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2-D ELLIPTIC SINGULAR PERTURBATION PROBLEM 
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I. INTRODUCTION 

We study problems related with the numerical solution of the singular perturba

tion equation 

(I.I) Lu - -E 6u +;,Vu= f, 
€ 

in a two-dimensional region Q, This equation can be considered as a model equation 

for more complex real-live problems such as flows described by the Navier-Stokes 

equation. We refer to equation (I.I) as the convection-diffusion equation;; is the 

convection vector and E > 0 is the diffusion parameter, which may be small compared 

co 1;1. 
Allthough we study equation (I.I) with constant coefficients, we want to find 

numerical methods that are applicable for variable!; i.e. ; = ;(x,y) or 1 = !(x,y,u). 

In particular, we are interested in methods that are independent of the direction of 

! and independent of whether the grid is properly refined in possible boundary layers, 

when E is small. Therefore, we study methods that do not make use of a-priori know

ledge about the solution, the convection direction or proper mesh refinements. 

As a simplification of the 2-D equation we also study the I-D case. 

For this I-D problem, 

(1.2) 

many numerical methods have already been investigated (see e.g. contributions in 

Hemker-Miller [1979] or Axelsson-Frank-Van.DerSluis [1981]). However, almost none of 

these methods are suitable for generalization in more dimensions. 

An essential difficulty in the numerical solution of (I.I) with 0 < E < h, h the 

mesh-width, is the different type of approximation that is required in the smooth 

part of the s6lution and in the boundary or interior layers. In the smooth part 11!1 

accurate approximation - possibly of high order - is desirable, whereas for the 

boundary layer the proper location is of prime importance, with the additional re

quirement that the effect of the (almost) discontinuity does not disturb the solution 

in the smooth parts. Large derivatives of the solution inside the layers make that 

in these layers high order approximation is of no use. Therefore, we are interested 

in methods that are of low order for unsmooth and of higher order for smooth compo

nents in the solution. When these methods are applied, local error estimates may be 

used for generating adaptive mesh-refinements afterwards. 
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The problems induced by. the small parameter 

For large values of£ the numerical solution of (I.I) gives no particular prob

lems. niscretizations 

(J.3) Lh,£ ~,£ = fh 

are known for which lu. - u H = 0(h2) ash-+ 0, e.g. the usual central difference or 
n, £ e:: 

finite element discretizations. The errorbound remains valid for small values of £: 

II u. - u U ,;; c h2 
n,£ £ £ 

but C8 + "' and h8 -+ 0 as £ + 0. This means that the error estimate is of no use if we 

apply these discretizations with finite h and £ -+ O. In fact, for small £, the usual 

discretizations may yield quite useless approximations. 

EXAMPLE 

Discretizing the 1-D model problem 

( 1. 4) £Uxx + 2ux = O, 

u(O) 1 , u("') 

by central differencing: 

(1.5) 

we find 

£-h j 
~.£(jh) = (£+h) • 

x € [O,"'), 

o, 

o, 

This is a second order approximation indeed: 
h 

for jh fixed and (;) -+ 0 

I~ 8 (jh) - u8 (jh) I 
' 

C independent of j, h and £. 

However, the solution of the reduced difference equation is 

(1.6) u. 0 (jh) = lim uh (jh) = (-I)j. 
n, £+0 ,£ 

The influence of the boundary condition at x = 0 is significant over the whole domain 

of definition, whereas for the reduced differential equation the influence of this 

boundary condition vanishes in the interior of the domain. 

A well-known cure against this spurious influence of the boundary condition is 

"upwinding" or "artificial diffusion" • In upwinding one-sided differences are used 

for the discretization of the first order term. In artificial diffusion, the diffu

sion constant£ is replaced by a larger value a=£+ O(h). In both cases the spurious 

influence disappears at the expense of the fact that these discretizations are only 

accurate of order O(h). In the 1-D case "upwinding" is equivalent with "artificial 

diffusion" with a = £ + hlal /2. 
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EXAMPLE 

The solution of the upwind discretization of (1.4) 

(1.7) 

is 

In contrast with the central difference solution, we see that here the influence of 

the boundary condition vanishes in the interior of the domain as e: ~ O; but this dis

cretization is only first order: 

for jh fixed and (h) ~ 0 we find 
e: 

lu.. ~(jh) - u (jh)I $ c(~). n, ~ e: e: 

2. LOCAL MODE ANALYSIS 

We want to analyze separately the behaviour of the discretizations (i) in the 

smooth parts of the solution, and (ii) in the boundary layers. For this we use the 

local mode anaiysis (LMA), cf. Brandt [1980] and Brandt and Dinar [1979].We consider 

equation (I.I) in two particular ·model problems: 

(i) the inhomogeneous problem 

(2.1) Lh,e: ~ = fh 

on a regular rectangular discretization of JR.2 ; ~ and fh are bounded at infinity, and 

(ii) the homogeneous problem 

(2.2) 1n,e: ~ = 0 

in a discretization of the half-space, of which the boundary is a grid-line; boundary 

conditions are given on this grid-line and ~ is bounded at infinity. 

In both cases we consider the discretization of the constant coefficient problem 

on a regular rectangular grid and we decompose the solution in its Fourier modes (see 

e.g. Hemker [1980]) 

(2. 3) ~(jh) = (~1~)2 I ~(w) e+i~hj dw, 
& 

2 
€ ~ ' 

where u.. • ii. (w) eiwhj is the mode of frequenoy w in ~; the amplitude of this mode 
n,w n 

with 

I, 2} 

is given by 

(2.4) ~(w) ( h ) 2 \ -iwhj (. h) 
!':" 4e UhJ • 

>'21T J 

2 
If we consider the problem (2.1), the boundary condition imposes we lR ; for (2.2) 

with Q being the right half-space, with boundary conditions at x O, we have 

1 
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Im w1 > O, Im w2 ~ 0. In this paper we restrict the analysis to the model problem 

(2. 1). 

The modes being the eigenfunction of the discrete operator Lh' we can define the 

aha:l'acteristic form Lh(w) corresponding with the discrete operator~· by 
/---..... ....--... 

(2.5) ~ '\i,w = Lh(w) l\i,w· 

/'-
This characteristic form Lh(w) is the analogue of the aharaateristia poZynomial or the 

symbol 'L<:w) of the continuous operators L. 

We now define consistency and stability of the operator ~ for each mode w separately. 

DEFINITION. The operator Lh is consistent with L of order p for mode w E T~ if 
...-.... ~ 

(2.6) JLh(w) - L(w)J s C hp for h + O. 

DEFINITION. The stabiZity of Lh for mode w ET~ is the quantity Jf1i(w)J. 

DEFINITION. The numericaZ (interior) stabiZity of ~· a discretization of L, for 
T2 2 • 

W E h n JR l.S 

(2.7) JLh(w)J/ JL(w)J. 

DEFINITION •. The operator Lh is nwnerical (interior) stable if 

(2.8) "Ip > O 3n > O 'llw E T~ n JR2 JL(w)J > p + ILh(w)I/ IL(w)J > T), 

where n = n(p) is independent of h. 

DEFINITION. The operator Lh , a discretization of L is asymptotiaally stable if 
,e e 

I~ e(w) I 
"Ip > 0 3n > 0 'llw E T2 n lR2 lim IL (w) I > p + lim ' > n. 

h e+O e e+O 1£ (w)I 
E 

DEFINITION. The operator Lh,e is e-uniformly stabte if (2.8) holds with n n(p) 

independent of h and e. 

EXAMPLE 

To study the local behaviour of the discretization (1.5) of our 1-D model problem 

we find its characteristic form 

(2.9) L.. (w) = sin(wh/2) ( sin(wh/2) + 2i cos(wh/2)). 
-h,E h/2 -e hf2 

Comparing this with the symbol LE (w) = -ew2 + 2iw of L we find 

(1) the discretization (1.5) is consistent of order 2: 

JL (w) - L (w) I s C h2 lew4 + iw3 J + 0(h3); 
h,e e 

(2) the discretization (1.5) is asymptotically unstable: 

lim L (11/h) = O, whereas 
1>:+0 n,e 
iim £ (11 /h) = 211 i;h. 
e+O e 
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We find that i;,_, 11/h is an unstable mode. 'Ihis mode corresponds to 

~(jh) 

cf. eq. (1. 6). 

If we consider the discretization with artificial diffusion a, we find its char

Scteristic farm (2.9) with e: replaced by a > O. This discretization is 

(1) consistent of order 1 if la- El ~ c1h; viz. 

{2.10) IJ1i,a(w) - Le(w)I ~ c11a-e:I lwl 2 + IJ1i,e:(w) - £ (w)I 
€ 

~ O(la-el) + 0(h2) = O(h), 

(2) numerical (interior) stable, uniform in e:, if I a - e I ~ C2h; viz. 

l ~,a (w) I = I sin(wh/2) 11 ~ sin(wh/2) - 2i cos(wh/2) I 

Le: (w) wh/2 e:w - 2i 

sin(wh/2) - i cos(wh/2)1 

~ sin(wh/2) - i 

1 • ( /h • ) 2/2 • ( 1) min a , 1 ~ - 2- min c2, • 
12. 11 

There are no spurious unstable modes, 

3. THE DEFECT CORRECTION PRINCIPLE 

For the solution of linear problems, the defect correction principle is a general 

technique to approximately solve a problem 

(3.1) Lu = f 

by means of an iteration process 

(3.2) L u(i+l) = L u(i) - L u(i) + f, i=l,2, •••• 

The operator L, an approximation to L, is selected such that problems 

L u(i+l) = f 
' 

with f in a neighbourhood of f, are easy to solve. If L is injective and the itera

tion process (3.2) converges to a fixed point ~. then ~ is clearly a solution of 

(3.1). The convergence of the iterands to the solution of (3.1) is described by the 

error amplification operator 

I - L-l L; 

the reduction of the residual r(i) = f - L u(i) in each step is described by the 

residual amplification operator 

I - LL-1• 
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If two equations ~'ii= fh and Lh 'ii = fh are both discretizations of a problem 

Lu= f (respectively consistent of order p and q, p :S q) and if Lh satisfies the 

bility condition 

(3. 3) n- -1 Lh 0 < c, uniform in h, 

then it is well known (cf. e.g. Hackbusch [1979], Hemker [J981a]) that in the 

iterative process 

(3.4. a) ~ ~I) = 

{ ~ ~i+l) (3.4.b) 

(i) 'ii satisfies 

fh, 

= ~ ~i) - ~ ~i) + fh, 

n~i) - ull = O(hmin(q,ip)). 

sta-

This error bound holds without a stability condition (3.3) for the accurate operator 

~· 
Direct application of the defect correction principle to the solution of our 

singular perturbation problem suggest the application of (3.4) with ~ = ~.E with 

the 2nd order central difference (or FEM) discretization and with ~ = Lh,a' the arti

ficial diffusion discretization. Then, the correction equation (3.4.b) has the simple 

farm 

(3.5) (i+J) (i) 
L. U. = f + (a- E)t. U. • -h,a n h h n 

Since T~ is stable and consistent of order I and L. is consistent of order 2, rt,a -n_,E 

we obtain 

(3.6) U~l) - uD O(h) and 

l~i) uD 0(h2) for i > !. 

Where t.h ~i) is a good approximation to t.u, (i.e. outside the boundary layer) ~i+l) 
is a better approximation to u than ~I). The error bounds (3.6), however, hold in the 

classical sense: for fixed E and h ~ O. For a general i > I, the solution ~i) is not 

better than the central difference approximation, but in the first few iterands the 

instability of L. has only a limited influence. -h,E 

EXAMPLE 

For (1.4) we can compute the solutions in the defect correction process explicit

ly. Application of (3.4) with the operators Lh and ~ as given in (3.5) yields the 

solutions 

~I) (jh) 

u~2 ) (jh) 

( E+E2h)j' 

. jh 
(E+E2h)J [I - T 

2h 
(E+2h))' 
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u.(m+I) (J.h) = ( e: )j (. h/ ) 
n e:+2h Pm J' e: ' 

where Pm(j,h/e:) is an m-th degree polynomial in j depending on the parameter h/e:. 

It is easily verified that, for e: fixed and h + O, the solutions are 2nd order accu

rate for m = I, 2,... . For small values of e:/h, Pm (j ,h/ e:) changes sign m times for 

j = 0,1,2, ••• , m+I; i.e. in each iteration step of (3.4) one more oscillation appears 

in the numerical solution. The influence of the boundary condition at x = 0 vanishes 

in the interior after the first m+I nodal points. By each step of (3.4) the effect of 

the instability of L creeps over one meshpoint further into the numerical solution. n,e: 
Similar effects are found for the process in two dimensions 

Figure I 

The numerical solutions 

~i) of equation (1.4) 

for small values of e:/h 

4. A MIXED DEFECT CORRECTION PROCESS 

u(x) 

(I) 
~ 

(2) 
~ 

(3) 
1;i 

(oo) 
~ 

O'' 

~A.I I I;' I 

In this section we develop an iterative method of which the stationary solution 

is asymptotically stable and 2nd order accurate in the smooth parts of the solution. 

We consider the "mixed defect co=ection process" (MDCP): 

(4. I .a) r:_l (i+t) _ r:_I (i) _ LI (i) + f 
f n ~ - n ~ n ~ h' 

(4. 1 • b) 
1 L2 (i+I) r:_2 (i+!) L.2 (i+!) 

n ~ = n ~ - n ~ + fh. 

For this process the following theorem holds. 

THEOREM. Let both ~and~ satisfy the stability condition (3.3) and 7,et ~ 1;i = fh 

an.a.~~= fh be disaretizations of order pk and qk s pk respeativety, k = 1,2. 

If for (4.1) a stationary sotution 

{ = ~im ~i) 
l.--+00 

exi.sts,, then 

(4.2) 

PROOF. See Hemker [1981b] p. 79-81. 

f 
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For the singular perturbation problem (I.I) we take 

a) ~ 1n,e: the central difference (or FEM) discrete operator, 

(4. 3) b) ~ -1 
Lb 1n,a the artificial diffusion discrete operator, and 

c) -2 
2. diag(1n ). Lh ,a 

Thus, a pair of iteration steps consists of 

I) a defect correction step as in section 3, and 

2) a damped Jacobi relaxation step for the solution of the stable discretized system. 

If the iteration (4.1) converges, it has not a single fixed point, but it has two 
t . 1 . A 1. (i) d B 1. (i+D h . f sta ionary so utions ~ = .im ~ an ~ = .im uh • For our c oice o operators, 

the above theorem yields, i-+<><> for a fixed e:,i-+<><>the error bounds 

nu A u s c h and 
(4.4) e: - ~.e: E 

lu B u s c h2 
e: - ~.e: E 

where u is the exact solution. The defect correction step (4.1.a) generates a 2nd e: 
order accurate solution and may introduce high-frequency unstable components. The 

damped Jacobi relaxation step (4.I.b) is able to reduce the high-frequency errors. 

Hence we expect that the combined process is not only accurate but also stable. First 

we demonstrate this for our 1-D problem. In the next section we give the analysis for 

the 2-D problem. 

The stationary solutions~ and~ in (4.1) - (4.3) can be characterized as solu

tions of linear systems 

(4.5) 

and 

(4.6) 

1 2 -2 
with Lh, Lb and Lh as in (4.3). 

For a brief notation we denote eq. (4.5) as 

A 
~.e: ~ = fh. 

Local mode analysis of the MDCP applied to the 1-D model problem 

The characteristic forms of the different discretizations of the 1-D model 

problem 

(4.7) " . 
Lu= e:u + 2u = f e: 

are, for central differencing (Lh ), upwinding (L. with a• e:+h) and the MDCP ,e ~h,a 

discretization M. espectively -11,e: 

(4,8) L. (w) .. 4e: s2 
n,e: - h2 

4i 
+ h SC, 
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(4.9) 
4i 

+ h SC, 

(4.10) 

wh~re S sin(wh/2) and C cos(wh/2). 

THEOREM. The operatoz> M. defined by the MDCP pz>oaess (4.1)-(4.3) applied to the 
h,e: 

model equation (4.7) is consistent of 2nd order crnd e:-W'!ifo:t'1'11ly stable. 

PROOF. Comparing M_ with L (w) we find for all w € Th2 n :R2 
-n,e:: E 

[M_ (w) - L (w)[ ~JM_ (w) - Lh (w)J + JLh (w) - L (w)[ 
-'"'h,E E -Cl,E ,c. ,e: E' 

for h -+ 0 

i.e. M. is consistent of the 2nd order. -n,e: 
For the stability we find 

li\i,e:Cw)j = 4181 l(~s+ 53) + ic(I + ~ 52)1 

L (w) l"'hWT 1 e:w + 2i I 
e: 

For 0 < h ~ e: we find for all w € T~ n JR.2 

[f s + iC I 
[Mi '~- h > ~ I 

"' - 2 
Jf.! 11 [e:s£+2i1 11 /2 

For 0 ~ e: ~ h 

Thus we find, uniform in e: and h, 

ti Cw) I e: 

12. 
2 
11 

This inequality implies e:-uniform stability. 0 

5. LOCAL MODE ANALYSIS APPLIED TO THE 2-D MODEL PROBLEM 

(5. 1) 

An analysis, analogous to the 1-D case, can be made for the 2-D model equation 

L u:: e: flu+ (4+ 2p) !vu = f. 
e: 

The corresponding difference operator is given by 

(5. 2) -4 

With p = 0 it corresponds to the central difference discretization; with p J it 
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describes the FEM discretization on a regular triangulation with piecewise linear 

trial- and test-functions. Also for the 2-D equation we define the MDCP by (4.1) -

(4.3). The 2nd order consistency of the corresponding M. and its asymptotic sta--n,e: 
bility are proved similarly to the 1-D case. 

THEOREM. The operator M. • defined by the process (4.1) - (4.3), crpp"lied to the -11, e: 
model equation (I. I) with aentral difference or finite element discretization for 

1n,e: and with artificial diffusion, a "' e: + c 1h, is consistent of 2nd order and 

asymptotically stabie. 

PROOF. Similar to the 1-D case we find 

where 

L_ (w) = - 4e: s2 + 4i T and 
n,e: h2 h 

M. (w) -11,e: 

s Sep = sin(cj>) 

e = w2h/2. 

Further Le:(w) = ~~e: (cp2 + 02.) + ~i (2+ p)(a1cp+ a2e). Now it is easy to show that 

li\i,e:(w)- Le:(w)I S l~,e:(w) - ~,e:(w)I + l~e:(~) - Le:(w)l = 0(h2) 

which proves the consistency, 

To prove the asymptotic stability we find 

lim 
e:+O 

1}\,e:(w)l =Ii~ s4 + [2+ s2JTI· 

!Le: (w) l 2(2+p) (aj<I> + a2e) 

Because of the term i E s4 11::1 i c 1s4, 11i,o has no unsta~le modes. 

We choose a fixed p > 0 and consider (cj>,9) such that ILe:(w)I ~ p. 

We can write T = T(cj>,8) .. (2+p) (a 1cp + a2e) - R(cj>,9) with 

Now 

IR(cj>,9) I s c2 h3 1wl 3, c2 = C(a!,a2,p). 

li\i, e: Cw) I lim _ __._ __ _ 

e:+O It Cw) I e: 

I iC 1s4 + (2+S2)T(cj>,9) 

2T(cj>,B) + 2R(cj>,0) 

2 2 
For an arbitrary c3 > O we consider subregions of Th n :R : 

A= {(cp,e) T(cj>,0) ~ c 3 h3 1wl 3 and la1cp + a2al ~ p}; 

B = {(cp,a) T(cj>,0) s c3 h3 1wl 3 and ·1a1cp + a291 ~ p}. 

i:llBl.IOTHHK MATHP·1,\: ;•" .~H :.·F~;Tjl',' •t•, 

r 1·:>.;T[:< ;:: f, •· 
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For (<j>,6) € A we have 

lim 
E+0 

l~,E (w) I 

ILE(w) I 

and for (<j>,8) € B 
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R(<P,0)+ T(<P,8), we know for all (<j>,0) € B that hlwl ~ Cpt/3 

I (2+ s2)T(<j>,8) I 
~ ~~~-'-'---~---"'""'-'--'--'-~~~ 

-12 f(.p,e) I + 12 c2 T(<j>,6) /C3 I 

1/3 
Chlwl>Cp. 

Thus; for a given p > 0, and for all w € T2 n :JR2 such that lim LE(w) ~ p, we have 
h E+O 

l~,E (w) I 
lim ~ n(p) 
E+O IL (w) I e: 

i.e. M. is asymptotically stable. D --h, E 

REMA.Rl.. 

The MDCP method as described above can conveniently be imbedded into an iterative 

process for the solution of the discrete system. Only the first step in (4.1) re

quires the solution of a linear system, the 2nd step is the application of a single 

relaxation sweep. If an iterative method for the solution of (4.1.a) is used, a suf

ficient number of iteration steps for its solution should be interchanged with a sin

gle step (4.1.b). If an efficient iterative method is used, such as a multiple grid 

method, possibly a few iteration steps for (4.1.a) are sufficient to obtain the derived 

effects. It is likely that also only a few iteration steps of the MDCP process are 

sufficient to obtain approximations to A B 
~ and ~ that have essentially the properties 

A B 
of ~ and ~· Here further research is required. 

REMARK. 

The MDCP-method makes use of the fact that the solution of equation Lau f, 

with a= E + O(h), is an approximate solution of the equation LEu =f. 

The method does not make use of any particular knowledge about the convection direc

tion or about the location or the shape of boundary or interior layers. 

6. NUMERICAL EXAMPLES 

For a number of problems (I.I) we have computed the numerical solution. In all 

problems we took for Lh,e: the finite element discretization on a regular triangulation 

and for L the artificial diffusion discretization with a = e: + h/2. 
n,a 

By 3 different methods the solution was computed: 

) f 'f' . 1 d. f" . (AD) . (I) h 1 t. f 1 by the method 0 artL LCLa L ~USLon ' L.e. ~ ' t e so u LOU 0 

L (I) - f 
h,a uh - h' 
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2) by a single defect correction step (DCP), i.e. u{;_2) in eq. (3.5) 

3) by the iterative process (4. 1) - (4.3). The stationary solution after the 2nd 

order correction step {~) is denoted by (J;DCP) and the solution after Jacobi

relaxation {~) by (DCP;J). 

For four typical problems we compare the results of the computations. The 4 

problems are: 

1. A prob,lem with a smooth solution 

(6.1) e: 6u + ux = f (x,y) 
2 on [O,J], 

with Dirichle~ boundary conditions. The boundary conditions and f (x,y) are chosen 

such that 

(6. 2) u(x,y) sin(11x)sin(11y) + cos(11x)cos(311y) 

is the solution. 

2. A problem with an exponential boundary "layer 

The same problem (6 .• 1), with the Dirichlet boundary conditions and f(x,y) such that 

(6.3) u(x,y) = sin(11x)sin(11y) + cos(11x)cos(311y) 

+ (exp(-x/e:) - exp(-1/e:))/(1- exp(-1/e:)) 

is the solution. 

3. A problem with a parabolia boundaz>y layer 

(6.4) e: 6u - ux = f(x,y) 
2 on [0,1] , 

with Dirichlet boundary conditions and f(x,y) chosen such that 

(6.5) u(x,y) = sin(11x)sin(11y) + cos(11x)cos(311y) + 

-(y-yo)2 

4e:(x-x0) 
e ' 

with x0 = -1 and y0 = O, is the solution. 

4. A problem with a parabolia interior layer 

The problem (6.4) with the bcundary conditions and f (x,y) chosen such that (6.5) is 

a solution with x0 = -0.1 and Yo= 0.5. 

In the tables 6. 1 - 6.4 we show for e: = 10-6 the maximal error at the meshpoints 

in the whole unit square and (in italics) on a properly selectPd subregion, away from 

the boundaries, where the solution of the problem is smooth. We give the error on a 

regular square mesh with h = 1/S, 1/16, 1/32. Further we give the ratio of the error 

when the mesh-size is halved. 
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h E 1/8 

I 
h = 1/16 

error ratio error ratio 

AD 0.973 1.52 0.640 1.60 

0.790 1.37 0.578 1.50 

DCP 0.635 1.74 0.365 I. 97 

0.635 1.76 0.360 2.08 

(J;DCP) 0.507 2.39 0.212 3.64 

0.507 3.40 0.149 4.45 

(DCP;J) 0.429 3.09 o. 139 3.22 

0.429 3,35 . 0.128 4.40 

-6 
TABLE 6. I. Problem I: smooth solution, e: = I 0 • 

AD 

DCP 

(.T; DCP) 

(DCP;J) 

TABLE 6.2. 

AD 

DCP 

(J; DCP) 

(DCP ;J) 

TABLE 6.3. 

h = 1/8 h = 1/16 
error ratio error ratio 

0.973 1.52 0.640 1.60 

0.790 1.37 0.578 1.52 

1.08 1.28 0.845 1.28 

0.635 1.76 0.360 2.08 

I. I I 1.18 0.944 I. 19 

0.608 3.82 0.159 4. 75 

o. 727 I. 21 0.603 1.19 

0.459 3.48 0.132 4.54 

-6 
Problem 2: exponential boundary layer, e: = 10 

h = 1/8 h = 1/16 
error ratio error ratio 

1.21 J.56 0.777 1.00 

0.799 1.38 0.578 1.52 

0.813 I .19 0.684 0.99 

0.660 1. 61 0.409 2.09 

0.552 1.08 0.511 0.91 

0.552 3.76 0.147 4.50 

0,441 0.92 0.478 0.98 

0.441 3.45 0.128 4.40 

-6 
Problem 3: parabolic boundary layer, e: = 10 • 

h = 1/32 
error 

o. 399 

0.380 

0.185 

0.173 

0.0583 

0.0335 

0.0432 

0.0291 

h = 1/32 
error 

0.399 

0.380 

0.662 

0.173 

0.792 

0.0335 

0.506 

0.0291 

h = 1/32 
error 

0.776 

0.380 

0.694 

0.196 

0.560 

0.0327 

0.489 

0.0291 
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h = 1/8 h = 1/16 
error ratio error 

AD l. 11 1 .52 0.730 

0.573 2.08 0.275 

DCP 0.835 1.74 0.481 

0.399 1.86 0.214 

(J;DCP) 0.735 I. 71 0.427 

0.286 1.95 0.147 

(DCP;J) 0.677 2.00 0.339 

0.247 2.01 0.123 

TABLE 6.4. Problem 4: paLabolic interior layer, E 

ratio 

I.61 

1.44 

1.32 

1.95 

1.43 

5.53 

1.13 

5.67 

-6 JO .• 

h = 1/32 
error 

0.453 

0.191 

0.364 

0.110 

0.298 

0.0266 

0.300 

0.0217 

-6 We notice that for E = 10 and for the given mesh-sizes, the (J;DCP) and the (DCP;J) 

solutions show 2nd order convergence in the smooth parts of the solutions. Thus, they 

show the local interior behaviour as it was predicted by the local mode analysis. 

The DCP solution only shows lst order convergence for these h/s ratios, whereas the 

AD solutions even show less convergence. 

h = 1/8 h = 1/16 h = l /32 
error ratio error ratio error 

AD 0.630 2.47 0.0255 l. 71 0.0149 

DCP 0.0740 3.65 0.0203 4.02 0.00505 

(J; DCP) 0.0780 3.65 0.0214 4.01 0.00533 

(DCP ;.J) 0.0693 3.46 0.0201 3.89 0.00516 

TABLE 6.5. Problem 2: £ 1.0. 

In table 6.5 we show the results of problem 2, now with E = 1,0. Here, of course, 

we recognize the classical convergence rates already for h = 1/8, 1/16, 1/32; viz. 

the AD solution shows lst order convergence, the DCP and (J;DCP) solutions are 2nd 

order and (DCP;J) is slightly less than 2nd order accurate. 
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