A SHORT ELEMENTARY PROOF OF GROTHENDIECK'S THEOREM ON ALGEBRAIC VECTORBUNDLES OVER THE PROJECTIVE LINE*

Michiel HAZEWINKEL

Erasmus University, Rotterdam, The Netherlands

Clyde F. MARTIN**
Department of Mathematics, Case Institute of Technology, Case Western Reserve University, Cleveland, OH 44106, USA

Communicated by S. Eilenberg
Received 16 June 1981

Let E be an algebraic (or holomorphic) vectorbundle over the Riemann sphere $\mathbb{P}^{1}(\mathbb{C})$. Then Grothendieck proved that E splits into a sum of line bundles $E=\oplus L_{i}$ and that the isomorphism classes of the L_{i} are (up to order) uniquely determined by E. The L_{i} in turn are classified by an integer (their Chern numbers) so that m-dimensional vectorbundles over $\mathbb{P}^{1}(\mathbb{C})$ are classified by an m-tuple of integers

$$
\kappa(E)=\left(\kappa_{1}(E), \ldots, \kappa_{m}(E)\right), \quad \kappa_{1}(E) \geq \kappa_{2}(E) \geq \cdots \geq \kappa_{m}(E), \quad \kappa_{i}(E) \in \mathbb{Z}
$$

In this short note we present a completely elementary proof of these facts which, as it turns out, works over any field k.

1. Introduction

Let E be a holomorphic (or algebraic) vectorbundle over the Riemann sphere $\mathbb{P}^{1}(\mathbb{C})$. (By [2] holomorphic and algebraic vectorbundles over $\mathbb{P}^{1}(\mathbb{C})$ amount to the same thing). In [1] Grothendieck proved that E splits into a sum of line bundles $E=\oplus L_{i}$ and that the isomorphism classes of the L_{i} are (up to order) uniquely determined by E. The line bundles L_{i} in turn are classified by an integer (their first Chern number) so that m-dimensional vectorbundles over $\mathbb{P}^{1}(\mathbb{C})$ are classified by an m-tuple of integers

$$
\kappa(E)=\left(\kappa_{1}(E), \ldots, \kappa_{m}(E)\right), \quad \kappa_{1}(E) \geq \cdots \geq \kappa_{m}(E), \quad \kappa_{i} \in \mathbb{Z}
$$

[^0]Below we give a completely elementary proof of these facts, which, as it turns out, works over any field k. Of course 'completely elementary' means that such concepts as 'degree of a line bundle' or 'first Chern number' or 'cohomology' or 'intersection number' are not needed or mentioned below. All we use is some linear algebra (or matrix manipulation).

2. Vectorbundles over $\mathbb{P}_{\boldsymbol{k}}^{1}$

Let k be any field. The projective line \mathbb{P}_{k}^{1} over k can be obtained as follows. Let $U_{1}=\operatorname{Spec}(k[s]), U_{2}=\operatorname{Spec}(k[t]), U_{12}=\operatorname{Spec}\left(k\left[s, s^{-1}\right]\right)=U_{1} \backslash\{0\}, U_{21}=\operatorname{Spec}\left(k\left[t, t^{-1}\right]\right)=$ $U_{2} \backslash\{0\}$. Now glue U_{1} and U_{2} together by identifying U_{12} and U_{21} by means of the isomorphism

$$
k\left[s, s^{-1}\right] \leadsto k\left[t, t^{-1}\right], \quad s \mapsto t^{-1} .
$$

Now let E be an m-dimensional vectorbundle over \mathbb{P}_{k}^{1} defined over k_{1} and let $\mathbb{A}^{m}=\operatorname{Spec}\left(k\left[X_{1}, \ldots, X_{m}\right]\right)$. Then $\left.E\right|_{U_{i}}, i=1,2$, is trivial, i.e. $\left.E\right|_{U_{i}} \simeq U_{i} \times \mathbb{A}^{m}$, so that E can be viewed (up to isomorphism) as obtained by glueing together $U_{1} \times \mathbb{A}^{m}$ and $U_{2} \times \mathbb{A}^{m}$ by identifying $U_{1} \backslash\{0\} \times \mathbb{A}^{m}$ and $U_{2} \backslash\{0\} \times \mathbb{A}^{m}$ by means of an isomorphism of the form

$$
\begin{equation*}
(s, v) \mapsto\left(s^{-1}, A\left(s, s^{-1}\right) v\right) \tag{2.1}
\end{equation*}
$$

where $A\left(s, s^{-1}\right)$ is a matrix with coefficients in $k\left[s, s^{-1}\right]$ which has nonzero determinant for all $s \neq 0, s^{-1} \neq 0$. This last fact means that

$$
\begin{equation*}
\operatorname{det}\left(A\left(s, s^{-1}\right)\right)=s^{n}, \quad n \in \mathbb{Z} \tag{2.2}
\end{equation*}
$$

A vectorbundle automorphism of $U_{1} \times \mathbb{A}^{m}$ is necessarily of the form $(s, v) \rightarrow$ $(s, U(s) v)$ where $U(s)$ is a matrix with coefficients in $k[s]$ with $\operatorname{det} U(s) \in k \backslash\{0\}$ and similarly an automorphism of $U_{2} \times \mathbb{A}^{m}$ is given by a matrix $V\left(s^{-1}\right)$ with coefficients in $k\left[s^{-1}\right]$ with determinant in $k \backslash\{0\}$. Different trivializations of $\left.E\right|_{U_{i}}$ differ by an automorphism of $U_{i} \times \mathbb{A}^{m}$. It follows that

Proposition 2.3. Isomorphism classes of m-dimensional algebraic vectorbundles over \mathbb{P}_{k}^{1} correspond bijectively to equivalence classes of polynomial $m \times m$ matrices $A\left(s, s^{-1}\right)$ over $k\left[s, s^{-1}\right]$ such that $\operatorname{det} A\left(s, s^{-1}\right)=s^{n}, n \in \mathbb{Z}$ where the equivalence relation is the following: $A\left(s, s^{-1}\right) \sim A^{\prime}\left(s, s^{-1}\right)$ iff there exist polynomial invertible $m \times m$ matrices $U(s), V\left(s^{-1}\right)$ over $k[s]$ and $k\left[s^{-1}\right]$ respectively with constant determinant such that

$$
\begin{equation*}
A^{\prime}\left(s, s^{-1}\right)=V\left(s^{-1}\right) A\left(s, s^{-1}\right) U(s) \tag{2.4}
\end{equation*}
$$

3. A canonical form for matrices over $k\left[s, s^{-1}\right]$

Now let us study canonical forms for $m \times m$ matrices over $k\left[s, s^{-1}\right]$ under the equivalence relation defined in Proposition 2.3 above. The result is

Proposition 3.1. Let $A\left(s, s^{-1}\right)$ be an $m \times m$ matrix over $k\left[s, s^{-1}\right]$ with determinant equal to s^{n} for some $n \in \mathbb{Z}$. Then there exist polynomial $m \times m$ matrices $V\left(s^{-1}\right)$ and $U(s)$ with constant nonzero determinant such that

$$
V\left(s^{-1}\right) A\left(s, s^{-1}\right) U(s)=\left(\begin{array}{lllll}
s^{r_{1}} & & & 0 \tag{3.2}\\
& s^{r_{2}} & & \\
& & \ddots & \\
& & & \\
0 & & & s^{r_{m}}
\end{array}\right)
$$

with $r_{1} \geq r_{2} \geq \cdots \geq r_{m}, r_{i} \in \mathbb{Z}$. The r_{i} are uniquely determined by $A\left(s, s^{-1}\right)$. Moreover if $A\left(s, s^{-1}\right)$ is polynomial in s then $r_{i} \geq 0, i=1, \ldots, m$, and if $A\left(s, s^{-1}\right)$ is polynomial in s^{-1} then $r_{i} \leq 0, i=1, \ldots, m$.

Proof. Let's prove uniqueness first. Write $D\left(r_{1}, \ldots r_{m}\right)$ for the matrix on the right in (3.2). Suppose there were two such matrices equivalent to $A\left(s, s^{-1}\right)$. Then there would be polynomial matrices with constant nonzero determinant $U(s), V\left(s^{-1}\right)$ such that

$$
V\left(s^{-1}\right) D\left(r_{1}, \ldots, r_{m}\right)=D\left(r_{1}^{\prime}, \ldots, r_{m}^{\prime}\right) U(s)
$$

If A is a matrix let

$$
A_{j_{1}, \ldots, j_{k}}^{i_{1}, \ldots, i_{k}}
$$

denote the minor of A obtained by taking the determinant of the submatrix of A obtained by removing all rows with index in $\{1, \ldots, m\} \backslash\left\{i_{1}, \ldots, i_{k}\right\}$ and all columns with index in $\{1, \ldots, m\} \backslash\left\{j_{1}, \ldots, j_{k}\right\}$. Then of course

$$
(A B)_{j_{1}, \ldots, j_{k}}^{i_{1}, \ldots, i_{k}}=\sum_{r_{1}<\ldots<r_{k}} A_{r_{1}, \ldots, r_{k}}^{i_{1}, \ldots, i_{k}} B_{j_{1}, \ldots, j_{k}}^{r_{1}, \ldots, r_{k}} .
$$

Using this on the equality $V\left(s^{-1}\right) D\left(r_{1}, \ldots, r_{m}\right)=D\left(r_{1}^{\prime}, \ldots, r_{m}^{\prime}\right) U(s)$ one finds that

$$
\begin{equation*}
V_{i_{1}, \ldots, i_{k}}^{1,2, \ldots, k}\left(s^{-1}\right) s^{r_{1}+\cdots+r_{i_{k}}}=s^{r_{1}^{\prime}+\cdots+r_{k}^{\prime}} U_{i_{1}, \ldots, i_{k}}^{1,2,{ }_{2}}(s) \tag{3.3}
\end{equation*}
$$

for all $i_{1}<\cdots<i_{k}$. Now for some i_{1}, \ldots, i_{k},

$$
U_{i_{1}, \ldots, i_{k}}^{1,2, \ldots, k}(s) \neq 0
$$

Hence $r_{1}^{\prime}+\cdots+r_{k}^{\prime} \leq r_{i_{1}}+\cdots+r_{i_{k}}$ for some $i_{1}<\cdots<i_{k}$, and hence certainly $r_{1}^{\prime}+\cdots+r_{k}^{\prime} \leq$ $r_{1}+\cdots+r_{k}$ for all k. Multiplying with $V\left(s^{-1}\right)^{-1}$ on the left and $U(s)^{-1}$ on the right in $V\left(s^{-1}\right) D\left(r_{1}, \ldots, r_{m}\right)=D\left(r_{1}^{\prime}, \ldots, r_{m}^{\prime}\right) U(s)$ and repeating the argument gives $r_{1}+\cdots+r_{k} \leq$ $r_{1}^{\prime}+\cdots r_{k}^{\prime}$ for all k and hence $r_{i}=r_{i}^{\prime}, i=1, \ldots, m$.

It remains to prove existence. First multiply $A\left(s, s^{-1}\right)$ with a suitable power s^{n}, $n \in \mathbb{N} \cup\{0\}$ to obtain a polynomial matrix $B(s)$. Then by post multiplication with a suitable $U(s)$ (column operations) we can find a $B^{\prime}(s)$ with $b_{11}^{\prime} \neq 0$ and $b_{1 i}^{\prime}=0$, $i=2, \ldots, m$ (b_{11}^{\prime} is the greatest common divisor of $b_{11}, \ldots, b_{1 m}$). Of course $b_{11}^{\prime}=s^{k_{1}}$ for some $k_{1} \in \mathbb{N} \cup\{0\}$ because $\operatorname{det} B(s)$ is a power of s. Let B_{2} be the lower-right $(m-1) \times(m-1)$ submatrix of B. By induction we can assume that the proposition holds for $(m-1) \times(m-1)$ matrices. (The case $m=1$ is trivial). So there are $U_{2}(s), V_{2}\left(s^{-1}\right)$ such that $V_{2}\left(s^{-1}\right) B_{2} U_{2}(s)$ is of the form of the right hand side of (3.2). Then

$$
C(s)=\left(\begin{array}{cc}
1 & 0 \tag{3.4}\\
0 & V_{2}
\end{array}\right) B\left(\begin{array}{cc}
1 & 0 \\
0 & U_{2}
\end{array}\right)=\left(\begin{array}{cccc}
s^{k_{1}} & 0 & \cdots & 0 \\
c_{2} & s^{k_{2}} & & 0 \\
. & & \ddots & \\
. & 0 & \ddots & \\
c_{m} & & & s^{k_{m}}
\end{array}\right)
$$

for certain $k_{1}, k_{2}, \ldots, k_{m} \in \mathbb{N} \cup\{0\}$ (same k_{1} as before) and $c_{i} \in k\left[s, s^{-1}\right], i=2, \ldots, m$. Subtracting suitable $k\left[s^{-1}\right]$ multiplies of the first row from rows $2, \ldots, m$ (which is premultiplication with a $V\left(s^{-1}\right)$) we can moreover see to it that $c_{i} \in k[s]$.

Now consider all polynomial matrices of the form (3.4) which are equivalent to $B(s)$. Choose one for which k_{1} is maximal. Such a one exist because $k_{1} \leq$ degree (det $B(s)$) because $k_{2}, \ldots, k_{m} \geq 0$. We claim that then $k_{1} \geq k_{i}, i=2, \ldots, m$. Indeed suppose that $k_{1}<k_{i}$. Subtracting a suitable $k\left[s^{-1}\right]$ multiple of the first row from the i-th row we find a matrix (3.4) with $c_{i}=s^{k_{1}+1} c^{\prime}(s)$. Now interchange the first and the i-th row to find a polynomial matrix $B^{\prime}(s)$ such that the greatest common divisor of its first row elements is $s^{k_{1}^{\prime}}$ with $k_{1}^{\prime} \geq k_{1}+1$. Now apply to $B^{\prime}(s)$ the same procedure as above to $B(s)$. This would give a $C^{\prime}(s)$ of the form (3.4) with $k_{1}^{\prime}>k_{1}$, a contradiction. We can therefore assume that in (3.4) $k_{1} \geq k_{i}, c_{i} \in k[s], i=2, \ldots, m$. Subtracting suitable $k[s]$-multiples of the 2 -nd, \ldots, m-th columns from the first one we find a matrix (3.4) with degree $\left(c_{i}\right) \leq k_{i}$. But then $\operatorname{deg}\left(c_{i}\right)<k_{1}$ so that a suitable $k\left[s^{-1}\right]$ multiple of $s^{k_{1}}$ is equal to c_{i} so that a further premultiplication with a $V\left(s^{-1}\right)$ gives us a matrix (3.4) with $c_{2}=\cdots=c_{m}=0$. This proves the first half of the last part of the statement of the proposition and shows that there are $k_{1}, \ldots, k_{n} \in \mathbb{N} \cup\{0\}$, $k_{1} \geq \cdots \geq k_{m}$ (by permuting columns and rows if necessary) and $U(s), V\left(s^{-1}\right)$ of constant nonzero determinant such that

$$
V\left(s^{-1}\right) s^{n} A\left(s, s^{-1}\right) U(s)=V\left(s^{-1}\right) B(s) U(s)=D\left(k_{1}, \ldots, k_{m}\right) .
$$

Multiplying with s^{-n} gives $V\left(s^{-1}\right) A\left(s, s^{-1}\right) U(s)=D\left(r_{1}, \ldots, r_{m}\right)$ with $r_{i}=k_{i}-n$. The second half of the last statement of the proposition is proved as the first half starting with a matrix $B\left(s^{-1}\right)$ and using row (resp. column) operations everywhere where we used column (resp. row) operations above. This concludes the proof of Proposition 3.1.

4. Classification of vectorbundles over $\mathbb{P}_{\boldsymbol{k}}^{1}$

Let $O(n), n \in \mathbb{Z}$ be the line bundle over \mathbb{P}_{k}^{1} defined by the glueing matrix $A\left(s, s^{-1}\right)=s^{-n}$. Obviously then the bundle defined by the glueing matrix $A\left(s, s^{-1}\right)=D\left(r_{1}, \ldots, r_{m}\right)$ is equal to the direct sum $O\left(-r_{1}\right) \oplus \cdots \oplus O\left(-r_{m}\right)$.

Theorem 4.1. Let E be an algebraic m-dimensional vectorbundle over \mathbb{P}_{k}^{1} which is defined over k. Then E is isomorphic over k to a direct sum of line bundles

$$
E \simeq O\left(\kappa_{1}\right) \oplus \cdots \oplus O\left(\kappa_{m}\right), \quad \kappa_{1} \geq \cdots \geq \kappa_{m}, \quad \kappa_{i} \in \mathbb{Z} . i=1, \ldots, m,
$$

and the κ_{i} are uniquely determined by the isomorphism class of E.
Remarks 4.2. It is perhaps worth remarking that E is positive (meaning that all the $\left.\kappa_{i}(E) \geq 0\right)$ if the glueing matrix $A\left(s, s^{-1}\right)$ is polynomial in s^{-1} and that E is negative (i.e. $\kappa_{i}(E) \leq 0$ all i) if $A\left(s, s^{-1}\right)$ is polynomial in s. This follows from the last statement of Proposition 3.1. Also E contains a summand $O(n)$ with $n>0$ if $\operatorname{deg}\left(\operatorname{det} A\left(S, s^{-1}\right)\right)<0$. Finally it follows that vectorbundles over \mathbb{P}_{k}^{1} have no forms, i.e. if E and E^{\prime} are two vectorbundles over k which become isomorphic over the algebraic closure \bar{k} of k then E and E^{\prime} are also isomorphic over k. This can of course also be seen by other, more sophisticated, means (e.g. Galois cohomology).

References

[1] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957) 121-138.
[2] J.-P. Serre, Géometrie algébrique et géometrie analytique, Annales Inst. Fourier 6 (1956) 1-42.

[^0]: * This work was done in part while the first author was visiting Case Institute of Technology.
 ** Supported in part by NASA Grant \#2384, ONR Contract \# N00014-80C-0199 and DOE Contract \#DE-AC01-80RA5256.

