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Consider the cubic sensor dx = dw.·, d_v""' x 3dr +dt· where 
"''· t• are two independent Bro'Wnian motions. Given a function 
'9( x) or the state x let .,( x) denote the conditional expectation 
given the observations yJ, 0 < s < t. This paper consists of a 
rather detailed discussion and outline of proof of the theorem 
that for nonconstant 4> there cannot exist a recursive finite-di~ 
mensional filter for .f.. driven by the observations. 
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l~oduction 

,.e cubic sensor problem is the problem of 
determining conditional statistics of the state of a 
one-dimensional stochastic process ( x, : r ;;. 0} 
satisfying 

dx=dw, x 0 =x'", (1.1) 

with w a Wiener process, independent of x'", given 
the observation process ( y,: t ;;. 0} satisfying 

dy=x 3dt+ dv. y0 =0, (1.2) 

• Supported in pan by the NuionaJ Science Foundation under 
Grant ECS..8022033 and in part by the Joint Servi= Elec­
tronics program under contract F-49620-77-C-OIOI. 

where u is another Wiener process independent of 
wand x'". Given a smooth function cp: R -+ R let 
4>, denote the conditional expectation 

~,=<j>(x,) 

= E [ cp( x,): y,. 0..:; s..:; t]. (1.3) 

By definition a smooth finite-dimensional recur­
sive filter for </>, is a dynamical system on a smooth 
finite-dimensional manifold M governed by an 
equation 

dz = a(z)dt + ,B( = )dy, z 0 = z;". ( 1.4) 

driven by the observation process. together with 
an output map 

y:M-+R 

such that, if z, denotes the solution of (1.4). 

y(z,)=~, a.s. 

(1.5) 

( 1.6) 

Roughly speaking one now has the theorem 
that for nonconstant cp such filters cannot exist. 
For a more precise statement of 1he theorem see 
2.10 below. 

It is the purpose of this note to give a fairly 
detailed outline of the proof of this theorem and to 
discuss the structure of the proof. That is the 
general principles underlying it. The full precise 
details of the analytic and realization-theoretic 
parts of the proof will appear in [20,21], the details 
of the algebraic part of the proof can be found in 
[7]. An alternative much better and shorter proof 
of the hardest bit of the algebraic part will appear 
in [15]. 

The preprint version [8] of the present note 
contains some 9 pages more detail on the analytic 
and realization-theoretic parts. 

2. System-theoretic part I: precise fonnulation of 
the theorem 

2.1. The setting. The precise system-theoretic prob­
abilistic setting which we shall use for the cubic 
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sensor filtering problem is as follows. 
(i) (!J, ..of, P) is a probability spa::e. 

(ii) ( .J>f,: 0 ,.; 1) is an increasing family of o-al­
gebJras. 

(iii) ( w, v) is a two-dimensional standard 
Wiener process adapted 10 the sf,. 

(iv) x = { x,: / ~ 0) is a process which satisfies 
dx = dw, i.e. 

x, = x 0 + w, a.s. for each t. (2.l) 

(v) x 0 is.J>f0-measurable and has a finite fourth 
moment. 

(vi) { y,: t ~ O} is a process which s.atisfies dy 
= x 3dt + d t', i.e. 

y, =fa' x; ds + v, a.s. for each t. (2.2) 

(vii) The processes v, "" x, y all have cominu­
ous sample paths, so 1ha1 in particular (2.1) and 
(2.2) actually hold and not just almost surely. 

(More precisely one can always find, if neces­
sary, modified versions or v . .... x. y such that (vii) 
(also} holds.) 

2.3. The filrermg problem. Let y,. t ;lo 0, be the 
a-algebra generated by the y,. 0"' s ,.; t and let 
'4>: R _, R be a Borel-measurable function. Then 
the filtering problem (for this particular <I>) con­
si>ts of determining 

E[<t>(x,)IY,]. 

2.4. Smooth finile-dimensiqnal filters. Consider a 
(Fisk-Stratonivic) stochastic differential equation 

dz=a(z)dt+/l(z)dy. 2EM. (2.5) 

where M is a finite-dimensional smooth manifold 
and a and f3 are smooth vector fields on M. Let 
there also be given an initial state and a smooth 
output map 

::'"EM, y:M-.R. (2.6) 

The equation (2.5) together with the initial condi­
tion :(0) = 2'" has a solution z = { z,: 1;;;. 0) de­
fined up to a stopping time T. which satisfies 

0 < T"' oo a .s., 
{wlT(w)>t)EY, forr;;;.O. (2.7) 

Moreover there is a unique maximal solution. i.e. 
one for which the stopping time T is a.s. ;;. T1 if T, 
is the stopping time 0f an arbitrary other solution 
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z1. In the following z = { z,: 1 ~ 0) denotes such a 
maximal solution. 

The system given by (2.5 }, (2.6) is now said to 
be a smooth finite-dimensional filter for the cubic 
sensor 2.1 (i)-(vii) if for y equal 10 the observation 
process (2.2) the solution;: of (2.5) satisfies 

E[ .p(x,)IY,j = y( z,) 

a.s.on { wlT(w) > t }. 
(2.8) 

2.9. Statement of the theorem. With these notions 
the main theore.:n of this note can be stated -

l.IO. l"heorem. Consider 1he cubic smsor 2.1 
(i)-(vii). i.e. assume 1har these conditions hold. Ler 
4>: R -+ R be a Borel-measurable funclion which 
satisfies for some fJ ;;: 0 and 0 "' r < 4 

l<P(x)I~ exp(.Blx!'). -:ic <x < x. (2.11) 

Assume 1h01 q, is nor almost ererywhere equal ro a 
cons/ant. Then rhere exists no smoo1h finire-drmen­
siona/ filter for the conditional statistic E[ </>( x, ll };]. 

3. System-theoretic pan U: The homomorphism 
principle and outline of the proof (heuristics) 

3.1. The Duncan-!vfqrtensen-Zakai equarron. Con­
sider a nonlinear stochastic dynamical system 

dx, = /(x,)d1 + G( x,)di<;. 
(3.2) 

where "; is a standard Brownian motion indepen­
dent of the initial random variable x'" and where f 
and G are appropnate vector-valued and m­
valued functions. Let the observations be g"· " 

·" 

dy,=h(x,)dt+dv,. y,EliF. (3 3) 

where l', is another standard Brownian motion 
independent of wand x'". Let i, denote the condi­
tional expectation 

x, = E[x,IY,] = E[x,jy,. O,.; s"' t J (3.4) 

where Y, is the <1-algebra generated by the .l".. 
0.:; s,;; t. Let p(x, 1) be the density of.\', where H 

is assumed (for the purposes of this heuristi~ sec­
tion) that p(x, I) exists and is sufficiently smooth 
as a function of x and 1. Then an unnormalized 



Volume 3, Number 6 SYSTEMS & CONTllOL LETTERS December 1983 

version p(x, t) satisfies the Duncan-Mortensen­
Zakai (DMZ) equation 

- E-aa t. -n>;)p(x. r)dr 
i x, 

+ _Eh1p(x. r) d)j,. 

p(x. 0) =density of xon, 

(3.5) 

wa h, = h,(x) is the j-th component of h, 
<<9J .. , is the (i.j)-th entry of the product of the 
matrix G(x) with its transpose and/,= f,(x) is the 
i-th component of /(x). The equation (3.5) is a 
stochastic panial differential equation in Fisk­
Stratonovic form. In the case of the cubic sensor 
(2.1). (2.2) (or (1.1), (1.2)) the equation becomes 

dp(x 1)= ('.!.~_.!.x6 )p(x t)dt 
· 2 dx 2 2 ' 

+x3p(x. t)dy. (3.6) 

3.7. The homomorphism principle. Now assume for 
a given q,: R • - R we have a smooth finite-dimen­
sional filter 

dz "'a(z )dt + .E.B,(z )dy1 • 

(3.8) 
z0 =zin, y:R"-+R .. 

to calculate the statistic 

~,=E[<t>(x,)IY,]. 

I • "'y( z,) a.s. if z, is the solution of (3.8). The 
on (3.8) is to be interpreted in the Stratonovic 

s 
Then. very roughly, we have two ways to pro­

cess an observation path 

yw:S-J',(..,). 0 .. s.;;t, 

to give the same result. One way is by means of 
the filter (3.8), the other way is by means of the 
infinite-dimensional system (3.5) (defined on a 
suitable space of functions) coupled with the out­
put map 

Assuming that (3.8) is observable. deterministic 
realization theory [16) then suggests that there 
exists a smooth map F from the reachable part 
(from p(x. 0)) of (3.6) to the reachable part of 
(3.8). which takes the vector fields of (3.6) to the 
vector fields of (3.6) and which is compatible with 
the output maps y and (3.9). The operators in (3.6) 
define linear vector fields in the state space of (3.6) 
(a space of functions). Let L0 • L 1 •.. •• Lr be the 
operators occuring in (3.5) so that 

dp = L0 pdt + L 1pdy, + · · · + Lrpdy". 

The Lie algebra of differential operators generated 
by L0 .... ,LP is called the estimation Lie algebra. 
and is denoted L(1:). The idea of studying this Lie 
algebra to find out things about filtering problems 
is apparently due to both Brockett and Mitter. cf. 
e.g. [2] and (13) and the references in these two 
papers. 

Let L - l be the map which assigns to an 
operator the corresponding linear vector field 
(analogous to the map which assigns to an n x n 
matrix A= (a, 1 ) the linear vector field 

a 
.Ea,,x,-3 x, 

as R" ). Then L-+ - l is a homomorphism of Lie 
algebras. Funher F induces a homomorphism of 
Lie algebras 

dF: l 0 - a. l, - /J,. i = l.. ... p. 

Thus the existence of a finite-dimensional filter 
should imply the existence of a homomorphism of 
Lie algebras L(I)-. V( M) where V( M) is the Lie 
algebra of smooth vector fields on a smooth 
finite-dimensional manifold M. This principle. 
originally enunciated by Brockett, has come to be 
called the homomorphism principle. 

3.10. Pathwise filtering ( robusrness ). As it stands 
the remarks in 3.7 are quite far from a proof of the 
homomorphism principle. First of all (3.6) and 
(3.8) are stochastic differential equations and as 
such they have solutions defined only almost ev· 
erywhere. The first thing to do to remedy this 
situation is to show that these equations make 
sense and have solutions pathwise so that they can 
be interpreted as processing devices which accept 
an observation path y : [O, t] _. RP and produce 
outputs ~,(y) as a result. Another reason for look-
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ing for pathwise robust versions which is most 
important for actual applications. lies in the ob­
servation that actual physical observation paths 
will be piecewise differentiable and that the space 
of all such paths is of measure zero in the proba­
bility space of paths underlying (3.6) and (3.8) (cf. 
[3D. 

Still another difficulty in using the remarks of 
3.7 to establish a general homomorphism principle 
lies in the fact that (3.6) evolves on an infinite-di­
mensional state space. A different approach to the 
establishing of homomorphism principles (than the 
one used in this paper} is described in {11 ]. 

3.11. On the proof of Theorem 2.10. In this paper 
the following route is followed to establish the 
homomorphism principle for the case of the cubic 
sensor. First for suitable <I>: R -+ R it is established 
that there exists a robust pathwise version of the 
functional .f,,. More precisely if C, is the space of 
continuous functions [O. r)- R then it is shown 
that there exists a functional ..1~ : C, -+ R such that 
( cf. 4.1 below) 

- ..:1~(y) 
4>,= ..:1',(y) 

a.s. ify = y"'. (3.12) 

The next step is to show that ..:1~( y ). y e C,. is 
given by a density n,(y)(x) so that 

..1~(y)= J n1 (y)(x)<1>(x)dx 

and to show that n ,( y )( x) is smooth (as a function 
of x). 

The next step is to use that there exists (up to a 
stopping time) pathwise and robust solutions of 
stochastic differential equations like (3.8). Robust­
ness of both (3.6) and (3.8) then gives the central 
equality (4.7) anyv.•here (not just a.s.). that is 

..1~(y)= .. (z(>·)) ;·eC 

..11,(y) I I o I" 
(3.13) 

The next step is to prove results about the smooth­
ness properties of the density n, ( y) as a function 
of t 1, • .. ,t,. for paths y such that u = j· is of the 
bang-bang type: u(s) = iim e R for 0 ..;: t < t ... 
equal to ii,._ 1 for tm..;l<t.,+t..,_ 1, etc. and to 
observe that (r, x) .... n,(y)(x) satisfies the DMZ 
equation (3.6). This permits to write down and 
calculate the result of applying 
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am I 
311 ••• ar,,, 1,- ... -,_-o 

to both sides of (3.13) and gives a relation of the 
type 

(A(iim) .. · A(ii1h)(z) 

=L(um)- · · L(u1 )~(1/-,) (3.14) 

where A(ii) is the vector field a+ iifJ, L(ii) the 
operator 

and L(ii) the linear vector field associated to 
L(ii). ~ the functional (3.9). and 1/-, a function 
corresponding to=· cf. Section 5. 

A final realization-theoretic argument having to 
do with reducing the filter-dynamical system (3.8) 
to an equivalent observable and reachable system 
then establishes the homomorphism principle in 
the case of the cubic sensor and the fact that if the 
homomorphism is zero . .p was a constant. 

The remaining algebraic part of the proof con­
sists of two parts: 

(i) A calculation of L(z) for the cubic sensor. 
It turns out that L( ;i is in this case equal to the 
Heisenberg-Wey! algebra W1 of all differential 
operators (any order) in x with polynomial coeffi­
cients . 

(ii) The theorem that if V( M) is the Lie alge­
bra of smooth vector fields on a smooth finite-di­
mensional manifold and a : W1 -+ V( M) a homo­
morphism of Lie algebras. then a "" 0. 

4. Analytic part 

tf denotes the space of all functiom 4>: R ..... R 
such that there exist constants C ER. a e R and 
r. 0 .i;; r < 4, such that 

19( x )I" C exp( alxl') 

for all x e R. And §denotes the space of all 
C"'-functions q.: R - R such that 

is bounded for all fJ ;;. 0. 0 ..;: r < 4. k e 1\1 u { 0}. 
F~ly C, is the space of all continuous functions 
y: {O. 1)-+ R such that y(O) = 0. 
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4.1. A robust version of .j., = E(cj>(x,)ly,). There 
exists for all <t> e if a functional 

.1~(y): C, .... R, '1~(y) = (N,(y), 'I>) 

such that .1~(y) is continuous. '11,(y)> 0 and such 
that 

is a version of .j.1• The formula for .1~(y) is pro­
v~ by (the numerator of) the Kallianpur­
~el formula (slightly modified by a partial 
integration to remove the dy, term). By means of 
some explicit estimates on the terms occurring in 
the formula for A~(y) it is shown that '1~(y) is 
continuous, and that .1~(h) has a density n,(y) for 
4> bounded. 

Moreover one shows that n,(y) is smooth, that 
is in .F if y is smooth. More importantly one shows 
that n,(y) as a family of densities depending on y 
is a smooth family in a certain technical sense. In 
particular this implies that if y( t) is such that 

)'(I)= u, E A, 

t.+I + ... +t., .. t.;;t,+ ... +t.,, 

i= 1, ... ,m, 

1,+ ···+t.,.=t. t, ;i. o. 
then n,(y) depends smoothly on t1, ••• ,t.., in the 
sense that n,(yXx) is a jointly smooth function of 
!1p•••'lffl x. 

Directly from the formula for A~(y) one shows 
that (t, x)-+ n,(y)(x) satisfies the (DMZ) PDE 
(belonging to the cubic sensor) 

--+ x 3u(t)-- p 

-

1 a2p ( x6) 
2 ax 2 2 • (4.3) 

p(O,x).,.n 0(x). u=)'. 

Note that we first establish existence and 
smoothness of n,(yXx) and afterwards prove that 
it satisfies the DMZ equation. 

Let exp(tL(ii))if denote the solution of (4.3) 
thus obtained with 

if= n0 (x) =density of xin, 

Y(t)=ii, o .. .,. .. ,, 
and let 

L(ii) = L0 + iiL 1 

where 

1 a2 
Lo=---lx6 Li=XJ . 

2 ax2 l • 

Then it readily follows that 

am 
at'" exp(t1L(ii1 )· • • r.,L(ii.,.)) 

= L(ii1 ) exp(t1L(i21 )) • • • 

·· · L(ii.,)exp(r..,L(ii,,,))"1. (4.4) 

4.5. Robustness of the filter. Now consider a sto­
chastic differential on a manifold M (in the 
Stratonivi~ sense) with an output map and initial 
state driven by the (observation) process y, 

dz =a(z)dr + ,B(z)dy, 

z(O)=zi•, z-y(z)ER, zeM 
(4.6) 

(such as we would have for a filter for .j,, cf. 2.4 
above). Let ye C, be given (not necessarily dif­
ferentiable). Then -r-+z(-r),O._ T._ t. is said to be 
a solution of (4.6) if there exists a neighbourhood 
U of y in C, and a continuous map y .... z( y ). 
Uc C([O, t ), M) such that z(j') in a solution of 
(4.6) in the usual sense of ODE's for all once 
differentiable ji. It is now a theorem that up to a 
stopping time (4.6) admits solutions in this sense 
(where now y,(w) is an observation process). cf. 
(21] for details, cf. also [17) for the case that;~ is a 
Wiener process; the same techniques apply. 

Denoting the stopping time with T it readily 
follows that if ( 4.6) is a filter for a cubic sensor 
then 

ll,•( y) = y( z(y }( t )) (4.7) 

holds every,.•here whenever I > 0, y e C,, T( y) > t. 

5. System-theoretic part III. Realization theory 

5.1. Some differential topology on _jl;_ Let Uc§ be 
the open subset of all "1 such that jif(x) dx > 0. 
Let 4> : U-+ R be a functional of the form 

4>(.f)= (Ji1-(x) dx f /<t>(x)"1(x)dx. 

Then 4> is smooth in the sense that it takes a 
smooth family of densities depending on a finite 
number of parameters into a smooth function of 
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these parameters. In particular because n, ( y) is a 
smooth family, we have that ll,"( y) is a smooth 
function of t 1, •• ., t., for y of the form described 
just above (4.3) in the previous section. 

To a continuous (linear) operator L: !F-+ .:Fone 
naturally associates a (linear) vector field L on !F 
defined b)t the formula 

( L<P)t/I= dd I .P(i/;+tLtjl), .P: .:F:> U-+R. 
l 1•0 

and the map L .... L is an anti-homomorphism of 
Lie algebras. i.e. [i,. L2 ) = [L 1, LX. 

Using the L one has for smooth functionals <I> 

ii'" I rl>(e'1Lc•11 ··1.L<u.11/1) 
ar, . .. arm '1""·-r,.,-0 

= L(um)· · · L(u,)<P(lf). (5.2) 

5.3. Lie-algebraic· implications of rhe exisrence of a 
smoorh filter. The (much easier and well known) 
analogue of (5.2) for a system (4.6) evolving on a 
smooth finite-dimensional manifold M is 

a, -~~ 3, I 
I m\t1 •,. •r..,-0 

y(w(ii1.1iJ···w(ii.,.1.,):=) 

= (A(ii..,)· · · A(ii1 ) y)(z) 

where 

(5.4) 

is the point of M reached at time t = 11 + · · · + 1., 

by starting in : and evolving along 

z= a(z)+u(t)/J(z) 

with 

U ( I ) = ii, for t, • 1 + · · · + t.., Ii; I ~ I, + · · · + I.,. 

Here A( ii) is the vector field a(:)+ ii/J( z ). 
Let L1 be the Lie algebra generated i( -1). 

L(l) and L 2 the Lie algebra generated by A(-1) 
and A(l). Let I denote the ideal in L2 consisting of 
the vector fields V such that 

[ V, .[ V2 .f .. . { V,..V] .. . ] y( z) = 0 

for all V1 ••• ., v .. e L2 • 
(5.5) 

Combining (5.2). (5.4) and (4.7) it follows that 
i( -1)-+ A(-1), i(l)'-• A(2) defines a homomor-
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phisrn of Lie algebras 

L1 -+Li/· (5.6) 

One now uses fairly standard realization-theo­
retic arguments to show that (for suitable : l L. / is 
(locally near =) the Lie algebra of vectl)r field' of 
the reachable and observable sub-quotient ,\,/, of 
M. Thus from the existence of a smooth filter for 
the cubic sensor the existence results of a homo­
morphism of Lie algebras 

11:L1 -+ V(M3) (5 . ._ 

for some .smooth finite-dimensional manifold. 
The final result in this section is: 

5.8. Lemma. Assume thar the homomorphism " of 
Lie algebras of (5.1) is :ero and assume rhat L 1 

conrains all rhe operators 

d 4 
dxx. k=0.1.2 ..... 

Then 4> is consrant almost ei·erp·•here. 

6. Algebraic part 

6.1. The Wey/ Lie algebras W,,. The Weyl Lie 
algebra ~: is the algebra of all differential opera­
tors (any order) in 

a a 
ax, ..... ax. 

with polynomial coefficients. The Lie bracket op­
eration is of course the commutator 

[D1.D]=D1D2 -D2 D 1• ~ 

A basis for W 1 (as a vector space over R) consi>ts 
of the operators 

' 3' . . 0 1 2 
xax1· l,j==' \ ····· 

where of course 

ao 
x'-a;-x'. 

ax 0 

(11 (11 
xo-=-, 

Clx' Clx' 

One has for example 

-.x2 =4x-+2 [ a2 ] a 
ax2 dx 

a• 
xo-= I. 

ax 0 

(6.2) 
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as is easily verified by calculating 

for an arbitrary test •'unction (polynomial)f(x). 
Some easy facts (theorems) concerning the Wey! 

Lie algebras w. are (cf. [7) for proofs): 

6.3. Proposition. The Lie algebra w. is generated 
(as a Lie algebra) by the elements e a2;ax,2 , x,2 (3/ilx,), i = 1, ... ,n; 

x,x,_ 1• i=2 .... ,n. 

Jn particular W 1 is generated by 

x, il 2/ilx 2 , x 2 (il/Clx). 

6.4. Proposition. The on~1· nontrivial ideal of W,, is 
the one-dimensional ideal A 1 of scalar multiples of 
the identity operator. 

If M is a C"' differentable manifold let V( M) 
denote the Lie algebra of all C"' vector fields on 
M (i.e. the Lie algebra of all derivations on the 
ring of smooth functions on M ). If M =A", V(R") 
is the Lie algebra or all differential operators of 
the form 

with g,(x1, ••• ,x.) a smooth function on R". 
A deep fact concerning the W eyl Lie algebras 

w. is now: 

l lbeorem. Let M be a finite-dimensional smooth 
ifo/d. Then there are no nonzero homomor­

p ;ms of Lie algebras W,, -+ V( M) or W./R 1 -
V( M)for n ;i. I. 

The original proof of this theorem [6) is long 
and computational. Fortunately there now exists a 
much better proof (about two pages) of the main 
and most difficult part [15). essentially based on 
the observation that the associative algebra W1 

cannot have left ideals of finite codimension. For 
some more remarks about the proof cf. 6.8 below. 

6.6. The Lie algebra of the cubic sensor. According 
to Section 2 above the estimation Lie algebra 
L(I) of the cubic sensor is generated by the two 

operators 

I d 2 
L =----lxo 

o 2 dx> 2 ' 

Calculating [ L0 • LiJ gives 

c-Jx2~ + 3x. 
dx 

Let ad,(-)= [C.-]. Then (adc>J = B =Const. x• 
which <:ombined with A gives as that (d~ /dx 2 ) E 
L(I). To show that also x 2(d/d.~)E L(I) re­
quires the calculation of some more brackets (about 
15 of them). For the details cf. [6j. Then 

2 d d2 ( -\ x,x -d • --2 EL z, 
x dx 

which by Proposition 6.3 implies: 

6.7. Theorem. The estimation Lie algebra l(l:) of 
the t"ubic sensor is equal to the Wey/ Lie algebra W,. 

In a similar manner one can e.g. show that the 
estimation Lie algebra of the system 

dx, =d .. ;. dy, = x,dt +ex;'+ di·, 

is equal to W1 for all £.;,. 0. It seems highly likely 
that this is a generic phenomenon. i.e. that the 
estimation Lie algebra of a system of the form 

dx, = f(x,)dt + G(x,)dr, 

dy, = h(x,)dt + dv,, 

with x e R • and f, G and h polynomial. is equal to 
W,, for almost all (in the Zariski topology sense) 
polynomials f. G, h. 

6.8. Outline of the proof of the nonembedding theo· 
rem 6.5. Let Ji. be the Lie algebra of all expres­
sions 

(6.9) 

where f 1 ( x ),. . .. f. ( x) are formal power series in 
x 1 ... .,x •. (No convergence properties are re­
quired.) Suppose that 

a: W.-V(M) (6.10) 

is a nonzero homomorphism of Lie algebras into 
some V( M) with M finite dimensional. Then there 
is a DE w. and an m E M such that the tangent 
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vector a(DXm),,_, 0. Now take formal Taylor series 
of the a(D) around m (with respect to local coor­
dinates at m) to find a non.zero homomorphism of 
Lie algebras 

(6.11) 

where m-= dim(M). 
Observe that W1 is a sub-algebra of w. (consist­

ing of all differential operators not involving x,. 
i .. 2. and a;ax,. i .. 2) so that it suffices to prove 
Theorem 6.S for the case n = 1. 

Because the only nontrivial ideal of W1 is Rl 
(cf. Proposition 6.4) the existence of a nonzero 
a: W1 - V,. implies that W1 or W1/Rl can be 
embedded in v ... 

The Lie algebra V,. carries a filtration 

V,.=L_,:::iL0 =>L1 =>··· 

where the L, are sub-Lie algebras. This filtration 
bas the following properties: 

{L,.L,jc [L,.,j. 

n L,= {O}. 
i--1 

dim(L_ 1/L,)< oc. i= -1.0, l ..... 

(6.12} 

(6.13) 

(6.14) 

where dim means dimension of real vector spaces. 
Indeed let 

f. ( x, ... .. x.) = Ea ... x·, (6.15) 

"= (v1, ... "'.,). 11, e Nu {O} a multi-index. be the 
explicit power series for /,(x). Then L1 c v .. con­
sists of all formal vector fields (6.15) for which 

a,,.= 0 for all 11with1111 "'i (6.16) 

where 1"1= "1 + · · · + 11,.. 
If there were an embedding W1 - V,. or 

W1/Rl .... v ... the Lie algebra W1 or W1/Rl would 
inherit a similar filtration satisfying (6.12)-(6.15). 
One can now show, essentially by brute force 
calculations, that W1 and W1/Rl do not admit 
such filtrations. Or much better one observes that 
(6.12) and (6.14) say that L,, i = O. l, 2, .... is a 
subalgebra of finite codimension and applies Toby 
Stafford's result [15] that W1 has no such sub-Lie 
algebras. 
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7. Putting it all together and concluding remarks 

To conclude let us spell out the main steps of 
the argument leading to Theorem 2.10 and finish 
the proof together with some comments as to the 
generalizability of the various steps. 

We start with a stochastic system. in particular 
the cubic sensor 

dx=dw, x(O)=xi•. dy=x~dt+dr (7.1) 

described more precisely in 2.1 and with a rea­
sonable function </> of the state of whic~ we waa 
to compute the conditional expectation</>,. Y 

The first step now is to show that there exists i' 
pathwise and robust version of 4>,. More precise!) 
it was shown in Section 4 that there exists a 
functional 

..1"( r) s:cd= .:11:(~·) • .:1;(.rl= (N,(.r). <»· (7.2) 

such that the measures N,(y) depend continuous!~ 
on the path y: (0. 1) ..... R. such that ..11,( y) > 0 for 
all 1 > 0. such that the density n,(y) is smooth and 
such that for y(t}= J;(w) = y"'(t) a sample path 
of (7.1). 

4>,<"') = 8,"( .r"'). (7.3) 

From this we also obtained in the case of the 
cubic sensor that n,(yXx) as a function of (I. x) 
satisfies the (control version of the) DMZ equation 

a ( 1 a2 
) ain,(x)= 2axi-!x6 n,(y)(x) 

+n,(y)(x)y(t)x3 (7.4) 

for piecewise differentiable functions y: (0. 1) ..... ~ 
And we showed that the family of densities n,( .rF 
as a function of r, is smooth as a function o( 
11, ... ,tm if y = u with u a bang-bang control of 
the type u(I) = ii1 e R for 

r1 + ... +t,_ 1 ..,t<t1 + ... +z,, fu,l=l. 

This whole bit is the part of the proof that 
seems most resistant to generalization. At present 
at least this requires reasonable growth bounds on 
the exponentials occurring in the Kallianpur­
Striebel formula (that is the explicit pathwise ex­
pressions for ..1;( y )). In particular let us call a 
family IP, of continuous maps C, ..... R a pathwise 
version of ci>,. if 



..:l. 0 .... I. 

of ~, Then n i> al 11ll dear !hia! 
arb~Trary nonhne.ar 

problem; 
No-.. ;,upp<'Y! that 1here e~i>I> a >m<:it)!h fm11e­

dimens1onal filler for .j,, That '" smooth dynanu· 
\:.I~ s~s!em 

si;rd' As de,,;nbed in 4.5 abo;e up w ~ 
~'":vppu1g time there a:S4."' exas'ls .a robu~t path"'"_r,se 

1he ~'~u:tit)nSt ( 7 j ~ ~o tha~ : ( l ~ e\Jsb 

d' 
----~{ 

2 d '' .. 

'"'!" uL. 

and w tha1 I ~.6) hold> al"-')'· 

i7 7) 

for smooth 4 as a funct;on of ... t wi, th~u as 
the stn(xnhnes~ ,c~r n,i y)(_:~ }. to caku~aae 

· ar_ of \7.7\. Tile n~~ult being formul:a 
!4 4; 
· The rne~I 1hm2 is 10 reinterpret a differential 

.r;:;1or ,3n _j: a.- .i _lmear 'ector field i. on _3'b; 
g..rn1g meanmg io L'l> for ~ a funcllonai :7 ._,, R. 
for m~iance Jj funct1onai of the form o;i;>( 

Th:r~ pemub us tt.) g~vic rnearung to expre£~l('IJ"J5 
hk~ 

P8) 

for v EC, w11h _i ="a bang·- bang function. The 
~me operntor can be applied to the ld1-hand side 
of \ 7 61 and a> bo1h $Ides depend >m,xithly on 

·'~there results from 17.6) an equalm of the 

where .:: l~I anC 
m 1he;. 

control fuochon 
for: and >J, rcspa:ii•eh. 

Thu relation in !urn 

phism cf lie algehi a.~ ~~ zero 
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finding ~uitabie subsuti ... !ie\ f,H establi:..IEn~ 

homom,>rphmn pnn..:,ple. perlu1p' "' rn I! ; ; 
II should also be stre•>ed tha1 the ma::-i thetirem 

2.10 of tlus paper ooh '"'' lhmg; a!xiul e'a'! 
filters; H say) il.(~thm.g about appr(~:.:.Hn.Jic fi\i~r" 
On the oah.C>r h&nd it sct!'m~ ..:h:.a:· 
Kalman-Bucy flht:?r for _i, f,w 

should for smaB f gll\e re&.~orubie appr •. '.\JffiJic 
result> for 

Yet the estimauon !je tdgebr,.;i, t ·7 11 t "" u 
ais-..') equai to U' 1.a wme·...,·h:&t m.~·re tedh1L.., 

lation. cf. IS!) anJ the argum·.!nb •,Jf thi~ p~~per '~u-: 
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be repeated word for word (practically) to show 
that (7.11) does not admit smooth finite-dimen­
sional filters (for nonconstant statistics). Positive 
results that the Kalman-Bucy filter of (7.10) does 
give an approximation to x, for (7.11) are con­
tained in [5,19,1]. 

It is possible that results on approximate filters 
can be obtained by considering L ( 2:) not as a bare 
Lie algebra but as a Lie algebra with two dis­
tinguished generations L 0 , L 1 which permits us to 
consider also the Lie algebra L,(2:) generated by 
sL0 , sL 1 (where s is an ex.tra variable) and to 
consider statements like L,(I) is close to L,(I') 
modulo s'. 
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