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This paper is a somewhat polished-up form of the lecture notes for the instructional 
series of talks given by L. Lovasz. This series was based on a forthcoming book by the 
three authors, which discusses combinatorial applications of the ellipsoid method and 
other algorithms, most of which have a geometric flavor. 

In this paper we take the opportunity to illuminate some of the problems one 
encounters when trying to develop and apply geometric: algoritluns, and to show some of 
the results which are easiest to state, without going into too many technical details. Some 
of these details can be found in the papers [GLS 1981 a], [GLS 1981 b), others will be 
elaborated in the book. In particular, we do not go into the description of the Ellipsoid 
Method (Shor 1970, Yudin • Nemirowskii 1976, Khac:hiyan 1979), since this is by now 
quite well known. 

1. Convex sets and the EWpsold Method 
It is a classical result that every compact convex set in R" is the 

convex hull of its extreme points as well as the intersection of its sup· 
porting half spaces. From an algorithmic point of view, there are two 
basic problems concerning a convex body K, paralleling the above two 
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characterizations: we may ask if a given pointy E Q" belongs to K, 
and also if a given halfspacc {x ER" : crx s d} contains K. We call 
these the membership and validity problems respectively. It follows 
from the two characterizations that if we have an "oracle" which tells 
us the solution of, say, the membership problem, then this also deter­
mines the solution of the validity problem. But does it yield an algo­
rithm to fmd this solution? The main implication of the 
Ellipsoid Method discovered by Shor (1970, 1976), Yudin and 
Nemirowskii (1976) and Khachiyan (1979) is that the validity and 
membership problems for a convex body are not only logically but 
algorithmically equivalent in the sense that any oracle answering one of 
these problems can be used to obtain a polynomial-time algorithm to 
answer the other one. This statement is, however, not precise and not 
valid without appropriate hypotheses on the way the convex body is 
given. Our first aim will be to describe these hypotheses and to show 
that in a sense they are quite natural. 

Before going into these details, let us formulate two further algo­
rithmic problems on convex bodies. The separation problem is a 
strengthening of the membership problem: it asks, for each y E Q", to 
check whether y E K and if not, then to find a vector c E Q" such that 
er y > er x for every x e K (i. e. it asks for a separating hyperplane for 
each y E K). The optimization problem asks, for each c E Q", to fmd a 
point x E K maximizing the linear objective function er x over K. 

A few examples might illuminate the relationship between these 
problems. 

EXAMPLES. 

(1.l)Let a1 , ... ,a,. E Q", and K = conv{a1, ... ,a,.}. Then the validity 
and optimization problems for K are trivially solvable, the 
membership and separation problems are equivalent to linear pro­
gramming. 

(1.2)1..et ai, ... ,a,. E Q", bi, ... ,b,. E Q and K = {x E R":aTx s bl 
for i = i, . .. , m}. Then the membership and separation problems 
for K are trivial, the validity and optimization problems for K are 
equivalent to linear programming. 

(1.3)1..et f: R" -R be a convex function and G1 = {(x,t): x Er, 
t ER, f(x) s t} be the "epigraph" of/. Then the membership 
problem for G1 is trivial (provided we can evaluate f at any point 
x E Q") .. If we also have an algorithm to compute a subgradient 
off, then the separation problem for f is also solvable. The vali· 
dity and optimization problems for a, include the problem of 
minimiz:ing a convex function. 
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(1.4)Let K be a convex body described by its support functionp. (The 
support function of K is defined as follows: for each unit vector 
v, p(v) is the signed distance of the supporting hyperplane of K 
with outward normal vector v from the origin.) Then the validity 
problem for K is trivial, while the other three problems intro­
duced above are not. 

The optimization problem raises immediately the question: in 
what form do we want the answer? The maximum of er :x over K may 
be attained at an irrational point, and then the algorithm cannot have 
the exact answer as its output. Thus a more correct formulation is to 
ask for a point which "almost" maximizes the objective function er :x. 
Although less apparent, more detailed analysis suggests that also for 
the other three problems, a "weak" formulation which allows for a 
small error is more correct in general. Thus we get to the following 
four weaker problems. 

For any x t: R", t E R satisfying t > 0, we defme 
S(x, t) = {:x ER" : in.f{lx-yl :y E :x} :S t}. 

Weak membership problem. 
Given a convex body K, a vector y E Q", and a rational number 

E > 0, conclude with one of the following: 

(a) y E S(K, E); 
(b) y E S(R" - K, E). 

Weak validity problem. 
Given a convex body K, a vector c E Q", and rational numbers 

E > 0 and d, conclude with one of the following: 
(a) er x s d + E for all :x E K ; 

(b) there exists an x E K for which er :x C?: d - E. 

Weak 1eparatlon problem. 
Given a convex body K, a vector y E Q", and a rational number 

E > 0, conclude with one of the following: 
(a) asserting thaty E S(K,U, 
(b) finding a vector c E Q" such that I c I > 1 and er y C?: er :x - E for 

allxEK. 
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Weak optimization problem. 
Given a convex body K, a vector c E Q"; and a rational number 

E > 0, fmd a vector y E Q" n S(K, E) such that cTy C!! CT:X - e for all 
.z EK. 

Note that the input of these problems includes the error bound ,e. 
Since we are interested in the running time as a function of the input 
length, we should point out that the input length for E is the number of 
binary digits necessary to write down the numerator and denominator 
of E. It would not make any essential difference, however, if we took 
j lOIJl El as the input length or e. Also note that ~th this definition, 
finding a number by binary search means as algonthm in which the 
number of iterations needed to determine the number with error E is 
linear in I Iogz El. It is interesting to remark in this respect that the 
Ellipsoid Method may be viewed as an n-dimensional generalization of 
binary search. 

Fmally, we briefly discuss convex bodies. To be able to apply 
these techniques, we need some a priori given information: the dimen­
sion of the space, a rational number R > 0 such that K ~ S(O, R) and 
another rational number r such that K contains a ball with radius r. 
Sometimes we also need to know in advance the center of this ball with 
radius r. 

The following chart shows the possible reductions between the 
four fundamental algorithmic problems concerning convex bodies, all 
problems in the weak sense. 

MEMBERSHIP 

SEPARATION 

r if i~scribed ball 1 
1s known 

E 

VALIDITY 

OPTIMIZATION 

Here the ~ows marked by E mean reductions by the Ellipsoid 
Method, while the two unmarked arrows mean trivial reductions. 
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In combinatorial situations the convex bodies we encounter are 
usually polytopes, and in fact quite often they have 0-1 vertices, or 
O -112 -1 vertices. For such polytopes the hypotheses under which 
the membership-validity (or separation-optimization) equivalence holds 
can be weakened substantially. Most significantly, the weak and strong 
·versions of the problems become equivalent. To state the result pre­
cisely we need the following definition. 

A rational polytop~ is a triple (P ; n , T) such tlu\t P c; B." is a 
polytope such that each entry of each vertex of P is a rational number 
with numerator and denominator at most T. 

LEMMA. If a rational polytope P is full-dimensional then 
(P ; n, (nrr•- 1 ,nT) is a well-bounded convex body. Further, every 
facet of P can be described by a linear inequality whose coefficients are 
integers not exceeding (nT)". 

Note that full-dimensionality is not included in the definition of a 
rational polytope. In fact, one of the significant advantages of rational 
polytopes over convex bodies is that their affine hull can be determined 
either from an optimization oracle (Edmonds, Lovasz, Pulleyblank 
(1982)) or from a separation oracle. This latter is a rather complicated 
reduction, involving the Ellipsoid Method as well as simultaneous 
diophantine approximation (whose algorithmic aspects will be discussed 
briefly in the next section). Details of this reduction will be given in 
our book. Let us remark, however, that with somewhat stronger 
separation oracles the optimization and affme hull problems were 
solved by Karp and Papadimitriou (1980) and by Padberg and Rao 
(1981). 

The following chart shows the algorithmic reducibilities between 
these basic problems on rational polytopes. 

2. Algorlthmlc Problems for Lattices 

Lattice geometry, also called the "geometry of numbers", is an 
important tool in number theory. Its role in combinatorics or discrete 
optimization has, however, been quite moderate compared with, say, 
the role of convex polytopes. This is, to a certain extent, unjustified. 
There are two major fields in mathematics which deal with lattice 
points in convex bodies: discrete optimization and the geometry of 
numbers. While certain ideas have been used in both fields success­
fully (e.g. polarity), the interfaces between these two fields have been 
very meager. It seems, however, that if we look at the algorithmic 
aspects then common problems and methods are easily found. 

In this section we survey some of the simplest algorithmic prob­
lems for lattices and then describe an algorithm for finding a "simple" 



172 GR6rsc:HEL ET AL. 

MEMBERSHIP VALIDITY 

SEPARATION OPTIMIZATION 

E+ < E > 
Dioph. appr. 

AFFINE HULL AFFINE HULL 

basis in a lattice (A.K. Lcnstra, R W. Lenstra jr. and L. Lovasz 
1982). This algorithm will have applications to simultaneous diophan­
tine approximation as well as to integer programming in bounded 
dimension, where it can be used to improve the efficiency of a cele­
brated algorithm due to H. W. Lenstra, jr. {1981). This algorithm for 
simultaneous diophantine approximation can be used to show the 
equivalence of the separation and optimization problems for non-full· 
dimensional rational polytopes, as it was announced in Section 1. 

Let b1, ••• , b. E Q". The lattice generated by b1, ••. , b,. is 
• 

L = L(b1, ... ,b.) = {l: ~, b,, ~, E Z}. 
1-1 

If b1, ... ,b. are linearly independent then {b1,. . .,b,.} is called a basis 
of L. Let us recall some simple facts concerning lattices. 

2.1 FACT. Every lattice has a basis. Given al, ... ,a,. E Q" (not 
necessarily linearly independent) a basis for L(a1, ... ,a.) can be found 
in polynomial time. 

2. 2 FACT. Let L be a lattice in R" and {b1, ... ,b,.} a basis of L. Then 

det L = {det{bfb,)rJ-1)112 

is independent of the choice of the basis. 

2.4 FACT. Let b1,. .. ,b,., a E Q". Then a EL(b1,. .. ,b,.) can be 
checked in polynomial time. 

Lattices play a very important role in number theory. The theory 
of integral points, of course, is fundamental to combinatorics, but one 
can fmd many other lattices with relevant combinatorial contents, and 
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these are much less studied. 

EXAMPLE. Let G be a bipartite graph, and / 1, ... ,/11 the incidence 
vectors of its perfect matchings. Then 

M 

L(/1, ... ,f.11) = z«Co>n {l: A1/1: A1 E Q} 
1-1 

= z«C0 >n {x E Ql!(G): x(8(v)) = 1 Vv E V(G)}. (I) 

This provides a good characterization of this lattice. One can also fmd 
a basis of this lattice in polynomial time. Paul Seymour raised the 
problem of characterizing the lattice generated by the incidence vectors 
of perfect matchings of a non-bipartite graph. 

Let L be a lattice, and define the greedy system (b1,. •• ,b.) as fol· 
lows: 

I bil = min{I bi :b EL - {O}} 

I b1I = min{I bi :b EL, bi, ... ,b1-i,b are linearly independent.} 

Note that since the lattice may be viewed as a matroid, the greedy sys· 
tem minimizes objective functions, defmed on linearly independent m· 
subsets of L, like I b1 I · · · I b. I , I b, I + ... + I b. I , etc. However, this 
matroid is infinite, and so the above described procedure cannot be 
implemented efficiently. Furthermore, the greedy system may not be a 
basis for the lattice! 

2.4 FACT. To find a greedy system for a lattice L(a1,. .. ,at) is NP· 
hard. 

2.5 FACT. To find min{llbll.:b=E L - {O}} is NP-had (Lagarias-Van 
Emde-Boas). 

It is not known whether the problem of fmding 
min{I bi :b E L - {O}} is NP-hard, but we feel that quite likely it is. 
This lends more value to good bounds on this minimum. The follow­
ing is a classical one. 

2. 6 TIIEOREM (Minkowski). Every lattice L in R11 has a basis 
bi, ..• , b,. such that 

211 
I bi I .... I b,. I :s - · det L, 

v,. 

where v,. = "IT"12/f ( !!. + 1) is the volume of the unit ball in R". 
2 

2. 7 COROll.ARY. Every lattice Lin R" contains a vector b * 0 with 

lbl :s 2(detL)11". 
v,. 
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(For sharper results, see e. g. Lekkerkerker (1969).) 

We now come to the main algorithm of this section. It will yield 
a basis of any given lattice which is "close" to the greedy basis in the 
sense that its vectors are at most 2" times as long as the corresponding 
vectors of the greedy basis. To describe this algorithm we need some 
preparation. 

Let b1 , ••• , b,. be linearly independent vectors in R". The 
Gram-Schmidt orthogonalization (bi, ... ,b.:} of the ordered basis 
(bi, ... , b,.) is defined recurrently by 

4 bT b• 
• i+l 'J • • 

b1+2=b1+1-l: lb"l 2 b1 (i=0,1, ... ,n-1). 
1-1 'J 

The notion of the Gram-Schmidt orthogonalization can be used to 
derive a lower bound on the shortest vector of a lattice. 

2. 8 LEMMA. If b1 , ••• , b,. is a basis of the lattice L and bi, ... , b: is 
its Gram-Schmidt orthogonalization, then for every b E L, b :;. 0, 

I bi ~ min(I bil •...• I b:I). 

(Note that lb1I · · · lb,.I ~ lbil · · · lb:I = detL). 

Let b1, ••• , b,. be a basis of the lattice L, and bi, ... , b: its Gram.­
Schmidt orthogonalization. Write 

' b, = l: µ1,1bj. (i = n,. .. ,n). 
J-1 

We say that (b1, ••• ,b,.) is reduced if 

(a)I µ111 :s ~ for 1 :s j < i :Sn, and 

(b)lb;+1 + µ1+1,1b7' 2 ~ ! lb71 2 for1 :s i:sn-1. 

(This mysterious condition (b) means geometrically that the sequence 
(I bil 2 , ••• , I b:l 2) does not decrease "too much" lexicographically if 
b, and b1+ 1 are interchanged.) 

2. 9 TimOREM. Let L be a lattice and (b1, ... , b,.) a reduced basis of 
L. Then the following hold: 

11-1 

(a)I bd :s 2-2 min{lxl : x EL, x =#:0} 
11-1 

(b)lbd :s 2-4 nVdetL 
II~ 

(c)lbd · · · lb,.I :s 2 4 detL. 
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2.10 THEOREM. Let a1, •.• , a,.= E Q" be linearly independent. Then 
we can fmd in polynomial time a reduced basis of the lattice 
L(a1, ... ,a,.). 

The algorithm in Theorem 2.10 is quite straightforward from the 
definition of reducedness: if (a) is violated the subtract (µ.1J)b1 from b, 
(where (µ.) is the integer nearest to µ.), while if (b) is violated then 
interchange b, and b1+ 1. It takes a little effort to show that the running 
time of this algorithm is polynomial, in particular to show that the 
numbers involved do not grow too large. 

Let us formulate some of the applications of this algorithm. First 
we quote a classical result due to Dirichlet. 
2.11 THEOREM (Dirichlet). Let n1, ... , a,. E R" and E > 0. Then 
there exist integers P1, ... ,p,. and q such that 

lq«,-p,lsE (i=l, ... ,n) 

o < q s e-". 
Algorithmically, the following weaker result holds. 
2.12 THEOREM. Let «1, ... , «,. E Q" and E E Q, E > 0. Then we 
can fmd in polynomial time integers p1, ... ,p,. and q such that 

lqcx, - P1lsE (i = 1, ... ,n) 

o < q s 2"2 e-". 
It is not known whether P1, ... ,p,. and q as in Dirichlet's theorem can 
be found in polynomial time. 

A very nice combination of the Ellipsoid Method and basis reduc­
tion can be used to prove the following result of H. W. Lenstra, jr. 
(1981). 
2.13 THEOREM (H. W. Lenstra). Let n be fixed. Given a convex 
body (K, n, r, R), by a separation oracle, we can decide in polynomial 
time if K contains an integral point, and find this point if it exists. 

We sketch this algorithm. In its first phase we run an Ellipsoid 
Method to find a (rational) point in K. But in fact we use a version of 
the Ellipsoid Method, due to Yudin and Nemirowskii (1976) which 
fmds a point x which is not only in K but "deep in K" in the following 
sense. The algorithm also yields an ellipsoid E with centre x including 
K (as all ellipsoid methods do) with the additional property that the 
ellipsoid E', homothetical with E with ratio n- 312 and with centre x, is 
contained in K. We do not go into the details of this version of the 
Ellipsoid Method, which we call the Shallow Cut Ellipsoid Method; but 
we remark that this application of it has also been found by Goffin 
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(1982). 
We now apply a linear transformation L such that detL::::: 1 and 

the ellipsoid Eis mapped onto a ball S(a, R). Then K is mapped onto 
a convex body LK which is nice in the sense that 

S(a, n- 312 R) C LK C S(a, R) 

where a = Lx. Our task is equivalent to finding a point of the lattice 
Lz:' in the convex body LK. Unfortunately, the lattice LZ", or at least 
its basis Le1, ... ,Le,., may be terrible. But, fortunately, we can apply 
the basis reduction algorithm and find in LZ'4 a new basis (b1, ••• ,b.) 
which has the properties stated in Theorem 2.9. Let ~ be the linear 
transformation which maps (bi. ... ,b,.) onto (e1, ... ,e.), then ~ L is a 
linear transformation which maps Z" onto itself (i. e. it is a linear 
transformation with integral entries and determinant 1). Of course, 
pLK is not as nice as LK. But let E 1 denote the ellipsoid with center 
pci whose axes are parallel to the coordinate axes and have length 

n2 n2 . 1 Furth l , ·~, ••. , •l!!..::..!l' respective y. er, et Ei denote 
lbd • lb.I • 

the< ellifsoid concentrical and homothetical with E1 with ratio • 11-1 

2 - 4 n -3 and with centre pa. Then 

E1' C PLK C E1. 

The crucial property of E1 is that its axes are E._arallel to the coordinate 
axes. If all the axes of E1' are longer than Vn then trivially, E 1 ' and 
hence L ~K contains an integer point (and this point can be found 
easily) ... If not, then at least one of the coordinates varies at most .. ~ 
2·2 4 ·n112 and so our problem can be split into this number of 
lower dimensional problems. Thus we are done by induction. 

Note that all but the last sentence can be carried out in time poly· 
nomial even for varying n. Thus in fact we have proved the following. 
2.14 TIIBOREM. Given a convex body (K; n, r.R) by a separation 
oracle, we can achieve in polynomial time one of the following: 
(a) find an integral point in K; 
(b) fmd an affme transformation x keeping r invariant (sue~ that the 

II 11-l 

first coordinate of any point in LK is less than n 7112 4 in abso­
lute value. 



GEOMETRIC METIIODS IN COMBINATORIAL OPTIMIZATION 177 

3. Combinatorial applications 
In this section we survey some of the applications of the ellipsoid 

method to combinatorial problems. First we discuss some selected 
combinatorial problems. The following results are due to Ford and 
Fulkerson (1962), Edmonds (1967, 1973), Lucchesi and Younger 
(1978) and Edmonds and Johnson (1973). 

Let G be a digraph and 1, t EV(G). An (s, t)-cut is the set of 
edges connecting a set V t; V(G) - t,1 EX to V(G) - X. A 
cut rooted at 1 is the set of edges connecting a set X C V(G),1 EX to 
V(G) - X. A directed cut is the set of edges connecting a set 
X C V(G), X :I: 0 to V(G) - X, provided no edge connects V(G) - X 
toX. 

Let T t: V(G), I TI even. Then a T-cut is the set of edges of G 
connecting a set v t: V(G) with IXnTI odd to V(G) - x. 

A number of important graph-theoretic problems can be formu­
lated as problems of packing and covering of various kinds of cuts. 
We formulate some of these, using polyhedral language. Let the 
conical hull of a set S t: R• be defmed as the set 

conv(S) + R~. 

3.1 THEOREM 
(a) The conical hull of (incidence vectors of) (1-t)-cuts is given by 

the inequalities 

:c ~ 0 

:c(P) ~ 1 for all (1,t)-paths P. 

(b) The conical hull of (1,t)-paths is given by the inequalities 

:c~ 0 

x(C) ~ 1 for all (1,r)-cuts C. 

3.2 THEOREM 
(a) The conical hull of cuts rooted at r is given by the inequalities 

:c ~ 0 

:c(B) ~ 1 for all branchings 

(b) The conical hull of all branchings rooted at S is given by the ine­
qualities 
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x~O 

x(C) ~ 1 for all cuts C rooted at s. 

3.3THEOREM 
(a) The conical hull of all diconnecting sets is given by the inequalities 

x~O 

x(C) ~ 1 for all directed cuts C. 

(b) The conical hull of all directed cuts is given by the inequalities 

x~O 

x(D) ~ 1 for all diconnecting sets D. 

What lends combinatorial significance to these polyhedral results 
is that optimal dual solutions to linear optimization problems for them 
are integral and hence have combinatorial meaning. 

3.4 TIIEOREM. The systems of inequalities in 3.1 - 3.3 (a) ue 
totally dual integral, i. e. for any linear objective function with integral 
coefficients, the dual linear program has an integral solution. 

It was shown by A. Schrijver (1980) that this does not remain 
valid for the system of inequalities in Theorem 3.3 (b). 

3.STHEOREM 

(a) The conical hull of all T-joins is given by the inequalities 

x~ 0, 

x(C) ~ 1 for all T-cuts C. 

(b) The conical hull of all T-cuts is given by the inequalities 

x~O 

x(J) ~ 1 for all T- joins J. 

3.6 THEOREM. The system of linear inequalities in Theorem 3.5 (a) 
is totally dual half-integer. 

A great many combinatorial optimization problems can be f ormu­
lated as linear objective optimization problems over one of the above 
polyhedra: maximum flow, minimum cost flow, maximum weight 
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matching, minim.um weight perfect matching, maximum and minimum 
weight branching, sh?rtest odd st-path, shortest odd/even cycle, 
miniJnum feedback set m planar graphs, etc. 

The following chart summarizes the algorithmic reductions among 
theSe problems. E means reduction by ellipsoid method, D means 
equivalence by LP duality, G means reduction by a greedy algorithm, 
and the unmarked arrows mean reductions by usually simple ad hoe 
tricks· The most involved is the reduction of minimum T-cuts to 
miniJnum cuts, which was recently discovered by Padberg and Rao 
(1982), and which is based on the Gomory-Hu flow-equivalent tree. 
The white box on the bottom means the "trivial problem". 

Another class of combinatorial optimization problems to which 
the Ellipsoid Method can be applied successfully concerns matroids and 
submodular setfunctions. In contrast with the previous group of prob­
lems, where direct algorithms were known, here quite often the only 
known polynomial-time algorithm to solve them is the Ellipsoid 
Method. 

Let us start with a quick survey of some polyhedral results on 
matroids. They are due to Edmonds (1970). 

Let (S, r) be a matroid. Then the matroid polyhedron associated 
with (S, r) is the convex hull of independent sets in (S, r). 

3.7 THEOREM. The matroid polyhedron associated with (S, r) is 
given by the linear inequalities 

x 2: 0 

x(T) :s r(T) (TC S). 

3.8 THEOREM. Let (S, r1) and (S, r1) be two matroids on the same 
underlying set S. Then the convex hull of common independent sets is 
given by the inequalities 

x 2: 0 

x(T) :s min(r2(T), r1(T)) (TC X), 

i. e. it is the intersection of the matroix polyhedra associated with the 
given matroids. 

3.9 THEOREM. The systems of linear inequalities in Theorems 3. 7 
and 3. 8 are total dual integral. 

Let f be an integral valued submodular function on S. Then 
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MAX PACKING E MIN MAX PACKING 

I 
MINT-CUT ,_ 

T-JOIN OFT-CUTS OFT-JOINS 

MAX PACKING E MIN D MAX PACKING 
G MINDICUT ,_ 

DIJOIN 
,_ 

OF DICUTS OF DIJOINS 

\ I 

MIN CUT 

I 

MAX PACKING D MIN ROOTED E MIN D MAX PACKING 

OF BRANCHINGS -- CUT 
I-

BRANCHING I- OF ROOTED curs 

i 
MAX PACKING MAX PACKING 

OF st-PATHS D E MIN D OF st-CUTS -- MIN st-CUT I-
St-PATH 

I-= = 

MAX FLOW MAX POTENTIAL 

I I I 
SUBMODULAR 

LP FUNCTION G LP 
MINIMIZATION 

~ / 

the polymatroid defined by f is the polyhedron defined by the inequali· 
ties 

x(T) s f(T) (T !: S). 

3.10 TIIEOREM. Every polymatroid has integral vertices and the sys· 
tem of inequalities defining it is total dual integral. 
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3.11 TIIEOREM. The intersection of two polymatroids has integral 
vertices, and the union of the systems of linear inequalities defining 
these two polymatroids is total dual integral. 

The most important algorithmic problem concerning a submodular 
setfunction is to find its minimum. This can be solved by the Ellipsoid 
Method; to find a combinatorial algorithm is an outstanding open prob­
lem. 

Let f be a set function on S with /(0) = 0. Let .:c E R!. Write 

where x, > 0 and a, ~ ... ~a .. are (0-1) vectors. Define 
A t 

/(.:c) = }: x, /(a,). 
1-1 

(The representation C-) is essentially unique, and hence f is well 
defined.) 

3.12 LEMMA. j is convex iff f is submodular. 

3.13 LEMMA. min{f(T) : T~ S} = minlf(.:c) : 0 s .:c sl}. 
Based on these lemmas, the minimization of a submodular set· 

function is reduced to the minimization of a convex function over the 
unit cube, where the convex function can be evaluated at any given 
rational point in polynomial time. (We assume that the submodular 
function is given by an oracle which evaluates it at any given subset.) 
But the minimum of a convex function over such a nice domain can be 
found in polynomial time using the Ellipsoid Method (Yudin and 
Nemirowskii (1976)). 

We can draw again a reducibility chart of these optimization prob­
lems. 
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