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Let E be an algebraic (or holomorphic) vectorbundle over the Riemann sphere IP 1(1C). Then 

Grothendieck proved that E splits into a sum of line bundles E =(£) L; and that the isomorphism 

classes of the L; are (up to order) uniquely determined by E. The L; in turn are classified by an 

integer (their Chern numbers) so that m-dimensional vectorbundles over IP 1(1C) are classified by 

an m-tuple of integers 

In this short note we present a completely elementary proof of these facts which, as it turns out, 

works over any field k. 

1. Introduction 

Let E be a holomorphic (or algebraic) vectorbundle over the Riemann sphere 

fP 1(1C). (By [2] holomorphic and algebraic vectorbundles over IP 1(1C) amount to the 

same thing). In [1] Grothendieck proved that E splits into a sum of line bundles 

E = (f) L; and that the isomorphism classes of the L; are (up to order) uniquely 

determined by E. The line bundles L; in turn are classified by an integer (their first 

Chern number) so that m-dimensional vectorbundles over /P 1(1C) are classified by an 

m-tuple of integers 

K(E) = (K1 (£), .. ., Km(E)), K1 (£)?. ···?. Km(E), K; E £.. 
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Below we give a completely elementary proof of these facts, which, as it turns out, 

works over any field k. Of course 'completely elementary' means that such concepts 

as 'degree of a line bundle' or 'first Chern number' or 'cohomology' or 'intersection 

number' are not needed or mentioned below. All we use is some linear algebra (or 

matrix manipulation). 

2. Vectorbundles over rPl 

Let k be any field. The projective line rP1 over k can be obtained as follows. Let 

U1 = Spec(k[s]), U2 = Spec(k[t]), U12 = Spec(k[s,s-1])= U1 \ {O}, U21 = Spec(k[t, t- 1])= 
I 

U2\{0}. Now glue U1 and U2 together by identifying U12 and U21 by means of the 

isomorphism 

k[s,s- 1r=•k[t,t- 1], s-t-1• 

Now let E be an m-dimensional vectorbundle over 1Pl defined over k1 and let 

Am=Spec(k[Xi. ... ,XmD· Then Eiu;' i= 1,2, is trivial, i.e. Eiu;"'" U;xAm, so that E 
can be viewed (up to isomorphism) as obtained by glueing together U1 x Am and 

U2 x Am by identifying U1 \ { 0} x Am and U2 \ { 0} x Am by means of an isomorphism 

of the form 

(2.1) 

where A(s,s- 1) is a matrix with coefficients in k[s,s- 1] which has nonzero 
determinant for all s:;t:O, s-1:;t:O. This last fact means that 

(2.2) 

A vector bundle automorphism of U1 x Am is necessarily of the form (s, v )--7 

(s, U(s)v) where U(s) is a matrix with coefficients in k[s] with det U(s) Ek\ {O} and 

similarly an automorphism of U2 x Am is given by a matrix V(s- 1) with coefficients 

in k[s- 1] with determinant ink\ {O}. Different trivializations of Eiu; differ by an 
automorphism of U;X Am. It follows that 

Proposition 2.3. Isomorphism classes of m-dimensional algebraic vectorbundles 
over rP1 correspond bijectively to equivalence classes of polynomial m x m matrices 
A(s,s- 1) over k[s,s- 1] such that det A(s,s- 1) =sn, n E "1L where the equivalence 

relation is the following: A(s,s- 1)-A'(s,s- 1) if! there exist polynomial invertible 

m x m matrices U(s), V(s- 1) over k[s] and k[s- 1] respectively with constant 
determinant such that 

(2.4) 
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3. A canonical form for matrices over k[s, s-11 

Now let us study canonical forms for m x m matrices over k[s,s-1] under the 

equivalence relation defined in Proposition 2.3 above. The result is 

Proposition 3.1. Let A(s,s-1) be an m xm matrix over k[s,s- 1] with determinant 

equal to sn for some n E "11... Then there exist polynomial m x m matrices V(s- 1) and 

U(s) with constant nonzero determinant such that 

0 
s'z 

(3.2) 

0 

with r1?:. r2?:. · .. ?:. r m• r; e "11... The r; are uniquely determined by A(s,s-1). Moreover if 
A (s, s-1) is polynomial in s then r;?:. 0, i = 1, ... , m, and if A (s, s-1) is polynomial in 

s- 1 then r;SO, i=l, ... ,m. 

Proof. Let's prove uniqueness first. Write D(r1> ... rm) for the matrix on the right in 

(3.2). Suppose there were two such matrices equivalent to A(s,s- 1). Then there 

would be polynomial matrices with constant nonzero determinant U(s), V(s- 1) such 

that 

If A is a matrix let 

Ai_1·····ik 
J,, ... ,jk 

denote the minor of A obtained by taking the determinant of the submatrix of 

A obtained by removing all rows with index in {1, ... ,m}\{i1, ••• ,ik} and all 

columns with index in { l, ... , m} \ {j 1, ... , j k}. Then of course 

(AB)i.1, ... ,ik = " Ai1·····;k Br1,.·-.'k. 
J1,.-- 0 Jk £... 'I"'" 'k 11• ··-.lk 

'1<···<rk 

Using this on the equality V(s- 1)D(ri. ... , r m) =D(r;, ... , r:n)U(s) one finds that 

for all i 1 < ... < ik. Now for some ii> ... , ik, 

u .. 1.2, .. ,,k(s) * 0. 
1l• .•. ' 1k 

(3.3) 

Hence r; + ... + rk-s r;1 + ... + r;Jor some i 1 < ... < ik, and hence certainly r; + ... + rk-s 

r1 + ... + rk for all k. Multiplying with V(s- 1)- 1 on the left and U(s)- 1 on the right in 

V(s-1)D(r1> ... , rm) =D(r;, ... , r:n)U(s) and repeating the argument gives r1 + ... + rks 

r; + ... rk- for all k and hence r;=r;, i= l, ... ,m. 
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It remains to prove existence. First multiply A(s, s- 1) with a suitable power s 

n E rN U {O} to obtain a polynomial matrix B(s). Then by post multiplication with 

suitable U(s) (column operations) we can find a B'(s) with bi 1:;t:O and bi;=I 

i = 2, ... , m (bi 1 is the greatest common divisor of b l I• ••• , b1m). Of course bi 1 =ski f< 
some k 1 E rN U {O} because det B(s) is a power of s. Let B2 be the lower-rig! 
(m -1) x (m-1) submatrix of B. By induction we can assume that the propositic 
holds for (m -1) x (m -1) matrices. (The case m = 1 is trivial). So there a 
U2(s), Vi(s- 1) such that V2(s- 1)B2 U2(s) is of the form of the right hand side of (3.2 

Then 
sk1 0 0 

0 )B(1 ZJ= 
C2 sk2 0 

C(s)= (~ (3.· 
Vz 0 0 

Cm skm 

for certain kl> k2, ••• , km E rN U {O} (same k 1 as before) and c; E k[s,s- 1], i = 2, ... , r. 
Subtracting suitable k[s- 1] multiplies of the first row from rows 2, ... , m (which 

premultiplication with a V(s- 1)) we can moreover see to it that C;Ek[s]. 
Now consider all polynomial matrices of the form (3.4) which are equivalent 1 

B(s). Choose one for which k 1 is maximal. Such a one exist because k 1s;degn 
(detB(s)) because k 2, ••• ,km?.0. We claim that then k 1?.k;, i=2, ... ,m. Inde( 
suppose that k 1 < k;. Subtracting a suitable k[s- 1] multiple of the first row from tl 
i-th row we find a matrix (3.4) with c;=sk1 + 1c'(s). Now interchange the first and tl 
i-th row to find a polynomial matrix B'(s) such that the greatest common divisor 1 

its first row elements is sk; with k;?. k 1 + 1. Now apply to B'(s) the same procedure• 

above to B(s). This would give a C'(s) of the form (3.4) with k; > k 1, a contradictio 

We can therefore assume that in (3.4) k 1??.k;, C;Ek[s], i=2,. .. ,m. Subtracti1 
suitable k[s)-multiples of the 2-nd, ... , m-th columns from the first one we find 

matrix (3.4) with degree (c;)-:::;, k;. But then deg(c;) < k 1 so that a suitable k[s­
multiple of sk1 is equal to c; so that a further premultiplication with a V(s- 1) gives 1 

a matrix (3 .4) with c2 = · · · = cm = 0. This proves the first half of the last part of tl 
statement of the proposition and shows that there are k 1,. • .,knErNU{O 
k 1?. ... ?.km (by permuting columns and rows if necessary) and U(s), V(s- 1) 

constant nonzero determinant such that 

V(s- 1)snA(s,s-1 )U(s) = V(s- 1)B(s)U(s) =D(k1' ... , km). 

Multiplying with s-n gives V(s- 1)A(s,s- 1)U(s) =D(rl> ... ,rm) with r;=k;-n. T 

second half of the last statement of the proposition is proved as the first half starti1 
with a matrix B(s- 1) and using row (resp. column) operations everywhere whe 
we used column (resp. row) operations above. This concludes the proof of Propo. 
tion 3.1. 
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4. Classification of vectorbundles over rP1 

Let O(n), n E "1L be the line bundle over rP1 defined by the glueing matrix 

A(s,s-1) =s-n. Obviously then the bundle defined by the glueing matrix 

A(s, s-1) =D(r1> ... , r m) is equal to the direct sum 0(-r1) c±l ···c±l 0(-r m). 

Theorem 4.1. Let Ebe an algebraic m-dimensional vectorbundle over IP1 which is 

defined over k. Then Eis isomorphic over k to a direct sum of line bundles 

E=O(Ki)c±l···c±JO(Km), K1~···~Km, K;E"lL. i=l, ... ,m, 

and the K; are uniquely determined by the isomorphism class of E. 

Remarks 4.2. It is perhaps worth remarking that Eis positive (meaning that all the 

K;(E)~O) if the glueing matrix A(s,s- 1) is polynomial in s- 1 and that Eis negative 

(i.e. K;(E) s 0 all i) if A(s, s-1) is polynomial in s. This follows from the last 

statement of Proposition 3 .1. Also E contains a summand O(n) with n > 0 if 

deg(det A(S, s- 1)) < 0. Finally it follows that vectorbundles over IP1 have no forms, 

i.e. if E and E' are two vectorbundles over k which become isomorphic over the 

algebraic closure/( of k then E and E' are also isomorphic over k. This can of course 

also be seen by other, more sophisticated, means (e.g. Galois cohomology). 
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