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Polyhedral Combinatorics­
Some Recent Developments and Results 

ALEXANDER SCHRIJVER 

Polyhedral combinatorics deals with characterizing convex hulls of vectors 
obtained from combinatorial structures, and with deriving min-max relations 
and algorithms for corresponding combinatorial optimization problems. In this 
paper, after an introduction discussing the matching polytope (§1) and some 
algorithmic consequences (§2), we give some illustrations of recent developments 
(viz., applications of lattice and decomposition techniques (§§3 and 4)), we go 
into the relation to cutting planes (§5), and we describe some other recent results 
(§6). 

1. A basic example: The matching polytope. We first describe a ba­
sic result in polyhedral combinatorics, due to Edmonds (7). Let G = (V, E) 
be an undirected graph (i.e., V is a finite set (of vertices) and E is a col­
lection of pairs (edges) of vertices). A subset M of E is called a matching if 
e' n e" = 0 whenever e', e" E M, e' # e". The matching polytope of G is the set 
conv.hull{xMIM matching} in RE, where xM is the incidence vector of M (i.e., 
xM E RE with xM ( e) = 1 if e E M, and = 0 otherwise). Edmonds now showed: 

THEOREM 1 (EDMONDS'S MATCHING POLYTOPE THEOREM). The match­
ing polytope of G = (V, E) is equal to the set of vectors x ERE satisfying: 

(i) Xe ~ 0 (e EE), 

(ii) I:>e:::; 1 (v E V), 
e:iv (1) 

(iii) LXe :5 l~!UIJ (U ~ v, IUI odd). 
e~U 

For proofs we refer to [24, 30, 33). 
Edmonds's theorem has the following application. If we are given some 

''weight" function c E RE, we can describe the problem of finding a matching 
M of maximum ''weight" L:eeM Ce equivalently as the problem of maximizing 
cT x over the matching polytope, that is, by Edmonds's theorem, over x E RE 
satisfying (1). This last is a linear programming problem, and we can apply 
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LP-techniques to solve this problem, and hence to solve the combinatorial op­
timization problem. Among others, with the help of the ellipsoid method, it 
can be shown that the maximum matching problem is solvable in polynomial 
time-see §2. 

Another, theoretical, application of Edmonds's theorem is obtained with the 
duality theorem oflinear programming. Let Ax 5 b denote the system (1). Then 
for any c ERE 

max { L ceJM matching} = max{cT xJAx 5 b} 
eEM 

= min{yTbJy ~ O; yT A= cT}. (2) 

So we have a min-max relation for the maximum matching problem. It was shown 
by Cunningham and Marsh [6] that if c is integer-valued, then the minimum 
in (2) has an integer optimum solution y. The special case c = 1 (the all­
one function) is equivalent to the following Tutte-Berge formula [35, 1]: the 
maximum cardinality of a matching in a graph G = (V, E) is equal to 

. JVJ + IUJ - O(V\U) mm 2 , 
u~v 

(3) 

where O(V\U) denotes the number of components of (V\U) with an odd number 
of vertices ((V\U) denotes the graph (V\U, {e E Ele ~ V\U} )). 

Note that the constraint matrix A in (1) generally is not totally unimodular 
(a matrix is totally unimodular if all subdeterminants belong to {O, ±1}). If G is 
bipartite (i.e., V can be split into classes V' and V" (the color classes) so that 
E ~ { {v', v"}lv' E V', v" E V"} ), then the inequalities (I)(iii) can be deleted as 
they are implied by the constraints (i) and (ii), as one easily checks. In that case, 
the theorem is due to Egervary [9] and follows more simply from the fact that 
if M is totally unimodular and dis integer, then each vertex of the polyhedron 
determined by M x :5 d is integer. 

Similarly, for bipartite G, the Tutte-Berge formula above reduces to the well­
known Konig-Egervary theorem [21, 9]. 

2. Polyhedral combinatorics and polynomial solvability. Above we 
mentioned obtaining polynomial-time algorithms from polyhedral results with 
the ellipsoid method. In this section we describe this more precisely. 

Suppose that for each graph G = (V, E) we have a collection Ja of subsets of 
E. For example: 

(i) la= {M ~ EIM is a matching}; 
(ii) la = {M ~ EIM is a spanning tree}; (4) 

(iii) la= {M ~ EJM is a Hamiltonian circuit}. 

With any family (1cJG graph) we can associate the following problem: 

Optimization problem. Given a graph G = (V, E) and c E QE, (5) 
find ME la maximizing EeEM Ce. 
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So if (1olG graph) is as in (i), (ii), and (iii), respectively, problem (5) amounts 
to finding a maximum weighted matching, a maximum weighted spanning tree, 
and a maximum weighted Hamiltonian circuit, respectively. The last problem is 
the well-known traveling salesman problem (note that by replacing c by -c (5) 
becomes a minimization problem). 

Given a family (.1olG graph), we are interested in finding, for any graph 
G = (V, E), a system Ax $ b of linear inequalities in x E RE so that 

conv.hull{xMIM E 1o} = {xjAx $ b}. 

If (6) holds, then for any c ERE: 

ma:x{ I: celM E .1a} =max{cTxlAx $ b} 
eEM 

(6) 

thus formulating the combinatorial optimization problem as a linear program­
ming problem. 

The optimization problem (5) is said to be solvable in polynomial time or 
polynomially solvable if it is solvable by an algorithm whose running time is 
bounded above by a polynomial in the input size IVI + IEI + size(c). Here 
size(c) := EeeE size(ce), where the size of a rational number p/q is equal to 
log2 (IPI + 1) +log2 jqJ. So size(c) is about the space needed to specify c in binary 
notation. 

It has been shown by Karp and Papadimitriou [20] and Grotschel, Lovasz, 
and Schrijver [16] that (5) is polynomially solvable if and only if the following 
problem is solvable in polynomial time: 

Separation problem. Given a graph G = (V, E) and x E QE, (8) 
determine if x belongs to conv.hull{xMIM E .10}, and if not, 
find a separating hyperplane. 

Again, "polynomial time" means: time bounded by a polynomial in IVI + 
IEI + LeeEsize(xe)· 

THEOREM 2. For any fixed family (1olG graph), the optimization problem 
(5) is polynomially solvable if and only if the separation problem (8) is polyno­
mially solvable. 

The theorem implies that with respect to the question of polynomial-time 
solvability, the approach described above (studying the convex hull) is more or 
less essential: a combinatorial optimization problem is polynomially solvable if 
and only if the corresponding convex hulls can be decently described-decently, 
in the sense of the separation problem. 

As an application of Theorem 2, it can be shown that the system (1) of linear 
inequalities can be tested in polynomial time, although there exist exponen­
tially many constraints (Padberg and Rao [28]). Hence, the maximum matching 
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problem is polynomially solvable (in fact, this was shown directly by Edmonds 
(7]). 

Theorem 2 can also be used in the negative: if a combinatorial optimization 
problem is not polynomially solvable (maybe the traveling salesman problem), 
then the corresponding polytopes have no decent description. 

Theorem 2 is shown with the ellipsoid method, for which we refer to the books 
of Grotschel, Lovasz, and Schrijver [17] and Schrijver (32]. The ellipsoid method 
does not give practical algorithms, but it may give insight in the complexity of 
a problem. 

There are several variations of Theorem 2. For instance, a similar result holds 
if we consider collections la of subsets of the vertex set V, instead of subsets of 
the edge set E. Moreover, we may consider families (1clG E 9), where g is a 
subclass of the class of all graphs. Similarly, we can consider directed graphs. 

3. Lattices and strongly polynomial algorithms. A first recent develop­
ment in polyhedral combinatorics is the influence of lattice techniques, to a large 
extent due to the recently developed basis reduction method given by Lenstra, 
Lenstra, and Lovasz (23]. In this section we give one illustration of this influence, 
due to Frank and Tardos [10]. 

The basis reduction method solves the following problem: 

Given a nonsingular rational nxn-matrix A, find a basis bi, ... , bn (9) 
for the lattice generated by the columns of A satisfying 

llb1ll · · · llbnll ~ 2n(n-l)/4 jdet Al, 

in time bounded by a polynomial in size( A) := Ei,j size(aij ). Here the lattice 
generated bya1, ... , an is the set of vectors .:\ 1a 1 +· ··+.:\nan with .:\1, ... , An E Z. 
Any linearly independent set of vectors generating the lattice is called a basis for 
the lattice. 

One of the many consequences is a polynomial-time algorithm for the following 
simultaneous diophantine approximation problem: 

Given n E N, a E Qn, and c with O < c < 1, find an integer (10) 
vector p and an integer q satisfying Ila - (1/q)pll < c/q and 
1 :S q ~ 2n(n+l)/4g-n. 

This can be seen by applying the basis reduction method to the ( n+ 1) x ( n+ 1 )­
matrix 

A:= ( ~ 2-n(n+~)/4cn+l) ' (11) 

where I is the n x n identity matrix. 
Frank and Tardos showed that this approximation algorithm yields so-called 

strongly polynomial algorithms. The algorithm for the optimization problem (5) 
derived from the ellipsoid method performs a number of arithmetic operations, 
which number is bounded by a polynomial in !VI+ IEI + size(c). (Arithmetic 
operations here are: addition, subtraction, multiplication, division, comparison.) 
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It would be preferable if the size of the weight function c only influences the sizes 
of the numbers occurring when executing the algorithm, but not the number of 
arithmetic operations. Therefore, one has defined an algorithm for (5) to be 
strongly polynomial if it consists of a number of arithmetic operations, bounded 
by a polynomial in !VI+ IEI, on numbers of size bounded by a polynomial in 
IVI + IEI + size(c). 

Frank and Tardos however showed the equivalence of the two concepts when 
applied to (5): 

THEOREM 3. For any family (JalG graph), there exists a polynomial-time 
algorithm for the optimization problem (5) if and only if there exists a strongly 
polynomial algorithm for (5). 

Their result was obtained by constructing a strongly polynomial algorithm 
for the following problem: 

Given n EN and c E Qn, find c E zn such that i1cl1 00 :::; 29n 3 (12) 
and such that: cT x > cT y <::>- cT x > cT y, for all x, y E {O, 1 }n. 

With this method the size of c in the optimization problem can be reduced to 
O(IEl3), without changing the optimum solution. Hence any polynomial-time 
algorithm for the optimization problem yields a strongly polynomial algorithm. 

As another interesting recent lattice result we mention Lovasz's [25] character­
ization of the perfect matching lattice (i.e., the lattice generated by the incidence 
vectors of perfect matchings in a graph), in the same vein as Edmonds's matching 
polytope theorem. 

4. The coclique polytope and decomposition techniques. As another 
recent development in polyhedral combinatorics we mention the propagation of 
decomposition techniques. Fundamental decomposition methods are described in 
Seymour's paper Decomposition of regular matroids [34]. Also Burlet, Fonlupt, 
and Uhry [2, 3] obtained deep decomposition results. 

We illustrate the decomposition methods of Seymour by applying them to 
characterizing the "coclique polytope" of certain graphs. For any undirected 
graph G = (V, E), a set 0 ~ V is called a coclique if it does not contain any edge 
of G as a subset. The coclique polytope of G is the convex hull of the incidence 
vectors of cocliques in G, i.e., conv.hull{x0 IO coclique} ~ Rv. 

The problem 

Given G = (V, E) and c E Rv, find a coclique 0 in G maximiz- (13) 

ing :EveC Cv 

is NP-complete, and hence probably not polynomially solvable. Therefore, by 
Theorem 2 (now in the variant with subsets ofV instead of E), there is probably 
no polynomial-time algorithm for the separation problem for coclique polytopes. 
So we should not expect a decent description for coclique polytopes similar to 
Edmonds's matching polytope theorem. 
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For some classes of graphs, however, the coclique polytope has a decent de­

scription, e.g., for perfect graphs (including bipartite graphs, line graphs of bipar­
tite graphs, comparability graphs, triangulated graphs, and their complements). 

Another class of graphs is described in the following theorem of Gerards and 
Schrijver [14]. An undirected graph G = (V, E) is called odd-K4-free if G has no 
subgraph homeomorphic to 

where wriggled lines stand for paths, so that each face in this graph is enclosed 
by a circuit of odd length. 

THEOREM 4. For any odd-K4-free graph G = (V, E), the coclique polytope 
is equal to the set of vectors x in R v satisfying: 

(i) 0 :<;; Xv :S 1 

(ii) Xv+ Xw $ 1 

(iii) I:Xv :S l~1c1j 
vEC 

(v E V), 

({v,w} EE), 

(C circuit with ICI odd). 
(14) 

(Here C is a circuit if C = { v1 ,. .. , vk} with {Vi-I, vi} EE (i = 1, 2, ... , k) and 
{vk,v1} EE.) 

Note that if G is bipartite, then G has no odd circuit, and hence there are no 
constraints (iii). In that case the theorem reduces to a theorem of Egervary [9]. 

The theorem implies, with the help of Theorem 2, that problem (13) is polyno­
mially solvable for odd-K4-free graphs. Indeed, the constraints (14) can be tested 
for any given x E RV in time bounded by a polynomial in IVI + IEI + size(x), 
although there are exponentially many constraints. (The condition (iii) can be 
tested using a shortest path algorithm.) 

We sketch how Theorem 4 can be shown using decomposition techniques 
(which also yield a direct combinatorial polynomial-time algorithm for the max­
imum coclique problem for odd-K4-free graphs). It was shown by Seymour [34] 
that "each regular matroid is obtained by taking 1-,2-, and 3-sums of graphic 
matroids, cographic matroids, and R10 ." Regular matroids are matroids repre­
sentable over each field. By a theorem of Tutte [36], regular matroids are exactly 
those binary matroids not containing the Fano-matroid or its dual as a minor. 

Seymour's theorem can be equivalently stated as: "Each totally unimodular 
matrix can be decomposed into network matrices and their transposes and into 
certain 5 x 5-matrices." It implies a polynomial-time test for the total unimod­
ularity of matrices, and a polynomial-time algorithm for linear programs over 
totally unimodular matrices. It also has implications in geometry and graph 
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theory. One of them described by Gerards, Lovasz, Schrijver, Seymour, and 
Truemper [13] is as follows. 

Consider the following four compositions of graphs G' = (V', E') and G" = 
(V",E") into a new graph H. Composition 1. If IV' n V"I :::; 1, then H := 

(V' UV", E' U E"). Composition 2. If V' n V" = { v1, v2} E E' n E" and G" is 
bipartite,thenH := (V'UV",(E'UE")\{{v1 ,v2 }}). Composition3. IfV'nV" = 
{vo,v1,v2}, E' n E" = {{va,vi}, {vo, v2}, {v1,v2}}, and Vo has degree 2 both in 
G' and in G", then H := ((V' U V")\{vo}, (E' U E")\(E' n E")). Composition 
4. IfV'nV" = {vo,v1,v2,v3}, E'nE" = {{vo,vi},{vo,v2},{va,v3}}, v0 has 
degree 3 both in G' and in G", and G" is bipartite, then 

H := ((V' U V")\{vo}, (E' U E")\(E' n E")). 

Moreover, consider the following operations on a graph G = (V, E). Operation 
1. If { vo, v1}, { v1, v2}, { v2, v3} EE, where both v1 and v2 have degree 2, then 

Operation 2. If vo E V, where { vo, vi}, ... , { v0 , Vk} are the edges of G containing 
vo, then let w1 , ... , Wk be "new" vertices and 

H :=(VU {w1, ... ,wk}, (E'\{{vo,vi}, ... ,{vo,vk}}) 

U {{ vo, wi}, ... , {vo, wk}, { w1, vi}, ... , { Wk, vk}} ). 

THEOREM 5. An undirected graph is odd-K4-free if and only if it can be 
constructed by a series of compositions and operations above starting with the 
fallowing graphs: 

(i) graphs G = (V, E) having a vertex vo so that the graph 
(V\{vo},E\{ele 3 vo}) is bipartite; 

(ii) planar graphs having exactly two odd facets (an odd facet (15) 
is a facet enclosed by an odd number of edges); 

(iii) the following graph : 

Sufficiency in this theorem is easy to see: each of the graphs in (i), (ii), and 
(iii) is odd-K4-free. Moreover, each of the compositions and operations maintains 
the property of being odd-K4-free. The content of the theorem is that in this 
way all odd-K4-free graphs can be constructed. 

In order to derive now Theorem 4, it suffices to prove that each of the graphs 
(15) has the property described in Theorem 4, and moreover that this property 
is maintained under each of the compositions and operations above. Showing 
this is not as hard as the original direct proof of Theorem 4. 
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If we let Ax:::; b denote the system (14), then by Theorem 4 for odd-K4-free 
graphs G = (V,E) and c E RV: 

max {I: cvlC coclique} = ma.x{cT xlAx :5 b} 
vEC 

= min{yTbly ~ O; yT A= cT}. (16) 

Using the above decomposition techniques, Gerards [12] showed that if c is 
integer-valued, the minimum has an integer optimum solution y. In particular, 
if c = 1 (the all-one function) then the maximum size of a coclique is equal to 

{17) 

where the minimum ranges over all subsets F of E and circuits 01, ... , Ct such 
that v = u F u U!=l ci. This forms an extension of a theorem of Konig [22] 
for bipartite graphs. 

5. Cutting planes. Quite often the problem of characterizing the convex 
hull of certain {O, !}-vectors amounts to characterizing, for some polyhedron P, 
the polyhedron 

P1 := conv.hull{x E Pix integral}. (18) 

Pi is called the integer hull of P. E.g., if G = (V, E) is a graph, and 

P:={.xERElxe~O(eEE);Lxe:51 (vEV)}, (19) 
e3v 

the integral vectors in P are exactly the incidence vectors of matchings, and 
hence Pi is equal to the matching polytope of G. Similarly, for 

P := {x E Rvlxv ~ 0 (v E V); L Xv :5 1 (e EE)}, {20) 
vee 

P1 is the coclique polytope of G. 
For any rational polyhedron P, there is a procedure of deriving the inequalities 

determining P1 from those determining P-the cutting plane method, due to 
Gomory [15]. The following description is due to Chvatal [4] and Schrijver [29]. 

Clearly, if His a rational half-space, i.e., H is of form 

(21) 

where a E Qn, a f. 0, f3 E Q, we may assume without loss of generality that a 
is integral, and that the components of a are relatively prime integers. In that 
case: 

(22) 

H1 arises from H by shifting its bounding hyperplane until it contains integral 
vectors. 
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Now define for any set P in Rn: 

P' := LJ Hr, (23) 
H2.P 

where H ranges over all rational half-spaces containing P. Since H 2 P implies 
Hr 2 Pr, it follows that P' 2 Pr. It can be shown that if P is a rational 
polyhedron (i.e., a polyhedron determined by linear inequalities with rational 
coefficients), then P' is a rational polyhedron again. 

To P' we can apply this operation again, yielding P". It is not difficult to 
find rational polyhedra with P" f. P'. Each rational polyhedron P thus gives a 
sequence of polyhedra containing Pr: 

P 2 P' 2 P" 2 P'" 2 · · · 2 P1. (24) 

Denoting the (t + l)th set in this sequence by p(t), the following can be shown. 

THEOREM 6. For each rational polyhedron P there exists a number t such 
that p(t) = Pr. 

The theorem is the theoretical essence of the termination of the cutting plane 
method of Gomory. The equation a T x = LBJ defining Hr, or more strictly the 
hyperplane {xjaTx =LBJ}, is called a cutting plane. 

The smallest t for which p(t) = Pr can be considered as a measure for the 
complexity of P1 relative to that of P. In a sense, P' is near to P, P" to P', and 
so on. 

Let us study some specific polyhedra related to graphs. Let G = (V, E) be 
an undirected graph, and let P be the polytope (19), implying that Pr is the 
matching polytope of G. It is not hard to see that for each graph G, the polytope 
P' is the set of all vectors x in P satisfying 

(U ~ v, IUI odd). (25) 

(Of course, there are infinitely many half-spaces H containing P, but the cor­
responding inequalities a T x s l,BJ all are implied by the inequalities defining 
P and by (25).) So Edmonds's matching polytope theorem in fact tells us that 
P' = Pr for each graph G. (P = Pi for bipartite G, since in that case (25) is 
implied by the inequalities determining P.) 

Next let, for any undirected graph G = (V,E), P be the polytope (20), 
implying that Pr is the coclique polytope of G. It is not difficult to check that 
the polytope P' is the set of vectors x in P satisfying 

(Codd circuit). (26) 

So Theorem 4 states that P' = Pr if G is odd-K4-free. By Egervary's theorem 
P = P1 if and only if G is bipartite. Chvatal [5] has shown that there exists no 
fixed t so that p(t) =Pi for each graph G. 
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An important computational application of cutting planes is to the traveling 
salesman problem, which we mention in the following section. 

6. The traveling salesman problem and cuts. The well-known traveling 
salesman problem (in its directed, asymmetric form) can be formulated as an 
integer linear programming problem as follows, for given n EN and c = (cij) E 

n 

minimize L Xij, 

i,j=l 

such that 

(i,j=l, ... ,n); 
(0 -:f. U ~ {l, ... ,n}); 
(i=l, ... ,n); 

Xij integer ( i, j = 1, ... , n). 

(27) 

Let P be the polytope in Rnxn determined by ( * ). It is clear that Pi: is the convex 
hull of the incidence vectors of traveling salesman routes. Since the traveling 
salesman problem is NP-complete, we may not expect a "decent" description of 
Pr in the sense of Theorem 2. In fact, if NP -:f. co-NP there is no fixed t such 
that p(t) = Pr for each n. 

On the other hand, cutting planes can be helpful in solving instances of the 
traveling salesman problem. The traveling salesman problem is equivalent to 
solving min{cTxlx E Pi}, while solving min{cTxJx E P} is not so difficult (it 
is polynomially solvable), and it yields a good lower bound for the traveling 
salesman optimum value (since P 2 P1). Good bounds are essential in branch­
and-bound procedures for the traveling salesman problem. 

Adding all cutting planes to ( *) to obtain P1 seems infeasible, but instead we 
could add some cutting planes in order to obtain a better lower bound. This is 
a basic ingredient in the recent successes of Crowder, Grotschel, and Padberg in 
solving large-scale traveling salesman problems (see [18, 27]). Recently, Padberg 
was able to solve a symmetric 2392- "city" problem using cutting planes. 

We shall not go into the details of solving the traveling salesman problem. 
We describe some theoretical results related to the above, which exhibit some of 
the connections of polyhedral results with combinatorial min-max relations. 

Let C be a collection of subsets of V := {1, ... , n} satisfying: 

(i) 0 ~ C, V 9! C; 
(ii) if T, U EC, T n U -:f. 0, TU U -:f. V, then T n U EC (28) 

and TUU EC. 

Such a collection is called a crossing f amity. Consider the polytope P consisting 
of all x = (Xij) E Rnxn satisfying: 

Xij :?'. 0 (i,j = 1, ... ,n), 
iflU,jEU 

x. > 1 i3 - (U EC). (29) 
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Note that(*) in (27) defines a facet of P, for C = P(V)\{0, V}. 
The following theorem was shown in (31]. 

THEOREM 7. P has integral vertices if and only if 

there are no sets Vi, V2, V3, Vi, V5 in C such that Vi ~ Vz n V3, (30) 

Vz U V3 = V, Vi U Vi ~ V5, V3 n Vi = 0. 

Note that if x is an integral vertex of P, then x is a {0, 1}-vector. 

Theorem 7 can be put in a more combinatorial setting. Let C ~ P (V) be a 
crossing family and let D = (V,A) be a directed graph (i.e., Vis a finite set and 

A ~ V x V). Call a subset A' of A a covering (for C) if each U E C is entered 
by at least one arc in A' (a= (v,w) enters U ifv </. U, w EU). Call a subset A' 
of A a cut (induced by C) if A'= 6A_(U) :={a E Ala enters U} for some U EC. 
So each covering intersects each cut. 

Consider the polyhedron in RA determined by: 

Xa ;?:: 0 (a E A), L Xa 2 1 (U EC). (31) 
aE5-(U) 

Then Theorem 7 is equivalent to: 

THEOREM 8. Each vertex of the polyhedron determined by (31) is the inci­
dence vector of a covering, for each directed graph D = (V, A), if and only if (30) 

holds. 

Now we have the following: (30) holds {:}the polyhedron determined by (31) 

has vertices coming from coverings and facets coming from cuts {:} (by polarity) 
the polyhedron determined by 

Xa 20 (a EA), L Xa 2 1 ( C covering) 
a EC 

(32) 

has vertices coming from cuts and facets corning from coverings. So Theorem 8 

is equivalent to: 

THEOREM 9. Each vertex of the polyhedron determined by (32) is the inci­
dence vector of a cut, for each directed graph D = (V, A), if and only if (30) 

holds. 

It follows that if (30) holds, and c E Z~, then the linear programs of minimiz­
ing c T x over (31) and over (32), respectively, have integral optimum solutions, 

corresponding to a minimum-weighted covering and a minirnurn-weighted cut, 
respectively. In fact, it is shown in [31] that if (30) holds, then also the linear 
programs dual to these programs have integer optimum solutions. By LP-duality 
this means: 

THEOREM 10. Let C be a crossing family satisfying (30), let c E zA, and 
let D = (V, A) be a directed graph. Then (i) the minimum weight of a covering 
is equal to the maximum number t of cuts C 1 1 ••• , Ct (repetition allowed) so that 
each arc a of Dis in at most Ca of the cuts Ci; (ii) the minimum weight of a cut 
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is equal to the maximum number t of coverings C 1, ... , Ct (repetition allowed') 
so that each arc a of D is in at most Ca of the coverings Ci. 

We mention the following applications. 
1. Let V be partitioned into classes V' and V", let C := { { v }Iv E V'} U 

{V\ { v }Iv E V"}, A<;; V 11 x V', c = 1. Then (i) in Theorem 10 is equivalent to 
a theorem of Konig [22]: the minimum number of edges covering all vertices in 
a bipartite graph is equal to the maximum size of a coclique. Similarly, (ii) is 
equivalent to a theorem of Gupta [19]: the minimum degree in a bipartite graph 
is equal to the maximum number of pairwise disjoint edge sets E 1 , ... , Et each 
covering all vertices. 

2. Let r, s E V be fixed, let C := {U <;; Vlr fj. U, s EU}, D = (V, A) arbitrary, 
and c = 1. Then (i) in Theorem 10 is equivalent to the (easy) result that the 
minimum number of edges in a path from r to s in D is equal to the maximum 
number of pairwise disjoint cuts separating r from s. Assertion (ii) is Menger's 
theorem [26]: the minimum number of edges in a cut separating r from sis equal 
to the maximum number of pairwise edge-disjoint paths from r to s. 

3. Let r E V be fixed, let C := {U <;; Vlr fj. U =/= 0}, and let D = (V, A) and 
c be arbitrary. Then (i) in Theorem 10 is equivalent to a theorem of Fulkerson 
[11]: the minimum weight of an r-branching (=a subset of A forming a rooted 
directed tree with root r) is equal to the maximum number t of r-cuts ( = sets 
of form bA. (U) with U E C) (repetition allowed) such that any arc a of D is in 
at most Ca of these r-cuts. If c = 1, assertion (ii) is equivalent to a theorem of 
Edmonds [8]: the minimum size of any r-cut is equal to the maximum number 
of pairwise disjoint r-branchings. 
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