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I. INTRODUCTION 

The most important aspect in the construction of program packages for 

P.D.E. problems [1-3] is Robustness. Other criteria (in order of impor­

tance) are user-friendliness and speed. This paper describes our present 

efforts to construct Robust algorithms for the solution of a class of non­

linear P.D.E. problems. 

The algorithms are only considered with respect to a special class of 

problems (section 2) but extensions to other problems are obvious. The pre­

dictor - corrector - continuation (PCC) method [4] is one of the most Ro­

bust algorithms known to us for the solution of nonlinear equations. 

Combinations of the PCC method and spatial discretizations are therefore 

obvious choices when constructing Robust algorithms for P.D.E. problems 

[5]. Two different combinations are considered in this paper. First a con­

tinuation parameter t is introduced in the continuous problem to solve the 
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problem on a single given mesh (section 4). Secondly a PCC method is used 

for the solution of the residual problem arising from a two mesh algorithm 

(section 5). In section 6 we consider the simultaneous use of both algo­

rithms. In section 7 a practical implementation of this combination is 

described. 

II. SEMICONDUCTOR PROBLEMS 

The equations involved in the analysis of semiconductor problems are 

discussed in detail in [6], [7] and [3]. Here we only consider the Poisson 

problem for the case of negligible currents. In [3] this problem is treated 

for physically realistic 2-D composite regions. 

In this paper we use only a 1-D simplified problem as an example. 

The equation has the form 

-llu = H(u), 

where 

with 

H(u) a(exp b(c 1-u) - exp b(u-c2)) + D(x), 

x E [20µ,100µ],µ = 10**-6,u(20µ) = O,u(100µ) 700, 

a 10**13, b = 40, c 1 = 0, c 2 = 700 and 

D(x) = -a if x < 50µ,D(x) = a if x > 50µ. 

(1) 

The problem will also be denoted by L(u) = 0. There exists a unique bounded 

solution for this problem. This is also the case for the more general prob­

lem treated in [3]. To understand this, a theorem from [8] is used. The 

basic property there is monotony. Our operator is monotonic because -6 is 

coercive and Hu(u) is negative definite. 

The upper and lower bound of the solution of the problem are 

c 1 - exp(b(c 1-c2))/b and c 2 + exp(b(c1-c2))/b respectively, as can be easi­

ly shown by techniques similar to those used for the proof of a maximum 

principle [10]. These bounds imply that, within the range of floating point 

representable numbers, the solution of (1) is a monotonous function. 

In the general case, a priori lower and upper bounds for the solution are 
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known on physical grounds. Therefore a c d 
' ' 1 an c 2 are always such that, 

within rounding errors, c 1-~, u-c 2 = O; hence, in (1) the function exp(x) 

may be replaced by l+x for x ~ 0. This does not change the solution of the 

problem and it eliminates the problems caused by the large exponential 

factor b. 

III. THE PCC METHOD 

The PCC method is described in [3] and [4]. Its use for semiconductor 

potential problems is discussed in [3]. The algorithm is summarized here 

and a new step strategy is presented. 

Suppose we want to solve the equation 

F(u) 0. 

Then the continuation parameter t is introduced giving 

F(u(t) ,t) O,Ostsl, 

with F(u(l),1) =F(u(l)) =O andtheinitialsolutionu(O) is known. 

Differentiation with respect to t gives 

Ft + Fu ut = 0. 

The solution of (3) is approximated at 0 = t 0 < 

the stepJ.ength is denoted by Tn = tn - tn-l · 

.•.. <t < •••• <t 
n n 

(2) 

(3) 

(4) 

1 ' 

With equation (4) forward Euler is used to compute the prediction u(tn) and 

Newton's method is applied to (3) to find the solution u(tn). 

Because we were not satisfied with the existing step strategies we de-

vised a new one, which proved to be better both in the 1-D model and in the 

realistic 2-D problems. 

Set e. = llu.(t) - ui.-l(tn)ll, i = 1, ... ,J+l, u0 (tn) = u (tn)' define 
i,n 2 i n 

a. = e. 1 I e. . Then the mean quadratic convergence factor is defined 
i,n i+ ,n i,n J s. J-i J-1 

by a =~with P =IT. 1 a.i , s. = 2 and m = 2 -1 where uJ+l (tn) is 
n , i= i.,n l. 

the finaJ. value of the Newton iterations. 

Suppose we want to accept u1 (tn+l) if eI.n < 8 for some chosen tolerance Ii 

and number of iterations I. Suppose u0 (tn+l) u(tn+l) is calculated with 

an integration method, e.g. forward Euler. Then 
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where a is the convergence factor of Newton at t . Now we use an as ap­

proximation for a. Thus 

e < e(T) +ex e(r) 2 , O,n+l - n 

where e(t) is the truncation error of the integration method and from 

T can be calculated. The step changes are limited by 'n-l/2 S 'n S 3tn-l" 

We start with trying r 1 = 1. If r 1 = 1 fails then r 1 = r 1/S etc. until t 1 
is accepted. A t-step is rejected if 

for some i ~ 1. Then the step is divided by 2. 

IV. PARAMETER - CONTINUATION (PC) 

The parameter t is introduced in (1) by replacing H(u) by txH(u). Thus 

at t = 0 the problem has a smooth solution (linear) and at t = 1 the re­

sulting singular perturbation problem has a solution with an interior 

boundary layer. To approximate the solution, the problem is discretised 

a FEM on a uniform mesh. The resulting equations are solved with the PCC 

method. For 3 different meshes the number of t-steps, rejected steps and 

Newton iterations are shown in table I. 

TABLE I. 

number of mesh intervals 8 32 128 

Newton iterations 9 125 418 

t-steps accepted (rejected) 1 (0) 27 (2) 92(5) 
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V. MESH - CONTINUATION 

Let G. and G.+l be two meshes, G. being a submesh of G. • The operator 
i J. J:_ J. J.+1 

Ii+l interpolates a function defined on Gi, yielding a function defined on 

Gi+l" The discretization of L(u) on Gj, is indicated by Lj(u), j 

Suppose Li (ui) = O, then we calculate ui+l'defined by Li+l(ui+l) 

i, i+1. 

O, from 

(5) 

i 
with ui+l(O) = Ii+l ui and ui+l = ui+l(l). Again we use the PCC algorithm 

to solve this problem. 

Table II shows the number of Newton iterations needed to proceed from 

the 8 to the 32 interval mesh, from the 32 to the 128 interval mesh and 

from the 8 to the 128 interval mesh. 

The interpolation operator is defined by locally solving the problem with 

coarse grid solutions as boundary values and, again, a PCC method. 

TABLE II. Number of Newton iterations 

number of mesh intervals 8 32 128 

parameter continuation (PC) 9 125 418 

PC at coarse mesh + 9 ---+ + 3 __,. + 6 
mesh continuation (MPC) 

I I + 2 9 

If the solutions on the different meshes are sufficiently close, no con­

tinuation method is required to s~lve Li+l (ui+ll = O, i.e. the mesh con­

tinuation is simply Newton with I7 1 u. as the initial estimate. However, 
i+ J. 

if I~+l ui is not sufficiently close (and for most realistic problems we 

do not have this a priori knowledge), then the mesh-continuation improves 

the robustness essentially. 
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VI. MESH - PARAMETER - CONTINUATION (MPC) 

The algorithms from sections 5 and 6 may be cOIDbined to give a Robust 

and fast algorithm. The basic idea, of course, is to solve small sets of 

equations first, using parameter continuation on the coarse mesh. Then the 

solution is calculated on a sufficiently fine mesh using mesh-continuation. 

In the following section we present a practical implementation of this com­

bination. 

If we take the coarse mesh too coarse, the solution may be a very bad ap­

proximation of fine mesh solution. Then the work for the MPC algorithm may 

be more than the work necessary for the simple PC algorithm on the fine 

mesh. Therefore, in future we shall try to construct algorithms which use 

a sequence of meshes and optimize the path followed in the two parameter 

embedding provided by the combination of mesh and parameter continuation. 

Of course, in this context [S] and [9] should be mentioned. However, in 

those papers, Robustness is not the primary concern. 

VII. 2-D MESHES 

The 2-D meshes used e.g. in the program packages MAGGY2 [1] and 

SEMMY2 [3] are very suited for the algorithm as described in section 6. The 

meshes used in these packages are discussed in [1]. The meshes consist of 

quadrilaterals and triangles. They may be considered as a distortion of a 

rectangular mesh. Coinciding points yield triangles. These meshes are used 

for FE discretizations and they allow an easy description in the problem 

oriented language as can be seen in Figure 1. 

We see that a coarse and a fine mesh are given at the same time by the 

user of the package [1], the fine mesh being constructed from the coarse 

mesh by linear interpolation on the coordinate space. Realistic problems 

with complicated geometries, solved with such meshes, can be found in [1] 

and [2]. 
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FIGURE 1. The mesh is specified in the SEMMY2 input language by: 
x(l) = O,x(10) 2*.5,2*1,x(15) = 2*1.2,2*1,x(20) = 1.7,3*2, 
x(25) = 3, 
y(l) = O,y(12) 4*1.5,1,y(40) = 4*3.,3.5,y(45) = 4.5. 
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