x(e) >0 fore € E.
Zl‘(@) =1 forvel.
esv

(The sum ranges over all edges e containing )

This is in fact equivalent to a theorem of Birkhoff [2]. saving that
each doubly stochastic matrix is a convex combination of permutation
matrices. (A matrix is doubly stochastic if it is nonnegative and each row
sum and each columm sum is equal to 1. A permutation matrir is a 0.1
matrix with precisely one 1 in each row and each column.)

It is not difficult to show that the perfect matching polytope for bi-
partite graphs is indeed completely determined by (9). First note that
the perfect matching polytope is contained in the polytope determined
by (9). since \* satisfies (9) for each perfect matching M. To see the
reverse inclusion. we note that. if i is bipartite. then the 17 x E inci-
dence matrix Ag of G is totally unimodular. i.e.. each square submatrix
has determinant belonging to {0.+1.—1}. (This was shown by Poincare
37).)

Theorem 1. The incidence matrir Ag of a bipartite graph G = (1 LE)
is totally unimodular.

Proof. Let B he a square submatrix of . of order & say. We show that
det B equals 0 or =1 by induction on t. If & = 1. the statement is trivial.
So let & > 1. We distinguish three cases.

Case 1: B has a column with only 0's. Then det B=0.

Case 2: B has a column with exactly one 1. In that case we can write
(possibly after permuting rows or columns):

, 10"
(10) B:(OB,).

for some matrix B’ and vector b. where ) :
R'=!. By the induction hypothesis. det B" € {u.=1}. Hence. by (100,

det B € {0.=%1}.

0 denotes the all-zero vector in
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. Ca.s-e 3. Each column of B contains exactly two 1's. Then. since G is
bipartite. we can write (possibly after permuting rows):

(11) B=<§,',),

in such a way that each column of B’ contains exactly one 1 and each
column of B” contains exactly one 1. So adding up all rows in B’ gives the
all-one vector, and also adding up all rows in B” gives the all-one vector.
The rows of B therefore are linearly dependent., and hence det B=0. |

The total unimodularity of A implies that the vertices of the polytope
determined by (9) are integer vectors. i.e.. belong to ZF. Now each
integer vector satisfying (9) must trivially be equal to y*! for some perfect
matching M. Hence,

(12) if (7 is bipartite, the perfect matching polytope is determined
by (9).

We therefore can apply linear programming techniques to handle prob-
lem (2). Thus we can find a minimum-weight perfect matching in a bipar-
tite graph in polynomial time, with any polynomial-time linear program-
ming algorithm. Moreover, the duality theorem of linear programming
gives

(13) min{w(Al) | M perfect matching in G'}
min{wT2 |2 > 0. Agz =1}
=max{y'1|yeR".yTAc > w'}.

(1 denotes an all-one vector.) This is an example of a min-max formula
that can be derived from a polyhedral characterization. Conversely. min-
max formulas (in particular in a weighted form) often give polyhedral
characterizations.

The polyhedral description together with linear programming duality
also gives a certificate of optimality of a perfect matching A/: to convince
your ‘boss” that a certain perfect matching .}/ has minimum weight. it is
possible and sufficient to display a vector y 1 RY satisfving yTAg > w'
and yT1 = w(M). In other words. it vields a good characterization for
the minimum-weight perfect matching problem in bipartite graphs.
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3. But what about nonbipartite graphs?

For general, nonbipartite graphs G. the perfect matching polytope is
not determined by (9). For instance. if G is an odd circuit. then the
vector 2 € R¥ defined by z(e) := L for all e € E. satisfies (9) but does
not belong to the perfect matching polytope of G (as G has no perfect
matching at all). |

A pioneering and central theorem in polyhedral combinatorics of Ed-
monds [8] gives a complete description of the inequalities needed to de-
scribe the perfect matching polvtope for arbitrary graphs: one should
add to (9) the inequalities

(14) Z x(e) > 1 for each odd-size subset {7 of 1",
e€s(l)

Here 0(U) denotes the set of edges connecting [/ and ¥\ U.

Trivially, the incidence vector \* of anyv perfect matching ) satisfies
(14). So the perfect matching polytope of GG is contained in the polytope
determined by (9) and (14). The content of Edmonds’ theorem is the
converse inclusion.

Theorem 2. For any graph G. the perfect matching polytope is deter-
mined by (9) and (14).

Proof. Clearly. the perfect matching polytope is contained in the poly-
tope Q determined by (9) and (14). Suppose that the converse inclusion
does not hold. Then we can choose a vertex r of Q that is not in the
perfect matching polytope.

We may assume that we have chosen this counterexample such that
|V| 4+ |E| is as small as possible. Hence 0 < xr(e) < 1foralle € E
(otherwise, if 2(e) = 0. we can delete e. and if x(e) = 1. we can delete e
and its ends). So each degree of G is at least 2. and hence |E| > [V]. If
|E| = |V]. each degree is 2. in which case the theorem is trivially true. So
|E| > |V|. Note also that [V] is even, since otherwise ) = & (consider
U=V in (14)).

As 2 is a vertex of Q. there exist |E| linearly independent constraints
among (9) and (14) satisfied with equality. Since |E| > [V]. there is an
odd subset [7 of V with 3 < [U] < V| =3 and > 50 2(€) = 1.
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Cousider the projections 2’ and z” of - to the edge sets of the graphs
G/U and G/U. respectively (where U := V \ U, and where G//T1" is the
graph obtained from G by contracting all vertices in 11" to one vertex).
Here we keep parallel edges.

Then a2’ and 2” satisfy (9) and (14) for G/U and G/U. respectively.
and hence belong to the perfect matching polytopes of G/U and G/U,
by the minimality of |V| + |E|.

So there is a & such that G /U has perfect matchings A/, ..., M and
G/U has perfect matchings A}, . ... M} with

k I
- 4 "
(15) == E M and 2 = = _S_ yM
i=1 i=1

(Note that a is rational as it is a vertex of Q.)

Now for each e € 4(U). the number of ¢ with e € A/ is equal to
ka'(e) = ka(e) = ka”(e). which is equal to the number of i with e € A",
Hence we can assume that, for each i = 1..... k, Al and A/ have an
edge in §(U7) in common. So A, := MU M! is a perfect matching of G.
Then

A.
1
16 == M
(16) r=7 ,§=1 \

Hence @ helongs to the perfect matching polytope of G. 1

=
7] =

In fact. Edmonds designed a polynomial-time algorithm to find a min-
imum-weight perfect matching in a graph. which gave this polyvhedral
characterization as a by-product. Conversely, from the characterization
one may derive the polynomial-time solvability of the weighted perfect
matching problem. In applyving linear programming methods for this. one
will be faced with the fact that (9),(14) consists of exponentially many
inequalities. since there exist exponentially many odd-size subsets U of
1", So in order to solve the problem with linear programming methods.
we cannot just list all inequalities.

However. the ellipsoid method for linear programming (Khachiyvan [26])
does not require that all inequalities are listed a priori ([22.23]). It suffices
to have a polyvnomial-time algorithm answering the question:
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(17) given = € RE. does x belong to the perfect matching poly-
tope of G?

Such an algorithm indeed exists. as it has been shown that the inequalities
(9) and (14) can be checked in time bounded by a polynomial in |17].
|E|. and the size of . This method obviously should avoid testing all
inequalities (14) one by one. ‘ i

Ccpnbining the description of the perfect matching polvtope with the
duality theorem of linear programming gives a min-max formula for the
minimum weight of a perfect matching. It again vields a certificate of
optimality: if we have a perfect matching A/. we can convince our “boss’
that A/ has mininum weight. by supplyving a dual solution y of objective
value w(A/). So the minimum-weight perfect matching problem has a
good characterization — i.e.. belongs to NPNco-NP.

This gives one motivation for studying polvhedral methods. The el-
lipsoid method proves polynomial-time solvability. it however does not
yield a practical method. but rather an incentive to search for a practi-
cally efficient algorithm. The polvhedral method can be helpful also in
this. e.g., by imitating the simplex method with a constraint generation
technique, or by a primal-dual approacl.

We note that Edmonds’ theorem is equivalent to the following.

(18) The convex hull of the symmetric permutation matrices in
R™" is equal to the set of doubly stochastic matrices with
the property that for each odd number & and each principal
submatrix B of order k. the sun of the entries in B is at most
k—1.

4. Hamiltonian circuits and the traveling salesman problem

As we saw. perfect matchings form an area where the search for an
inequality system determining the corresponding polytope has been suc-
cessful. This is in contrast with. for instance. Hamiltonian circuits. (A
Hamiltonian circuit is a circuit covering all vertices.) No full descrip-
tion in terms of inequalities of the convex hull of the incidence vectors of
edge sets of Hamiltonian circuits — the traveling salesman polytope — 1s
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known. The corresponding optimization problem is the traveling sales-
man problem: ‘find a Hamiltonian circuit of minimum weight'. which
problem is NP-complete.

This implies that. unless NP=co-NP. there exist facet-inducing in-
equalities for the traveling salesman polytope that have no polynomial-
time certificate of validity. Otherwise. linear programming duality would
vield a good characterization. So unless NP=co-NP there is no liope for
an appropriate characterization of the traveling salesman polyvtope. It
can be seen that the following ‘obvious™ set of inequalities is not enough
to determine the traveling salesman polytope:

(19) x(e) >0 foree E.
dale)=2 forvel.

e
dor(e)=2 for @ AU AV
c€8(L)

In matrix terms. unless NP=co-NP, there is no hope for an appropriate
description of the convex hull of those n X n permutation matrices made
by a permuation with precisely one orbit. (Simply requiring that the
entries in any nonempty proper principal submatrix of order & add up to
at most & — 1 is not enough.)

Moreover. unless NP=P. there is no polvnomial-time algorithm an-
swering the question

(20) given r € R¥. does & belong to the traveling salesman poly-
tope?

Otherwise. the ellipsoid method would give the polynomial-time solvabil-
ity of the traveling salesman problem.

Nevertheless. polvhedral combinatorics can be applied to the traveling
salesman problem in a positive way. If we include the traveling salesman
polytope in a larger polytope (a relazation) over which we can optimize
in polynomial time (which is the case for the polvtope determined by
(19)). we obtain a polynomial-time computable bound for the traveling
salesman problem. The closer the relaxation is to the traveling salesman
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olvtope. t ) . ) .

Ia)ngv 'lr)ope. dth(; bettlel the bound is. This can be very useful in a branch-

and-bound algorit is i igin: T ntzig

meo Lalg . Thls idea originates from Dantzig. Fulkerson. and
nson [6].

5. Stable sets and semidefinite programming

Related to the pro 3 i above is . .
e e R e
maximum-weight stable set. but we will re;tricr ouri?llxt':: ﬁglrl:r? “he

) . strict ourselves o the
F‘&rdnmlity case). Here a subset S of 17 is called stable if any two vertices
in S are nonadjacent in G. The problem comes up in practi(:e for instance
Whe'n a§signing frquencies to radio stations or mobile phones.

Finding a maximum-size stable set is again an NP-complete probleni.
s0 1o good description of the corresponding stable set polytope (the convex
hull of the incidence vectors in R of the stable sets) niay be expected.

. However. for certain graphs. the so-called perfect graphs. a maximum-
size stable set can be found in polynomial time ([22]). The basic idea is
to apply semidefinite programming to calculate the following bound of
Lovéasz [34] on the maximum size a(G) of a stable set in G: ‘

(21) D(G) = max{1TM1 | M € R™" positive semidefinite.
A[l’.j =0if 1] € E. tra‘ce(;\[) = 1}

Here we assume without loss of generality that G has vertex set
{1..... n}.

To see that a(G) < V(G). let S be a maximum-size stable set in (.
and define the matrix A by

S

(22) M= S0

()
where \° is the incidence vector of S in RY. taken as column vector.
Then A/ is positive semidefinite. 1/, ; = U if ij € E.and tracell = 1. So
a(G) =S| =1TM1 < U(G).

The value ¥(G) can be calculated in polynomial tine. as it is a senidef-
inite programming problem. A generic form of such a problem is: given
¢1.....¢ € Rand real synunetric matrices Ageoo 4,. B {of equal dimen-
), find ay.. ... ry € R that maximize E, c;, subject to the condition

sions
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that (3, 2;4;) — B is positive semidefinite. If all 4, and B are diago-
nal matrices, we have a linear programming problem. Semidefinite pi'u-
gramming problems can be solved in polynomial time. with the ellipsoid
method or with an ‘interior-point method’.

It follows that if o(G) = ¥(G). we can calculate o(G) in polynomial
time. Moreover, if .

(23) a(G") = ¥(G") for each induced subgraph G’ of G.

then we can find a maximum-size stable set in polvnomial time. (Au
induced subgraph is a subgraph (V'.E') of (V. E) with 17/ C 1" and £’ =
{ije Eli.jeV'})

Which graphs satisfy (23)? First. it was shown by Lovdsz 33 that
these are precisely the graphs G such that

(24) a(G") = v(G") for each induced subgraph ¢" of G.

Here ~(H) denotes the colouring number of H. and H denotes the cotu-
plementary graph of H (whose edges are precisely the nonedges of H 1.
Berge [1] introduced the name perfect for graphs G satistving {244
and he conjectured that these are precisely those graphs G with the
property that neither G nor G contains a chordless circuit of odd length
> 5. (Necessity of this condition is easy.) This strong pe rfect graph
conjecture was only recently proved by Chudnovsky- Robertson. Seviiour.
and Thomas [3]. requiring deep decomposition techniques for graphs.
Berge's weak perfect graph conjecture. stating that the complement ~('.' uf
any perfect graph is perfect again. was shown earlier by Lovisz 330

6. Historically

The first min-max relations in combinatorial optimization were proved
by Dénes Kénig [27.28]. on edge-colouring and matchings h% bipartite
graphs, and by Karl Menger [36]. on disjoint paths in graphs. 1 lw}nm{tvly
ing theorem of Konig was extended to the weighted case h:v Egt.*r\';n'\" | };\L.
The proofs by Kénig and Egervary were in principal alg.ornlmuc .. and also
for Menger's theorem an algorithmic proof was aiven in the 1830s. The
theorem of Egervdry may be seen as polvhedral.
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. Applying linear programming techniques to combinatorial optimiza-
?:‘1011 problems came along with the introduction of linear programming
in the 1940s and 1950s. In fact. linear programming forms the hinge
in the history of combinatorial optimization. Its initial conception by
Kantorovich [25] and Koopmans [29] was motivated by combinatorial
applications, in particular in transportation and transshipment.

After the formulation of linear programming as generic problem, and
the development in 1947 by Dantzig [5] of the simplex method as a tool.
one has tried to attack about all combinatorial optimization problems
with linear programming techniques, quite often very successfully. In the
1950s. Dantzig [4]. Ford and Fulkerson [16.15.17]. Hoffman [24]. Kuhn
[30.31], and others studied problems like the transportation. maximum
flow, and assignment problems. These problems can be reduced to linear
programming by the total unimodularity of the underlving matrix. thus
vielding extensions and polvhedral and algorithmic interpretations of the
earlier results of Kénig, Egervéry. and Menger. Kuhn realized that the
polyhedral methods of Egervary for weighted bipartite matching are in
fact algorithmic. and vield the efficient *Hungarian' method for the as-
signment problem. Dantzig, Fulkerson. and Johnson [6.7] gave a solution
method for the traveling salesman problem. based on linear programming
with a rudimentary. combinatorial version of a cutting plane technique.

A considerable extension and deepening. and a major justification,
of the field of polyhedral combinatorics was obtained in the 1960s and
1970s by the work and pioneering vision of Edmonds [8.9.10,11.12.13].
He characterized basic polvtopes like the perfect matching polytope. the
arborescence polytope, and the matroid intersection polytope: he intro-
duced (with Giles) the important concept of total dual integrality; and
he advocated the interconnections between polyhedra, min-max relations.
good characterizations, and efficient algorithms.

Also during the 1960s and 1970s. Fulkerson [18.19.20.21] designed the
clarifving framework of blocking and antiblocking polyhedra. throwing
new light by the classical polarity of vertices and facets of polyhedra on
combinatorial min-max relations and enabling. with a theorem of Lehman
[32], the deduction of one polvhedral characterization from another. It
stood at the basis of the solution of Berge's weak perfect graph conjec-
ture in 1972 by Lovész [33]. As mentioned, Berge's strong perfect graph
conjecture was recently proved by Chudnovsky. Robertson. Seymour, and
Thomas [3].
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