COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 40. MATROID THEORY, SZEGED (HUNGARY) 1982

SUPERMODULAR COLOURINGS

ALEXANDER SCHRIJVER

ABSTRACT. We investigate analogies between matroids and certain colourings, or partitions, derived from supermodular functions. We describe a greedy algorithm for minimum colourings, and discuss an intersection theorem.

1. Introduction

A collection C of subsets of a finite set S is called an *intersecting family* if C satisfies:

(1) if $T, U \in C$ and $T \cap U \neq \emptyset$, then $T \cap U \in C$ and $T \cup U \in C$.

A function $g: C \rightarrow \mathbb{R}$ is called supermodular (on intersecting pairs) if:

g(T∩U)+g(T∪U) ≥ g(T)+g(U) for T,U∈C with T∩U ≠ Ø.
 It is well-known from the results of Edmonds [1] that if
 g:C → Z is a supermodular function on the intersecting family C
 satisfying

(3) $g(T) \leq |T|$ for all T in C,

then the collection - 327 -

(4) $S_g := \{U \subseteq S \mid |T \cap U| \ge g(T) \text{ for all } T \text{ in } C\}$ is the collection of spanning sets of a matroid on S. With the greedy algorithm one can find a set of minimum cardinality in S_g . This algorithm also shows that

(5)
$$\min\{|U| \mid U \in S_g\} = \max\{g(T_1) + \dots + g(T_k) \mid T_1, \dots, T_k$$
 are pairwise disjoint sets in \mathcal{C} $(k \ge 0)\}.$

Similarly, the greedy algorithm gives a minimum weighted spanning set, and a min-max relation for this minimum weight.

Moreover, if $g_1: C_1 \rightarrow \mathbb{Z}$ and $g_2: C_2 \rightarrow \mathbb{Z}$ are supermodular functions on the intersecting families C_1 and C_2 on S, both satisfying (3), then

(6)
$$\min\{|U| \mid U \in S_{g_1} \cap S_{g_2}\} = \max\{g_1(T_1) + \dots + g_1(T_k) + g_2(V_1) + \dots + g_2(V_k) \mid T_1, \dots, T_k \in C_1; V_1, \dots, V_k \in C_2; T_1, \dots, T_k, V_1, \dots, V_k \text{ pairwise disjoint}\}.$$

Instead of matroids, in this paper we discuss similar results for a "polar" type of combinatorial objects, in terms of colourings related to supermodular functions. In Section 2 we describe a greedy algorithm finding minimum colourings, and in Section 3 we discuss an intersection theorem for colourings. The latter theorem is used in [8] to prove the following result:

(7) Let C be a crossing family of subsets of the finite set V (i.e., if $T,U \in C$ and $T \cap U \neq \emptyset$, $T \cup U \neq V$ then $T \cap U, T \cup U \in C$) with $\emptyset, V \notin C$; then the following are equivalent:

(i) for each directed graph D=(V,A) the minimum size -328 -

of a cut δ_A(T) (:= the set of arcs in A
entering T) for T in C, is equal to the
maximum number k of pairwise disjoint subsets
A₁,...,A_k of A such that each T in C is
entered by at least one arc in each of the A_i;
(ii) there are no V₁,V₂,V₃,V₄,V₅ in C such that
V₁⊆V₂∩V₃, V₂∪V₃ = V, V₃∪V₄⊆V₅, V₃∩V₄ = Ø.

2. A greedy algorithm

Let $g: C \rightarrow Z$ be a supermodular function on the intersecting family C on S, satisfying (3). Consider the collection

(8) Π_g :=the collection of all collections $F = \{U_1, \dots, U_k\}$ of pairwise disjoint subsets of S such that each set

T in C intersects at least g(T) of the U_i. From (3) it follows that Π_g is non-empty, as {{s} | s \in S} belongs

to Π_{g} . Clearly, if $F \in \Pi_{g}$, then

(9) $|F| \ge \max_{T \in C} g(T)$.

We show that the following greedy algorithm will find a collection F in Π_g achieving equality in (9), implying that it has minimum cardinality. In this greedy algorithm we assume that for any collection of pairwise disjoint subsets of S we can determine, in polynomial time, whether the collection belongs to Π_g . This is in line with a similar assumption for the greedy algorithm for matroids - see Remark 1 below.

- 329 -

<u>Greedy algorithm for colourings</u>. Order $S = \{s_1, \ldots, s_n\}$ arbitrary. Apply the following m-th *iteration*, for m=1,...,n. Suppose we have found pairwise disjoint non-empty subsets U_1, \ldots, U_k of $\{s_1, \ldots, s_{m-1}\}$ such that $\{U_1, \ldots, U_k, \{s_m\}, \ldots, \{s_n\}\}$ belongs to Π_g . (If m=0 then k=0.)

- (10) (i) If $\{U_1, \ldots, U_k, \{s_{m+1}\}, \ldots, \{s_n\}\}$ is in Π_g , do not reset;
 - (ii) Otherwise, if $\{U_1, \ldots, U_{i-1}, U_i \cup \{s_m\}, U_{i+1}, \ldots, U_k, \{s_{m+1}\}, \ldots, \{s_n\}\}$ is in Π_g for a certain i, reset $U_i := U_i \cup \{s_m\};$

(iii) Otherwise, let $U_{k+1} := \{s_m\}$ and reset k:=k+1. At the end of the n-th iteration, let $F := \{U_1, \ldots, U_k\}$. Then clearly $F \in \Pi_g$. We show that this collection has equality in (9), and hence is of minimum cardinality.

We use the following notation: if X_1, \ldots, X_n, X are sets, then

(11) $h_{X_1,...,X_t}(X) = \text{the number of } i=1,...,t \text{ with } X_i \cap X \neq \emptyset.$ Then for each fixed $X_1,...,X_t$, the function $h_{X_1,...,X_t}$ is a submodular function. Note that if f is a submodular and g is a supermodular function on the intersecting family C, such that $f(T) \ge g(T)$ for all T in C, then the collection of all sets T in C with f(T) = g(T) is an intersecting family again.

THEOREM 1. The greedy algorithm described above finds a collection F in Π_g of minimum cardinality, with $|F| = \max_{T \in C} g(T)$ (assuming this maximum is nonnegative).

- 330 -

PROOF. Let the above algorithm give a collection $F = \{U_1, \ldots, U_k\}$ in Π_g with |F|=k, and suppose that, in the m-th iteration, s_m was chosen as the first element of the k-th set U_k . So for $i=1,\ldots,k-1$, the collection

(12) {
$$U_1, \dots, U_{i-1}, U_i \cup \{s_m\}, U_{i+1}, \dots, U_{k-1}, \{s_{m+1}\}, \dots, \{s_n\}$$
}

does not belong to Π_g . Hence by definition of Π_g , for $i=1,\ldots,k-1$, there exists a set T_i in C such that

(13)
$${}^{h}_{U_{1},...,U_{i-1},U_{i}} \cup \{s_{m}\}, U_{i+1},...,U_{k-1}, \{s_{m+1}\},...,\{s_{n}\}, (T_{i}) < g(T_{i}).$$

Since on the other hand for each i,

(14)
$$h_{U_1,\ldots,U_{k-1}}, \{s_m\}, \{s_{m+1}\}, \ldots, \{s_n\} (T_i) \ge g(T_i)$$
,

one easily shows that $s_m \in T_i$, $U_i \cap T_i \neq \emptyset$, and that one has equality in (14). Since the left hand side in (14) is submodular, equality in (14) is closed under taking intersections and unions of the T_i , and hence

(15)
$${}^{h}U_{1}, \dots, U_{k-1}, \{s_{m}\}, \{s_{m+1}\}, \dots, \{s_{n}\}^{(T_{1} \cup \dots \cup T_{k-1}) = g(T_{1} \cup \dots \cup T_{k-1})}$$
.

Since the left hand side of (15) is at least k, we know that

- 331 -

 $g(T_1 \cup \ldots \cup T_{k-1}) \ge k$, and hence $|F| \le \max_{T \in \mathcal{C}} g(T)$. The converse inequality being trivial, we have proved the theorem. •

REMARK 1. In the greedy algorithm we assumed that any collection of pairwise disjoint subsets of S can be tested to be in Π_g . This is in line with the greedy algorithm for finding a minimum-sized spanning set in a matroid: there we need to be able to test whether a given subset is spanning or not. If the supermodular function is given by an oracle, and the spanning sets are as in (4), then there is a polynomial-time algorithm for testing a set to be spanning, based on the ellipsoid method, but as yet no direct "combinatorial" method has been found. Similarly, for any collection $F=\{U_1,\ldots,U_k\}$ of pairwise disjoint subsets of S one can test in polynomial time whether F belongs to Π_g , by determining

(16)
$$\min_{T \in \mathcal{C}} (h_{U_1}, \dots, U_k^{(T)} - g(T))$$

which is the minimum of a submodular function, and can hence be determined in polynomial time with the ellipsoid method - see [4]. F belongs to Π_{σ} if and only if the minimum (16) is nonnegative.

The above greedy algorithm in fact gives an optimal collection in Π_g also for a certain weighted problem. If w:S \rightarrow R, we can find a collection F in Π_g which minimizes

- 332 -

(17)
$$\Sigma_{U \in F} \max_{u \in U} w(u) .$$

To this end one should use the ordering s_1, \ldots, s_n of the elements of S with $w(s_1) \ge \ldots \ge w(s_n)$, analogous to the greedy algorithm for minimum weighted spanning sets in matroids.

3. An intersection theorem

A further analogy between spanning sets in matroids and supermodular colourings is provided by the following intersection theorem for supermodular functions.

THEOREM 2. Let $g_1:C_1 \rightarrow \mathbb{Z}$ and $g_2:C_2 \rightarrow \mathbb{Z}$ be supermodular functions on the intersecting families C_1 and C_2 on the finite set S, such that $g_j(T) \leq |T|$ for j=1,2 and $T \in C_j$. Then the minimum size of a collection in $\Pi_{g_1} \cap \Pi_{g_2}$ is equal to $\max\{g_j(T) \mid j=1,2; T \in C_j\}$ (provided that this maximum is nonnegative).

PROOF. Clearly, the maximum does not exceed the minimum. To prove the converse, we use the submodular function defined in (11).

Let $k:=\max\{g_j(T) \mid j=1,2; T \in C_j\}$. The theorem being trivial if k=0, we may assume $k \ge 1$. Let U_1, \ldots, U_k be pairwise disjoint subsets of S such that:

(18)
$$g_{j}(T) \leq h_{U_{1}}, \dots, U_{k}(T) + |T - (U_{1} \cup \dots \cup U_{k})|$$

for j=1,2 and $T \in C_i$, and such that

- 333 -

(19) $|U_1 \cup \ldots \cup U_k|$ is as large as possible.

Such U_1, \ldots, U_k exist, as $U_1 = \ldots = U_k = \emptyset$ satisfies (18). We are finished when we have shown that $U_1 \cup \ldots \cup U_k = S$, since then $\{U_1, \ldots, U_k\} \in \Pi_{g_1} \cap \Pi_{g_2}$. Suppose to the contrary there is an s in $S \setminus (U_1 \cup \ldots \cup U_k)$.

Then there will exist an i_1 such that if we replace U_{i_1} by $U_{i_1} \cup \{s\}$, then (18) is still satisfied for j=1. Otherwise, for all i=1,...,k, there would exist a set T_i in C_1 such that

(20)
$$g_1(T_i) > h_{U_1, \dots, U_{i-1} \cup s, U_{i+1}, \dots, U_k}(T_i) + |T_i \cap (U_1 \cup \dots \cup U_k \cup s)|.$$

Combined with (18) for the original U_1, \ldots, U_k , this implies that T_i contains s and $T_i \cap U_i \neq \emptyset$, and that (18) holds with equality for j=1 and $T=T_i$. Now the collection of sets T satisfying (18) with equality is an intersecting family (as the left hand side is supermodular and the right hand side is submodular). Hence the union $T_0:=T_1 \cup \ldots \cup T_k$ satisfies (18) with equality. But then

(21)
$$g_1(T_0) = h_{U_1}, \dots, U_k(T_0) + |T_0 \setminus (U_1 \cup \dots \cup U_k)| \ge k+1$$

(as ${\rm T}_{\rm 0}$ contains s and intersects all ${\rm U}_{\rm i})$. (21) contradicts the definition of k.

- 334 -

Similarly, there exists an i_2 such that if we replace U_i by U₁ \cup {s}, then (18) is still satisfied for j=2. Ncw, $i_1 \neq i_2$, since otherwise we could replace U₁ by U₁ \cup {s}, without violating (18) for j=1,2, contradicting (19).

We may assume that $i_1 = 1$ and $i_2 = 2$. Now for j=1,2 and $T \in C_1$ one has:

(22)
$$g_{j}(\mathbb{T}) \leq h_{U_{3}}, \dots, U_{k}(\mathbb{T}) + |\mathbb{T} \setminus (U_{1} \cup \dots \cup U_{k} \cup s)| + 2.$$

For j=1 this follows from the fact that we could augment U_1 with s:

$$g_{1}(T) \leq h_{U_{1} \cup s, U_{2}, \dots, U_{k}}(T) + |T \setminus (U_{1} \cup s \cup U_{2} \cup \dots \cup U_{k})| =$$

$$= h_{U_{3}, \dots, U_{k}}(T) + |T \setminus (U_{1} \cup \dots \cup U_{k} \cup s)| + h_{U_{1} \cup s, U_{2}}(T) \leq$$

$$\leq h_{U_{3}, \dots, U_{k}}(T) + |T \setminus (U_{1} \cup \dots \cup U_{k} \cup s)| + 2.$$

For j=2 (23) is shown similarly.

Let V_1, \ldots, V_m be the minimal sets T in C_1 satisfying (22) for j=1 with equality (minimal with respect to inclusion). As the collection of sets T in C_1 satisfying (22) with equality (for j=1) is an intersecting family, the sets V_1, \ldots, V_m are pairwise disjoint. Moreover, as equality in (22) implies equality throughout in (23), we know that $h_{U_1 \cup s, U_2}(V_1) = 2$, and hence that - 335 - $|V_i \cap (U_1 \cup U_2 \cup s)| \ge 2$ for $i=1,\ldots,m$.

Similarly, let W_1, \ldots, W_n be the minimal sets in C_2 which satisfy (22) with equality for j=2. Again, W_1, \ldots, W_n are pairwise disjoint, and $W_i \cap (U_1 \cup U_2 \cup s) | \ge 2$ for i=1,...,n.

Now $U_1 \cup U_2 \cup s$ can be split into classes U'_1 and U'_2 such that both U'_1 and U'_2 intersect each of the sets $V_1, \ldots, V_m, W_1, \ldots, W_n$. To see this, choose pairs $e_1, \ldots, e_m, f_1, \ldots, f_n$ as subsets of $U_1 \cup U_2 \cup s$ such that $e_1 \subseteq V_1, \ldots, e_m \subseteq V_m, f_1 \subseteq W_1, \ldots$ $\ldots, f_n \subseteq W_n$. Since e_1, \ldots, e_m are pairwise disjoint, and since f_1, \ldots, f_n are pairwise disjoint, it follows that the edges $e_1, \ldots, e_m, f_1, \ldots, f_n$ make up a bipartite graph, with vertex set $U_1 \cup U_2 \cup s$. Then any two-colouring of this bipartite graph gives a splitting into classes U'_1 and U'_2 as required.

We finally show that replacing U_1 and U_2 by U'_1 and U'_2 does not violate (18) for j=1,2, which however contradicts the maximality of $|U_1 \cup \ldots \cup U_k|$.

So we have to prove:

(24)
$$g_{j}(T) \leq h_{U'_{1}, U'_{2}, U_{3}, \dots, U'_{k}}(T) + |T \setminus (U'_{1} \cup U'_{2} \cup U_{3} \cup \dots \cup U'_{k})|$$

for j=1,2 and $T \in C_j$. First let j=1, and choose $T \in C_1$. If T includes one of the V_i as a subset, then T intersects both U'_1 and U'_2 (as V_i intersects both of these sets). In this case, by (22),

- 336 -

(25)
$$g_{1}(T) \leq h_{U_{3}}, \dots, U_{k}(T) + |T \setminus (U_{1} \cup \dots \cup U_{k} \cup s)| + 2 = h_{U_{1}'}, U_{2}', U_{3}, \dots, U_{k}(T) + |T \setminus (U_{1}' \cup U_{2}' \cup U_{3} \cup \dots \cup U_{k})|$$

If T includes none of the V_i , then the inequality (22) for j=1 is strict (by definition of V_1, \ldots, V_m). So if T intersects $U'_1 \cup U'_2$ then

(26)
$$g_{1}^{(T) \leq h} U_{3}^{(T)} + |T \setminus (U_{1} \cup \dots \cup U_{k} \cup s)| + 1 \leq \sum_{k=1}^{l} |T_{k}^{(T)} - U_{k}^{(T)} + |T \setminus (U_{1}^{(T)} \cup U_{2}^{(T)} \cup U_{3} \cup \dots \cup U_{k})|.$$

If T does not intersect ${\tt U}_1^{\,\prime}\cup{\tt U}_2^{\,\prime}$, then

(27)
$$g_{1}(T) \leq h_{U_{1}}, \dots, U_{k}(T) + |T \setminus (U_{1} \cup \dots \cup U_{k})| = h_{U_{1}'}, U_{2}', U_{3}, \dots, U_{k}(T) + |T \setminus (U_{1}' \cup U_{2}' \cup U_{3} \cup \dots \cup U_{k})|.$$

The inequality (24) for j=2 is shown similarly. •

The proof also shows that a collection in $\Pi_{g_1} \cap \Pi_{g_2}$ of minimum size can be found in polynomial time, by minimizing certain submodular functions, which can be done in polynomial time with the ellipsoid method (cf. [4]). We do not know a min-max relation or a polynomial algorithm for finding a minimum-weighted collection in $\Pi_{g_1} \cap \Pi_{g_2}$ (with respect to the weight function (17)).

- 337 -

REMARK 2. Theorem 2 can be formulated in terms of generalized polymatroids (cf. Frank [3]). If $g:C \rightarrow \mathbb{R}$ is a supermodular function on the intersecting family of subsets of S, let the polyhedron P_g in \mathbb{R}^{S}_{+} be defined by:

(28)
$$P_g := \{x \in \mathbb{R}^S_+ \mid x(T) \ge g(T) \text{ for } T \in \mathcal{C}\},\$$

where $x(T) := \sum_{s \in T} x(s)$. It is known (cf. [1],[3]) that if g is integer-valued, the polyhedron P_g is integral (i.e., each vertex of P_g is integral). Now Theorem 2 implies the following. Let $g_1:C_1 \neq \mathbb{Z}$ and $g_2:C_2 \neq \mathbb{Z}$ be supermodular functions on the intersecting families C_1 and C_2 on S, and let $k := \{\max g_j(T) \mid j=1,2; T \in C_j\}$. Then if b is an integral vector in $P_{g_1} \cap P_{g_2}$, there are nonnegative integral vectors b_1, \ldots, b_k such that

(1)
$$b = b_1 + \dots + b_k$$
;
(29)
(11) for $j=1,2$ and $T \in C_j$: $\sum_{i=1}^{k} \min\{b_i(T), i\} \ge g_j(T)$

This follows from Theorem 2 by splitting each element s of S into b(s) copies.

We conclude with mentioning some applications of Theorem 2. APPLICATION 1. Let G = (V,E) be a bipartite graph, with colour classes V_1 and V_2 , and let for j=1,2:

- 338 -

$$C_{j} := \{\delta(v) \mid v \in V_{j}\}$$

where $\delta(\mathbf{v})$ denotes the set of edges incident with vertex \mathbf{v} . Clearly, C_1 and C_2 are intersecting families. If we define $\mathbf{g}_j(\delta(\mathbf{v})) = |\delta(\mathbf{v})|$ for j=1,2 and $\mathbf{v} \in \mathbf{V}_j$, we obtain supermodular functions \mathbf{g}_1 and \mathbf{g}_2 on C_1 and C_2 , satisfying (3). Theorem 2 now gives König's edge-colouring theorem [6]: the edge-colouring number of G is equal to the maximum degree of G. If we define $\mathbf{g}_j(\delta(\mathbf{v})) = \mathbf{k}$ for j=1,2 and $\mathbf{v} \in \mathbf{V}_j$, where \mathbf{k} is the minimum degree of G, Theorem 2 gives a result of Gupta [5]: the maximum number of pairwise disjoint edge sets in G, each covering all vertices, is equal to the minimum degree of G. If we define $\mathbf{g}_j(\delta(\mathbf{v})) = \min\{\mathbf{k}, |\delta(\mathbf{v})|\}$, for j=1,2 and $\delta(\mathbf{v}) \in C_j$, where \mathbf{k} is an arbitrary natural number, Theorem 2 gives a result of De Werra [9].

APPLICATION 2. We will indicate how to derive from Theorem 2 the following "disjoint bi-branching theorem" ([7]) :

(31) Let D = (V, A) be a directed graph, and let V be split into classes V_1 and V_2 . Suppose that each $V' \subseteq V$ with $\emptyset \neq V' \subseteq V_1$ or $V_1 \subseteq V' \neq V$ is entered by at least k arcs of D. Then A can be split into classes A_1, \ldots, A_k such that for each $i=1,\ldots,k$ and for each $v \in V_1$ there is a directed path in A_i from V_2 to v, and for each $v \in V_2$ there is a directed path in A_i from v to V_1 .

- 339 -

This result is one of the auxiliary theorems for the min-max relation proved in [7], which is the special case of (7) where $C \cup \{\emptyset, V\}$ is closed under taking any union and intersection.

To prove (31), Theorem 2 is combined with the following result of Edmonds [2], using the notation (11) and $d_{\overline{A}}(V')$:= the number of arcs in A entering V':

(32) if D = (V, A) is a directed graph, and R_1, \dots, R_k are subsets of V such that

$$\bar{d}_{A}(V') + h_{R_{1}}, \dots, R_{k}(V') \ge k$$

for each nonempty subset V' of V, then A can be split into classes A_1,\ldots,A_k such that for each $i=1,\ldots,k$ and each $v\in V\setminus R_i$, there is a directed path in A_i starting in R_i and ending in v.

Taking $R_1 = \ldots = R_k = \{r\}$ gives Edmonds' disjoint branching theorem. (31) can be seen as a result on "glueing branchings together to obtain bi-branchings". Let

(33) $A^{\circ} := \{a \in A \mid a \text{ has tail in } V_2 \text{ and head in } V_1\}$, $A' := \{a \in A \mid a \text{ has both tail and head in } V_1\}$; $A'' := \{a \in A \mid a \text{ has both tail and head in } V_2\}$.

- 340 -

Let furthermore,

$$\begin{array}{rcl} (34) & \mathcal{C}_1 & := \ \{ \delta_{A^\circ}^-(\mathbb{V}^{\,\prime}) \mid \emptyset \neq \mathbb{V}^{\,\prime} \subseteq \mathbb{V}_1 \} \\ & \mathcal{C}_2 & := \ \{ \delta_{A^\circ}^-(\mathbb{V}^{\,\prime}) \mid \mathbb{V}_1 \subseteq \mathbb{V}^{\,\prime} \neq \mathbb{V} \} \end{array}$$

Then C_1 and C_2 are intersecting families on A° . Define for j=1,2, $g_j:C_j \rightarrow Z$ by

(35)
$$g_1(B) := \max\{k-\overline{d_A}, (V') \mid \emptyset \neq V' \subseteq V_1, \delta_{\overline{A}^\circ} = B\}$$
 for $B \in C_1$,
 $g_2(B) := \max\{k-\overline{d_{A''}}, (V') \mid V_1 \subseteq V' \neq V, \delta_{\overline{A}^\circ} = B\}$ for $B \in C_2$.

Then g_1 and g_2 are supermodular on intersecting pairs. Moreover, if V' attains the maximum in (35) then

(36)
$$g_1(B) = k - \overline{d_{A''}}(V') \le \overline{d_{A}}(V') - \overline{d_{A''}}(V') = \overline{d_{A^{\circ}}}(V') = |B|$$
,
 $g_2(B) = k - \overline{d_{A''}}(V') \le \overline{d_{A}}(V') - \overline{d_{A''}}(V') = \overline{d_{A^{\circ}}}(V') = |B|$

Since $g_j(B) \le k$ for j=1,2 and $B \in C_j$, we can split, by Theorem 2, A° into classes $A_1^\circ, \ldots, A_k^\circ$ such that:

(37) if
$$\emptyset \neq V' \subseteq V_1$$
, V' is entered by at least $k-d_{A'}(V')$
of the classes A_i° ,
if $V_1 \subseteq V' \neq V$, V' is entered by at least $k-d_{A''}(V')$
of the classes A_i° .

- 341 -

We leave it to the reader to combine this result with (32) to obtain (31).

REFERENCES

- [1] Edmonds, J., Submodular functions, matroids, and certain polyhedra, in: Combinatorial Structures and Their Applications (R. Guy, et al., eds.), Gordon and Breach, New York, 1970, pp. 69-87.
- [2] Edmonds, J., Edge-disjoint branchings, in: Combinatorial Algorithms (B. Rustin, ed.), Academic Press, New York, 1973, pp. 91-96.
- [3] Frank, A., Generalized polymatroids, Proc. Sixth Hungarian Combinatorial Colloquium (Eger, 1981), to appear.
- [4] Grötschel, M., Lovåsz, L. and Schrijver, A., The ellipsoid method and its consequences in combinatorial optimization, *Combinatorica* 1 (1981) 169-197.
- [5] Gupta, R.P., A decomposition theorem for bipartite graphs,
 in: Theory of Graphs (P. Rosenstiehl, ed.), Gordon and Breach,
 New York, 1967, 137-138.
- [6] König, D., Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 (1916) 453-465.
- [7] Schrijver, A., Min-max relations for directed graphs, Annals of Discrete Math. 16 (1982) 261-280.
- [8] Schrijver, A., Packing and covering of crossing families of cuts, J. Combinatorial Theory (B), to appear.

- 342 -

[9] de Werra, D., Some remarks on good colorations,

J. Combinatorial Theory (B) 21 (1976) 57-64.

.

Alexander SCHRIJVER

Instituut voor Actuariaat en Econometire, Universiteit van Amsterdam, Jodenbreestraat 23, 1011 NH Amsterdam Holland

and

Department of Operations Research, Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, Holland

- 343 -