
COLLOQUIA MATHEMATICA SOCIETATIS JANOS BOLYAI 
40. MATROID THEORY, SZEGED (HUNGARY) 1982 

SUPERMODULAR COLOURINGS 

ALEXANDER SCHRIJVER 

ABSTRACT. We investigate analogies between matroids and 
certain colourings, or partitions, derived from supermodular 
functions. We describe a greedy algorithm for minimum colourings, 
and discuss an intersection theorem. 

1. Introduction 

A collection C of subsets of a finite set S is called 

an interseating famiZy if C satisfies: 

(I) if T,UEC and Tnu # 0, then TnUEC and TUUEC. 

A function g:C - :R is called supermodular (on intersecting 

pairs) if: 

(2) g(TnU)+g(TUU)~g(T)+g(U) for T,UEC with Tnu # l/J. 

It is well-known from the results of Edmonds [!]that if 

g:C - Zlis a supermodular function on the intersecting family C 

satisfying 

(3) g(T) =:>!TI for all T in C , 

then the collection - 327 -



(4) S :=[Uc SI ITnUl;:>:g(T) for all T in C} 
g 

is the collection of spanning sets of a matroid on S. With the 

greedy algorithm one can find a set of minimum cardinality in 

This algorithm also shows that 

(5) min{IUi I UESg} = max{g(T 1)+ ... +g(Tk) I T1,. .. ,Tk 

are pairwise disjoint sets in C (k ;:>: O)}. 

s 
g 

Similarly, the greedy algorithm gives a minimum weighted spanning 

set, and a min-max relation for this minimum weight. 

Moreover, if g1 :C 1 - Zl and g2 :C2 -zz. are supermodular 

functions on the intersecting families cl and c2 on s, both 

satisfying (3), then 

(6) min{IUI I UES nS } = max{g 1(T 1)+ .•. +g 1(Tk)+ 
gl g2 

+g2(Vl)+ ... +g2(VQ) I Tl, .•. ,TkcCI; Vl, ... ,V,Q,CC2; 

T1, ... ,Tk,v 1, ... ,V,s pairwise disjoint}. 

Instead of matroids, in this paper we discuss similar results 

for a "polar" type of combinatorial objects, in terms of colourings 

related to supermodular functions. In Section 2 we describe a 

greedy algorithm finding minimum colourings, and in Section 3 we 

discuss an intersection theorem for colourings. The latter theorem 

is used in [8] to prove the following result: 

(7) Let C be a crossing family of suosets of the finite 

set V (i.e., if T,UEC and TnU#0, TUU#V 

then TnU,TUUEC) with 0,V '1. C; then the following 

are equivalent: 

( i) for each directed graph D= (V, A) the mfrrimwn s i-ze 
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of a cut 6A(T) (:=the set of arcs in A 

entering T) for T in C~ is equal to the 

ma.xirmtm nurriber• k of pairuise disjoint subsets 

A 1, ••• ,~ of A such that each T in C ~s 

entered by at least one arc in each of the Ai; 

in C such that 

2. A greedy algorithm 

Let g:C -zz. be a supermodular function on the intersecting 

family C on S, satisfying (3). Consider the collection 

(8) ITg:=the collection of all collections F = {U 1, ... ,Uk} 

of pairwise disjoint subsets of S such that each set 

T in C intersects at least g(T) of the U •• 
l. 

From (3) it follows that IT 
g 

is non-empty, as { {s} I s E S} belongs 

to IT . Clearly, if FEIT, then 
g g 

(9) 

We show that the following greedy algorithm will find a collection 

F in IT achieving equality in (9), implying that it has minimum 
g 

cardinality. In this greedy algorithm we assume that for any col lee-

tion of pairwise disjoint subsets of S we can determine, in 

polynomial time, whether the collection belongs to TI . This is in 
g 

line with a similar assu~ption for the greedy algorithm for matroids 

- see Remark I below. 
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Greedy algorithm for colourings. Order S = {s 1 , ••• ,sn} 

arbitrary. Apply the following m-th iteration, for m=l, ... ,n. 

Suppose we have found pairwise disjoint non-empty subsets 

belongs to IT • (If m=O then k=O.) 
g 

(JO) (i) If {U I ' ••• 'Uk' {s m+ I} ' ••• ' {s n}} is in rr ' do not g 

reset; 

(ii) Otherwise, if {U 1 , ... ,ui-J'ui u {sm},Ui+l' ... ,uk' 

{s 1}, ••• ,{s }} is in IT for a certain i, reset m+ n g 

U. :=U.U{s}; 
i i m 

(iii) Otherwise, let Uk+! := {sm} and reset k:=k+l. 

At the end of the n-th iteration, let F := {U 1, ••• ,Uk}. Then 

clearly FE IT • We show that this collection has equality in (9), g 

and hence is of minimum cardinality. 

We use the following notation: if x 1, ••• ,Xn,X are sets, 

then 

( 11) hx X (X) =the number of i=J, ... ,t with 
I' ... ' t 

x.nx~~. 
i 

Then for each fixed xl, ... ,xt' the function h 
xl' ... 'xt 

is a 

submodular fu11ction. Note that if f is a submodular and g is 

a supermodular function on the intersecting family C, such that 

f(T) ~ g(T) for all T in C, then the collection of all sets T 

in C with f (T) = g(T) is an intersecting family again. 

THEOREM I. The greedy algorithm described above finds a 

collection F in ITg of minimum cardinality, with IFl=ma~ECg(T) 

(assuming this maxirrrum is nonnegative). 
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PROOF. Let the above algorithm give a collection F={U 1 , ... ,Uk} 

in IT with !Fi=k, and suppose that, in the m-th iteration, s 
g m 

was chosen as the first element of the k-th set Uk. So for 

i=l, ... ,k-1, the collection 

(12) {U l , ••• , U. I , U. \.} {s } , U. I , ••• , Uk I, {s 1} , ••• , {s } } 
i - i m 1 + - m+ n 

does not belong to IT . Hence by definition of 
g 

II , for 
g 

i=l, ... ,k-1 , there exists a set T. 
1 

in C such that 

(13) ~ 1 •... ,u. 1 ,u. u {s },u. 1, ... ,uk 1,{s 1}, ... ,{s }(Ti)<g(Ti). 
i- i m i+ - m+ n 

Since on the other hand for each i, 

(14) 

one easily shows that s ET., U. nr. f. </J, and that one has 
m 1 1 1 

equality in (14). Since the left hand side in (14) is submodular, 

equality in (14) is closed under taking intersections and unions 

of the Ti , and hence 

( 1 5) 

Since the left hand side of (15) is at least k, we know that 
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g(T 1u ... UTk-l)~k, and hence !FI::;; ma~EC g(T). The converse 

inequality being trivial, we have proved the theorem. • 

REMARK I. In the greedy algorithm we assumed that any 

collection of pairwise disjoint subsets of S can be tested to 

be in TI . This is in line with the greedy algorithm for finding g 

a minimum-sized spanning set in a matroid: there we need to be 

able to test whether a given subset is spanning or not. If the 

supermodular function is given by an oracle, and the spanning 

sets are as in (4), then there is a polynomial-time algorithm 

for testing a set to be spanning, based on the ellipsoid method, 

but as yet no direct "combinatorial" method has been found. 

Similarly, for any collection F={U 1, ••• ,Uk} of pairwise disjoint 

subsets of S one can test in polynomial time whether F belongs 

to 

(16) 

TI , by determining 
g 

min_EC (h (T) - g(T)) , 
T U I, .•. , Uk 

which is the minimum of a submodular function, and can hence be 

determined in polynomial time with the ellipsoid method - see [4]. 

F belongs to TI 
g 

if and only if the minimum (16) is nonnegative. 

The above greedy algorithm in fact gives an optimal callee-

tion :in IT also for a certain weighted problem. If w: S _. R , 
g 

we can find a collection F in IT which minimizes 
g 
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(17) 

To this end one should use the ordering s 1, •.. ,sn of the elements 

of S with w(s 1) ~ ••• ~ w(sn), analogous to the greedy algorithm 

for minimum weighted spanning sets in matroids. 

3. An intersection theorem 

A further analogy between spanning sets in matroids and 

supermodular colourings is provided by the following intersection 

theorem for supermodular functions. 

THEOREM 2. Let g 1 : C 1 - 'll and g2 : C 2 _,. 7l be superrnodu lar 

functions on the interseating families cl and c2 on the finite 

set s~ suah that g. (T) ~ ITI 
J 

for j=l,2 and T E C . • Then the 
J 

minimum size of a aoUeation in rr n rr is equal to 
gl g2 

max {g. (T) I j = l, 2; TE C.} (provided that this maximwn is nonnega-
J J 

tive). 

PROOF. Clearly, the maximum does not exceed the minimum. To 

prove the converse, we use the submodular function defined in (11). 

Let k:=max{g.(T) I j=l,2; TEC.}. 
J J 

The theorem being trivial 

if k=O, we may assume k ~ I. Let U 1, ... , Uk be pairwise disjoint 

subsets of S such that: 

(18) g. (T) ~ hu U (T) + IT '-(U I U ..• U Uk) I 
J ], ... , k 

for j =I , 2 and TE C., and such that 
J 
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(19) IU 1 U •.. U Ukl is as large as possible. 

Such u1, ... ,Uk exist, as u1= ... =Uk=~ satisfies (18). We are 

finished when we have shown that u1 U .•• U Uk= S, since then 

{U 1, ... ,Uk} E TI n TI • Suppose to the contrary there is an s 
g) g2 

in S -..... (U I U ••• U Uk) . 

Then there will exist an i 1 such that if we replace 

U. U {s}, then (18) is still satisfied for j=I. Otherwise, 
11 

for all i=l, •.. ,k, there would exist a set 

that 

T. 
l. 

such 

(20) gl(T.)>h. u u u u (T.)+IT. -.....(u)u ..• UUkUs) 1. 
l. -111····· i-1 s, i+1····· k l. l. 

Combined with (18) for the original u 1, •.• ,Uk ' 
this implies 

that T. contains s and T.nu.+0 
' 

and that (18) holds with 
l. l. l. 

equality for j=I and T=T .. Now the collection of sets T 
l. 

satisfying (18) with equality is an intersecting family (as the 

left hand side is supermodular and the right hand side is sub-

modular). Hence the union T0 :=T 1 u ... UTk satisfies (18) with 

equality. Bµt then 

(21) 

(as T0 contains s and intersects all U.). 
l. 

the definition of k. 
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Similarly, there exists an i 2 such that if we replace 

by then ( 18) is still satisfied for j=2. 

New, since otherwise we could replace U. by 
1.1 

U. U {s}, without violating 
11 

(18) for j=I,2 , contradicting 

( 19). 

TE C. 
J 

(22) 

We may assume that 

one has: 

i = I 
I and i 2 = 2. Now for j=l ,2 and 

g.(T)~hu u (T) + IT\(UIU ... UUkUs)I + 2. 
J 3' ... ' k 

For j=J this follows from the fact that we could augment 

ul with s: 

gl(T)~huu u u (T)+IT\(UIUsUU2U ... UUk)I= 
ls'2'" .. 'k 

(23) = hu u (T) + IT \(UIU ... UUkUs) I+ hu u u (T) ~ 
3' .. .,k ls'2 

For j=2 (23) is shown similarly. 

Let v1, ... ,Vm be the minimal sets T in C1 satisfying 

(22) for j=J with equality (minimal with respect to inclusion). 

As the collection of sets T in C1 satisfying (22) with equality 

(for j=l) is an intersecting family, the sets v1, ..• ,Vm are 

pairwise disjoint. Moreover, as equality in (22) implies equality 

throughout in (23), we know that hU U U (V.) = 2, and hence that 
I s, 2 l 
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-

1Vin(u 1uu2 us)l2:::2 for i=I, ••• ,m. 

Similarly, let w1, ... ,Wn be the minimal sets in C2 which 

satisfy (22) with equality for j=2. Again, w1, ..• ,Wn are pair-

wise disjoint, and 

Now U 1 U u2 Us can be split into classes Uj and 

such that both Uj and U' 2 intersect each of the sets 

U' 
2 

v 1, ••• ,Vm,Wl, ... ,Wn. To see this, choose pairs e 1, ••• ,em,fl, ... ,fn 

as subsets of u1 uu2 Us such that e 1 s;v1, ... ,ems;vm,fl SW 1, .. . 

. . . ,fnSwn. Since e 1,. •• ,em are pairwise disjoint, and since 

f 1, ... ,fn are pairwise disjoint, it follows that the edges 

e 1, .•. ,em,fl'''''fn make up a bipartite graph, with vertex set 

u 1 UU2 Us. Then any two-colouring of this bipartite graph gives 

a splitting into classes U' 
I 

and u2 as required. 

We finally show that replacing u 1 and u2 by u; and U' 
2 

does not violate (18) for j=l,2 , which however contradicts the 

maximality of IU 1 u ... UUkl. 

So we have to prove: 

(24) g.(T)~hu, U' u u (T)+IT-.....(U1'UU2'UU3U ... uuk)I 
J 1'2'3' 00 .,k 

for j=I, 2 and TE C •• First let j= 1, and choose TE C1 • If T 
J 

includes one of the v. as a subset, then T intersects both 
l. 

U' 1 and U' 2 (as v. intersects both 
l. 

of these sets). In this 

case, by (22), 
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(25) 

gl(T):;;hu u (T)+IT\(UIU ••. uukus)l+2= 
3' ... ' k 

If T includes none of the Vi, then the inequality (22) 

for j=J is strict (by definition of v1, ... ,Vm). So if T inter-

sects U' U U' 
1 2 then 

(26) 

gl(T):Shu u (T)+ IT\(UlU ..• uukus)I+ l:S 
3' ... ' k 

:Sh_, U' U U (T)+ IT \(u 1•uu2•uu3 u .•. UUk)I. 
--u I ' 2 ' 3 ' .• ' ' k 

If T does not intersect Uj U Uz , then 

(27) 

g 1(T):;;hU U (T) + IT\(u1 U ... UUk)I = 
I'.'" k 

=hu, U' u u (T)+IT\(U1'UU~UU3U ••. uuk)I. 
1'2'3' .. "k ~ 

The inequality (24) for j=2 is shown similarly. • 

The proof also shows that a collection in of mini-

mum size can be found in polynomial time, by minimizing certain 

submodular functions, which can be done in polynomial time with 

the ellipsoid method (cf. [ 4]). We do not know a min-max relation 

or a polynomial algorithm for finding a minimum-weighted callee-

tion rn IT nII (with respect to the weight function (17)). 
g 1 g2 
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REMARK 2. Theorem 2 can be formulated in terms of generalized 

polymatroids (cf. Frank [ 3)). If g:C - :JR. is a supermodular 

function on the intersecting family of subsets of S, let the 

polyhedron Pg in lRS 
+ 

be defined by: 

(28) 
s Pg := {xE :JR.+ I x(T) 2:: g(T) for TE C}, 

where x(T) := I:sET x(s). It is known (cf. [I],[ 3]) that if g 

is integer-valued, the polyhedron P is integral (i.e., each 
g 

vertex of p 
g 

is integral). Now Theorem 2 implies the following. 

Let g1:C 1 -:rz; and g2 :C2 -7l be supermodular functions on 

the intersecting families cl and c2 on s, and let 

k :={max g.(T) I j=l,2; TEC.}. Then if b is an integral vector 
J J 

in P n P , there are nonnegative integral vectors b 1, ••• ,bk 
gl g2 

such that 

(i) 
(29) 

(ii) 

b =bi+ •.• +bk 

for j=l ,2 and 
k 

TE C. 
J 

E min {b.(T) , I} 2:: g. (T) 
i=t 1 J 

This follows from Theorem 2 by splitting each element s of S 

into b(s) copies. 

We conclude with mentioning some applications of Theorem 2. 

APPLICATION I. Let G = (V ,E) be a bipartite graph, with 

colour classes v1 and v2, and let for j=l,2 : 
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(30) C. := {o(v) I vEV.} 
J J 

where o(v) denotes the set of edges incident with vertex v. 

Clearly, C1 and C2 are intersecting families. If we define 

g. (6 (v)) = 16 (v) I for j=I, 2 and v E V., we obtain supermodular 
J J 

functions g1 and g2 on C1 and C2 , satisfying (3). Theorem 

2 now gives Konig's edge-colouring theorem [ 6]: the edge-colour-

ing number of G is equal to the maximum degree of G. If we 

define g.(o(v))=k 
J 

for j=l ,2 and v E V. , where 
J 

k is the 

minimum degree of G, Theorem 2 gives a result of Gupta [5] : 

the maximum number of pairwise disjoint edge sets in G, each 

covering all vertices, is equal to the minimum degree of G. If 

we define g.(cS(v)) =min{k,l6(v)I}, for j=l,2 and 6(v) EC. , 
J J 

where k is an arbitrary natural number, Theorem 2 gives a 

result of De Werra [9]. 

APPLICATION 2. We will indicate how to derive from Theorem 

2 the following "disjoint bi-branching theorem" ([ 7]) : 

(31) Let D = (V,A) be a direated graph, and 'let V be spUt 

into a'lasses v1 and v2 • Suppose that eaah V' cv with 

Ql #; V'~v 1 or v 1 ~V' .f V is entered by at 'least k arcs 

of D. Then A aan be split into aZasses A1, ..• ,~ such 

that for eaah i= I , ••• , k and for eaah v E V 1 there is a 

directed path in Ai from V 2 to v, and for eaah v E V 2 

there is a direated path in Ai from v to v1• 
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This result is one of the auxiliary theorems for the min-max rela-

tion proved in [7], which is the special case of (7) where 

CU {0,V} is closed under taking any union and intersection. 

To prove (31), Theorem 2 is combined with the following 

result of Edmonds [ 2], using the notation (II) and d~(V') :=the 

number of arcs in A entering V' : 

(32) if D = (V ,A) is a directed graph, and R1 , •.• , ~ are 

subsets of V such that 

for each nonerrrpty subset V' of V, then A can be split 

into classes A1, ... ,~ such that for each i=l, ... ,k and 

each v E V \ R. , theY'e is a directed path in A. starting 
i 1 

in R. and ending in v. 
i 

Taking R1 = ••• = ~ = {r} gives Edmonds' disjoint branching theorem. 

(31) can be seen as a result on "glueing branchings together to 

obtain bi-branchings". Let 

(33) Ao := {aEAla has tail in v2 and head in VI}, 

A' := {a EA I a has both tail and head in VI} ; 

A" := {a EA I a has both tail and head in v 2} . 
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Let furthermore, 

(34) C1 := {6~o(V') I 0 f: V'::: V1} 

C2 := {6~o(V') I v1:= V' f: V} 

Then C1 and C2 are intersecting families on A0 • Define for 

j=J,2' g.:C.-2Z 
J J 

by 

(35) g1 (B) := max{k-d~, (V') I 0 <f V'S:: v1 for BE C1 

for BE C2 • 

7hen and are supermodular on intersecting pairs. More-

over, if V' attains the maximum in (35) then 

(36) gl (B) k - d ~' (VI) ::;; d ~(VI) - d~, (V') d~o(V') IBI 

gz(B) k-dA11 (V')Sd~(V') - d~11 (V') d~ o (V') IBI 

Since g.(B)Sk for j=J, 2 and BE C., we can split, by Theorem 
J J 

') Ao into classes A~' ... •Ak such that: -· 

(37) if f/Jf:V'S::Vl V' is entered by at least k-d:, (V') 

of the classes A~ 
l ' 

if V c V' 
)- "' v' 

V' is entered by at least k-d~11 (V') 

of the classes A~, 
l 
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We leave it to the reader to combine this result with (32) to 

obtain (31). 
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