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Abstract. We give a survey of some recent developments on 
bounds for permanents (Falikman-Egorychev, Voorhoeve, Bang, 
Bregman) , and show some related results on counting 1-factors 
(perfect matchings), 1-factorizations (edge-colourings), and 
eulerian orientations of graphs. 

1. INTRODUCTION. 

The permanent of a square matrix A n 
(aijli,j=l is given by: 

( 1) per A 

where Sn denotes the collection of all permutations of {1, ••. ,n}. 

Despite its appearance as the simpler twin-brother of the determinant 

function, the permanent turns out to be much less tractable. Whereas a 

determinant can be calculated quickly (in polynomial time, with Gaussian 

elimination), determining the permanent is difficult ("number-P-complete" 

- see Valiant [27]). As yet, its algebraic behaviour appeared to a large 

extent unmanageable, and its algebraic relevance moderate. 

Most interest in permanents came from the famous Van der Waerden con

jecture on the minimum permanent of doubly stochastic matrices (see below). 

This conjecture was unsolved for more than fifty years, which, as contrast

ed with its simple form, also contributed to the image of intractability 

of permanents. Recently, Falikman and Egorychev were able to prove this 

conjecture, using a classical inequality of Alexandroff and Fenchel. The 

proof with eigenvalue techniques also revealed some unexpected nice al

gebraic behaviour of the permanent function. 

In fact, lower and upper bounds form a field where a large part of 

the successes in controlling permanents have been obtained, also by the 
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work of, e.g., Bang, Bregman and Voorhoeve. In this paper we discuss some 

of the bounds for the permanent function, and for the related numbers of 

1-factors and 1-factorizations of bipartite graphs. Especially, we survey 

some recent work in this field. 
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The book by Mine [21] gives an excellent survey of what is known on 

permanents until 1978. Van Lint [15] gave a survey of bounds on permanents 

known in 1974. For some more historical remarks, see Van Lint [17]. 

In this introduction we first give a brief survey. 

Van der Waerden's conjecture. In 1926 Van der Waerden [30] posed the follow

ing conjecture: if A is a doubly stochastic matrix of order n, then 

(2) perA ~ n!/nn, 

and equality only holds for A = .!.J (J being the all-one matrix). A matrix 
n 

is doubly stochastic if it is nonnegative and all row and column sums are 1. 

As the permanent function is not convex, the Kuhn-Tucker theory 

(Lagrange multipliers) yields only necessary conditions for the doubly 

stochastic matrices minimizing the permanent. The conjecture raised a 

stream of research, especially during the last twenty years. In 1978, as 

a prelude, the lower bound of e-n was proved by Bang [2] and Friedland [10], 

which bound is asymptotically equal to Van der Waerden's conjectured 

lower bound n!/nn, by Stirling's formula. Ultimately in 1979 and 1980, 

Falikman [8] and Egorychev [6] published proofs of Van der Waerden's 

conjecture. 

The basis for their proofs is a permanent inequality, which is a 

special case of an inequality for "mixed volumes" of convex bodies, found 

in the thirties by Fenchel [9] and Alexandroff [1] (cf. Busemann [S]). Let 

B be an nx(n-2)-matrix, and let x and y be column vectors of length n. If B 

and x are nonnegative, then 

(3) per2 (B,x,y) ~ per(B,x,x) .per(B,y,y). 

(This can be seen to be equivalent to: the function x--+lper(B,x,x) is 

concave on the nonnegative orthant.) The inequality (3) can be proved 

directly with an interesting eigenvalue technique ([12],[16]). 

On the other hand, Marcus and Newman [19] and London [18] had shown 
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that if A is a minimizing matrix (i.e. a doubly stochastic matrix minimizing 

the permanent), then perA .. 2'perA for each (n-l)X(n-1)-minor A .. of A. Hence, 
J.J l.J 

if (B,x,y) is a' minimizing matrix, then per(B,x,y) ~per(B,x,x) and per(B,x,y) 

~ per(B,y,y) (as we can expand these permanents by the last columns, just 

like determinants, but without sign problems). Therefore, by (3), we have 

per(B,x,y) = per(B,x,x) = per(B,y,y). This implies 

(4) per (B, \x+\y, \x+i.iy) =!,;per (B,x,x) +~per (B,x,y) +i.per (B,y ,y) 

per(B,x,y) 

(using the fact that the permanent is linear in the columns). Since the 

matrix (B,!ix+liy,lix+~y) is doubly stochastic, by (4) it is minimizing again. 

If we assume that we have chosen the matrix (B,x,y) so that the sum of its 

squared components (i.e., Tr((B,x,y)T (B,x,y))) is as small as possible, it 

follows that x=y (as Tr((B,\x+liy,lix+~y)T(B,\x+liy,lix+\y)) ~Tr((B,x,y)T(B,x,y)) 

with equality iff x=y). As the columns x and y were chosen arbitrarily, 

we know that all columns of (B,x,y) are equal, that is, it is .!.J. 
1 n 

By extending these methods Egorychev proved that nJ is the only mini-

mizing matrix. In Section 2 we describe a complete proof of van der Waerden's 

conjecture, where we have benefitted by the presentations of Knuth [12] and 

Van Lint [16,17]. 

Permanents combinatorially. The permanent can be put in a more combinatorial 

context as follows. For natural numbers k and n, denote 

(5) the set of all nonnegative integral nxn-matrices with all 

line sums equal to k 

(lines are rows and columns). Then Falikman and Egorychev's lower bound is 

equivalent to: 

(6) if A E fl.k then perA 
n 

k 1 n 1 n, n 
Indeed, if AE!i.n' kA is doubly stochastic, and hence perA=k per(it')~k n./n -

Conversely, 
1 

any rational doubly stochastic matrix of order n is equal to 

i{" for some k and some 
k 1 -n , n 

AE!i.n. Then (6) gives perCJtl =k perA~n./n. So 

n!/nn is a lower bound for rational doubly stochastic matrices, and hence, 
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by continuity, it is a lower bound for all doubly stochastic matrices. 

To obtain a more combinatorial interpretation, if A is in Ak, we can 
n 

construct the 

ing vi and wj 

the permanent 

bipartite graph G with vertices v 1, ... ,vn,w1, ... ,wn, connect

by a .. (possibly parallel) edges. Then G is k-regular, and 
l.) 

of A is equal to the number of perfect matchings in G. 

In 1968, Erdos and Renyi [7] published the following conjecture, weaker 

than Van der Waerden's conjecture: 

(7) there is an e:>O such that if Ao;:Ak with k<=3, then perA <: (l+e:)n. 
n 

This conjecture is implied by Van der Waerden's conjecture through (6), as 

(k/n)nn! <: (k/e)n by Stirling's formula. 

The Erdos-Renyi conjecture was proved in 1978 independently by Voorhoeve 

[29] and by Bang [2] and Friedland [10]. As mentioned before, Bang and 

Friedland showed that perA <: e -n for each doubly stochastic matrix A of 

order n, and hence perA<= (k/e)n for each AE Ak. This shows (7). 
n 

Voorhoeve showed: 

In other words, any 3-regular bipartite graph with 2n vertices has at 

least (4/3)n perfect matchings. Or: if A is a doubly stochastic matrix 

of order n, with all components a multiple of 1/3, then perA<= (4/9)n. 

Asymptotically, for n+co, this is better than Falikman and Egorychev's 

and Bang and Friedland's lower bounds ((3/e)n). The best lower bound 

for permanents of matrices in A3 found before Voorhoeve's result was 
n 

3n-2 (Hartfiel and Crosby [11]). With Konig's theorem (see Remark 1 be-

low) (8) implies that perA <: (4/3) n for all A E Ak, k <: 3, and hence the 
n 

Erdos-Renyi conjecture follows. 

In [26] it has been shown that the ground number 4/3 in (8) is best 

possible. More generally, let f(k) be the highest possible number such 

that per A <= f (k) n for all A E A k. Then 
n 

(9) f(k) 

Note that by Bang's result, f(k) ~k/e, and by Voorhoeve's result, f(3) ~ 

4/3. The latter bound combined with (9) gives f(3) = 4/3. Trivially we 
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have f(l) = f(2) = 1. It is conjectured in [26] that equality holds in (9) 

for every k. That is: 

(10) 
k-1 

(Conjecture) if A€ Ak then perA~ ((k-l) jn 
n kk-2 · 

This conjecture would give a bound asymptotic for k fixed and n + "', while 

Falikman and Egorychev's lower bound, in the form (6), is asymptotic for 

n fixed, k + "'. Conjecture ( 10) implies a better lower bound for permanents 

of doubly stochastic matrices with all components being a multiple of l/k. 

Voorhoeve's method consists of a clever induction trick, which it is 

tempting to generalize to values of k ~ 4. However, in this direction no 

significant progress has been made as yet. 

For a more extensive discussion of Voorhoeve's result and best lower 

bounds, see Section 3. 
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Bang's method and edge-colourings. The method of Bang [2] gives rise to some 

further graph-theoretic considerations. 

Suppose you have given the first lesson of a course on graph theory. 

You have explained Euler's result on the existence of eulerian orientations, 

and you have given the definitions of regular and bipartite graphs, and of 

perfect matchings. Now as homework you ask: show that each 64-regular bi

partite graph has a perfect matching. Is this a reasonable question for 

your students, whom you do not expect to discover for themselves the Konig

Hall theorem? 

Yes, it is. They know that the 64-regular bipartite graph has an euler

ian orientation. By deleting the edges oriented from the "red" points to 

the "blue" points, and by forgetting the orientation of the other edges, we 

are left with a 32-regular bipartite graph. By the same reasoning this 32-

regular graph has a 16-regular spanning subgraph. And so on, until we have 

a 1-regular spanning subgraph, which is a perfect matching. 

This idea can be extended from the existence of perfect matchings to 

counting perfect matchings, and also to counting 1-factorizations of reg

ular bipartite graphs ([24]). This last can be seen as the graph-theoretic 

interpretation of the ideas, in matrix language, of Bang, which have led 

to his lower bound e-n 

It also leads to the following. In [24] it is conjectured that if G 

is a k-regular bipartite graph with 2n points, then 
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(11) 
2 k n (Conjecture) G has at least (k! /k ) 1-factorizations. 

By an averaging argument it can be shown that the ground number in (11), as 

a function of k, cannot be higher. Moreover, using the ideas described above, 

and using Voorhoeve's lower bound, it can be shown that (11) is true if k 

has no other prime factors than 2 and 3. 

These results are described more extensively in Section 4. 

Bregman's upper bound. Now we turn to upper bounds. It is easy to see that 

the maximum permanent over the doubly stochastic matrices is 1, which is 

attained, exclusively, by the permutation matrices. Similarly, the maximum 

permanent over matrices in Ak is equal to kn. 
n 

The problem becomes more difficult if we go over to a further discret-

ization. In 1963, Mine [20] posed as a conjecture: 

(12) if A is a square (0,1)-matrix of order n, with row sums r 1 , ... ,rn' 

then 

In 1973, Bregman [4] found a proof for this conjecture, using ideas from 

convex programming, and some theory of doubly stochastic matrices. In [23] 

a shorter proof was given, using elementary counting and the convexity of 

the function xlogx. 

(13) 

Note that (12) implies that 

ifAEAkandAis (0,1), thenperA:O:(k!l/k)n 
n 

The ground number here can be easily seen to be asymptotically best possible 

(for fixed k). 

The proof of Bregman's upper bound is given in Section 5. 

Eulerian orientations. Finally, as a further illustration of the methods, 

we consider bounds for the number of eulerian orientations of undirected 

graphs. Let G = (V,E) be a loopless, 2k-regular undirected graph, with lvl 
= n and IEI m. Let E(G) denote the number of eulerian orientations of G. 

Let B be the nxm-incidence matrix of G, and let A be the mxm-matrix obtained 

from B by repeating each row k times. Then one easily sees: 
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e:(G)-~ 
- k!n • 

Now it can be shown that 
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The upper bound can be derived straightforwardly from Bregman's bound (12) 

using (14). The lower bound in (15) is better than the one derived with 

(14) from the conjectured lower bound (10). 

It can be shown moreover that the ground numbers in (15) are best 

possible. These results are described further in Section 6. 

Throughout this paper, n denotes the order of the matrix in question. 

Furthermore, if the matrix A is given, A .. denotes the minor of A obtained 
l.J 

by deleting the i-th row and the j-th column of A. 

REMARK 1. We here remark the following well-known facts. 

(16) Doubly stochastic matrices minimizing the permanent exist. 

This follows of course from the compactness of the set of doubly stochastic 

matrices, and from the continuity of the permanent function. 

(17) Each doubly stochastic matrix is a convex linear combination of 

permutation matrices. 

Thi5 result of Birkhoff [3] and Von Neumann L22] can be seen by induction 

on n. It suffices to show that each vertex of the polytope of doubly stoch

astic matrices is a convex linear combination of permutation matrices (and 

hence is a permutation matrix itself). Let A= (ai.)~ . 1 be a vertex of 
J J..,J= 

this polytope. Then n2 linearly independent inequalities in the system: 

a .. ;;,o (i,j=l, •.. ,n), I.a .. =1 (j=l, •.• ,n), I.a .. =1 (i=l, .•. ,n), are satis-
l.J l. l.J J l.J 

fied with equality. So A has at least n2-2n+l zeros, and hence at least one 

row has n-1 zeros. So aij = 1 for some i,j. Then Aij is doubly stochastic 

again, and by the induction hypothesis, it is a convex linear combination 

of permutation matrices of order n-1. Therefore, A itself is a convex linear 

combination of permutation matrices of order n. 

(17) implies: 



Schrijver: Bounds on permanents 

(18) perA > O if A is a doubly stochastic matrix; perA ~ 1 if A is in 

Ak. 
n 
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The second assertion is equivalent to a result of Konig [14]: each k-regular 

each A e: Ak there exists an bipartite graph has a perfect matching. So for 

A'e:Ak-l with A' :SA (:S component-wise). Inductively it 
n 

n 
implies that each k-

regular bipartite graph has a k-edge colouring, which is another theorem of 

Konig [ 13]. 

2. FALil<MAN AND EGORYCHEV'S PROOF OF THE VAN DER WAERDEN CONJECTURE. 

Van der Waerden's conjecture (2) was proved by Falikman [8] and 

Egorychev [6] (cf. Knuth [12] and Van Lint [16,17]). The ingredients are 

two results, the first one being a special case of an inequality for "mixed 

volumes" of convex bodies, due to Fenchel [9] and Alexandroff [1] (cf. 

Busemann [5]). 

THEOREM 1 (Alexandroff-Fenchel permanent inequality). If B is a nonnegative 

nx (n-2)-matrix, x and y are column vectors of length n, and x ~ O, then 

( 19) per2 (B,x,y) ~per (B,x,x) .per(B,y ,y). 

If B and x are strictly positive, equality holds in (19) if and only if 

y = >.x for some A. 

PROOF. The proof is by induction on n, the case n=2 being easy. Suppose the 

theorem has been proved for n-1. To prove (19), by continuity we may assume 
n that all components of Band x are positive. Define the matrix Q (q .. ) .. 1 l.J l., J= 

by: 

(20) per(B,e.,e.), 
]. J 

where e. and e. denote the i-th and the j-th column standard basis vectors. 
l. J T 

So per(B,x,y) = x By. 

I. We first show that Q is nonsingular with exactly one positive eigenvalue 

(i.e., it defines a "Lorentz space"). To see that Q is nonsingular, assume 

that Qc = 0, that is: 
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per{B,c,e.) 
J 

0 
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for j = 1, ... ,n. Let B = {C,z), where z is the last column of B (so C is an 

nx (n-3)-matrix). Then for each j = 1, ... ,n: 

(22) 0 
2 

per {C,z,c,ej) ~ per{C,z,z,ej).per{C,c,c,ej). 

The equality here follows from (21), and the inequality from our induction 

hypothesis: as e. is the j-th standard basis vector, the matrices in (22) 
J 

can be replaced by their {j,n)-th minors. 

Since per (C,z,z,e.) > 0 (as C and z are positive), (22) gives that 
J 

per(C,c,c,ej) ,-; 0. As from (21) per{C,z,c,ej) = 0 for all j, we know: 

(23) O=per{C,c,c,z) = "1:' 1 z.per{C,c,c,e.) :S 0. 
lJ= J J 

As z is positive, (23) implies that per(C,c,c,ej) = 0 for all j. Hence the 

inequality in (22) holds with equality, for all j, and therefore, from the 

induction hypothesis, c = !.z for some A. If A of 0 then 0 =per {B, c, e.) = 
J 

/.per(B,z,e.) ;"O {as Band z are positive), which is a contradiction. So A=O 
J 

and hence c = 0. Concluding Qc = 0 implies c = 0, and so Q is nonsingular. 

Now, for each real number µ, let the matrix Qµ be defined by: 

(24) 

{here J denotes the all-one nx{n-2)-matrix). So Q1 = Q. Since µB+{l-µ)J is 

a positive matrix for 0 s µ s 1, we know by the above that Qµ is nonsingular 

for 0 :S µ :S 1. For µ = 0, Qµ is a matrix with zero diagonal and with all off

diagonal components equal to {n-2) !, and so it has exactly one positive 

eigenvalue. Therefore, as the shift of the spectrum of Qµ is continuous in 

µ, also for µ = 1 the matrix Qµ = Q has exactly one positive eigenvalue. 

II. We now prove the theorem. The inequality (19) is equivalent to: 

(25) T 2 T T 
{x Qy) ~ {x Qx) . (y Qy) . 

This inequality holds trivially with equality if x and y are linearly depend

ent. If x and y are linearly independent, the (2-dimensional) linear hull of 
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x and y intersects the ((n-1)-dimensional) linear hull of the eigenvectors 

of Q with negative eigenvalue in a nonzero vector (as Q has n-1 negative 

eigenvalues). Therefore 

(26) (Ax+µy)TQ(A.x+µy) < 0 

for some A,µ not both zero. Since xT Qx per(B,x,x) > 0 (as x> 0), we know 

that µ t- O. We may assume µ = 1. Then the left hand side of ( 26) becomes a 
T 

quadratic polynomial in ;\, with positive main coefficient x Qx, and at 

least one negative value. Hence its discriminant is positive, which means 

that (25) holds, with strict inequality. D 

A second ingredient for the proof of Van der Waerden's conjecture is 

a theorem due to Marcus and Newman [19] and London [18]. 

THEOREM 2. If A is a doubly stochastic matrix minimizing the permanent, 

then perAij ~ perA for each minor Aij of A. 

PROOF. Let A be a minimizing matrix of order n. Consider the directed bi

partite graph G with vertices u 1 , •.. ,un,v1, ... ,vn' and with arcs: 

(27) (i) (ui,vj) iff perAij s perA; 

(ii) (vJ. ,ui.) iff a .. > 0 and perA .. ~ perA. 
l.J l.J 

Assume that, say, perA11 < perA. We first show that then the arc (u1 ,v1) of 

G is not contained in any directed cycle of G. For suppose that c is such 

a cycle. Let e: > O, and 

(28) (i) replace aij by aij+e: if (ui,vj) belongs to c, 

(ii) replace aij by aij-e: if (vj,ui) belongs to c. 

Let As be the matrix arising in this way. Now perAe: is a polynomial in e:, 

and: 
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(29) (s+Ol. 

The coefficient of e: in (29) is negative, by (27) and as perA 11 < perA (the 

first summation is strictly smaller than ~lclperA, and the second summation 

1 
( 
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is at least ~\c\perA). So by choosing E small enough A is doubly stochastic 
E 

with perAE < per A, contradicting that A is minimizing. 

So the arc (u1 ,v1) is not contained in any directed cycle. Let, say, 

v 1 , •.. ,vk,ut+l'"""'un be the points of G which can be reached by a directed 

path from v 1 • So k,t21, and G has no arcs (u.,v.) with i2t+1 and j2k+1, 
1 J 

nor arcs (vj,ui) with j $ k and i $ t. That is: 

(30) (i) if i 2 t+l and j 2 k+l then perA .. > perA; 
1J 

(ii) if i $ t and j $ k then a .. = 0 or perA .. < perA. 
1J 1J 

Now: 

(31) (n-k-t)perA = I. tl. a .. perA .. - l ·<kl· a .. perA .. = 
1> J 1J 1J J- 1 1J 1J 

=(Ii>tlj>kaijperAij-Li::;tlj::;kaijperAij) 2 (Ii>tlj>kaij-Li::;tljskaij)perA= 

= (Ii>tlj aij - lj::;kli aij}perA = (n-k-t)perA. 

Here the inequality follows from 

and l .a .. perA .. = perA for all i 
J 1J 1J 

equal terms in the summations. 

(30). The equalities follow from I.a .. =1 
J 1J 

(and similarly for j), and by crossing out 

Since the first and the last term in (31) are equal, the inequality is 

an equality. Hence, by (30), aij = 0 if i::;; t, j $ k or if i > t, j > k. Therefore, 

all terms in (31) are zero, and hence n = k+t. 

Since k,t2 1 and n = k+t, it follows that k,ts n-1. Hence from (30), 

perAnn>perA>O. So there is a permutation cr of {1, ... ,n-1} with aicr(i) >O 

for i = 1, ..• ,n-1. Ask> (n-tl-1 this implies that a .. >O for at least one 
1J 

pair of i::;; t, j $ k, contradicting what we showed above. D 

(Alternatively, Theorem 2 can be proved using Kuhn-Tucker theory.) 

Combining Theorems and 2 gives the theorem of Falikman and Egorychev. 

THEOREM 3 (Falikman-Egorychev theorem). If A is a doubly stochastic matrix 

of order n, then perA 2 n!/nn. 

PROOF. We first show that if A = (B,x,y) is a doubly stochastic matrix mini

mizing the permanent (where x and y are the last two columns of A), then 

(32) per(B,x,y) per(B,x,x) per(B,y,y). 
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In~eed, by Theorem 2, 

(33) per(B,x,x) = Iixiper(B,x,ei);:: per(B,x,y)Li xi = per(B,x,y). 

Similarly, per(B,y,y) ;:oper(B,x,y). On the other hand, by Theorem 1, 
2 per (B,x,y) :::per(B,x,x)per(B,y,y). Since per(B,x,y) >O (cf. (18)), it 

follows that per(B,x,y) = per(B,x,x) = per(B,y,y). 

(32) implies that: 
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(34) per(B,~x+~y.~x+~y) l.;iper (B,x,x)+~per(B,x,y) +l.iper(B,y ,y) =per (B,x,y). 

Since (B,~x+~y.~x+~y) is doubly stochastic again, it is again minimizing. 

Now suppose we have chosen A such that I .. a~.= TrATA is as small as 
i,J iJ 

possible (this is possible by compactness). Assume A! (1/n)J. Without loss 

of generality, A = (B,x,y) with x ~ y. By the above, the matrix A' := 

(B,~x+~y,~x+~y) is minimizing again. However, Tr(A'TA') <Tr(ATA) (as x ! y), 

contradicting our assumption. 

Therefore, A= (1/n)J, and perA = n!/nn. D 

Extension of these arguments gives the uniqueness of (1/n)J as a mini

mizing matrix. Suppose there exists a doubly stochastic matrix A ! (1/n)J 
n . 

with perA = n!/n • Choose such A with as few zero components as possible. 

If at least n-1 columns of A are strictl~ positive, we can assume that 

A = (B,x,y) with B > 0, x > 0 and x ¥- y. Then from (32) it follows that we 

have equality in (19). Hence by Theorem 1, y =AX for some A. As A is 

doubly stochastic, we have A = 1 and x = y, contradicting our assumption. 

If A has at most n-2 strictly positive columns, we can assume that A 

(B,x,y) is such that not all columns of B are positive, and such that y has 

a zero in at least one coordinate place where x is positive. Then by (34) 

(B,~x+~y,~x+~y) is again a minimizing matrix, distinct from (1/n)J, but 

with fewer zeros than A, contradicting our choice of A. 

3. VOORHOEVE'S BOUND AND BEST LOWER BOUNDS. 

Erdos and Renyi [7] posed in 1968 the following conjecture, weaker than 

Van der Waerden' s conjecture: there exists an e: > 0 such that if A E Ak with 
n 

k;:: 3 then perA:?: (l+e:)n. We recall that Ak denotes the set of nonnegative 
n 
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integral nxn-rnatrices with all line sums equal to k. 

Erdos and Renyi's conjecture was proved independently by Voorhoeve [29] 

and by Bang [2] and Friedland [10]. The latter two showed that perA?: e-n 

for each doubly stochastic matrix of order n. Hence perA = knper((l/k)A) 

?: (k/e)n for A in Ak. For a derivation of this result, see Section 4. 
n 

In this section we focus on Voorhoeve's result, which says that perA 

?: (4/3)n for each A EA 3 . This 
n 

the best one being perA? 3n-2 

improves lower bounds found earlier considerably 

for A E A 3 (Hartfiel and Crosby [ 11]) . 
n 

The 

(35) 

trick of Voorhoeve consists of considering the collection: 

A3 := the collection of nonnegative integral nXn-matrices with 
n 

row sums 2,3, ... ,3 and column sums 2,3, ... ,3. 

-3 n 
He showed that also for matrices A in An one has perA? (4/3) . This stronger 

result turned out to be the key to applying induction. 

THEOREM 4 (Voorhoeve' s bound). If A E A 3 then perA?: (4/3) n. 
n 

n ~3 
PROOF. It is shown that perA? (4/3) for A E An by induction on n. This im-

plies the theorem, as if A E A 3 and B a:ises from A by decreasing one posi

tive entry of A by one, then 
n ~3 
BE A and perA?: perB?: (4/3) n. 

n 
~3 

So let A E f\n. Without loss of generality the first row and the first 

column both have sum 2. There are the following four cases, possibly after 

permuting the columns of A (a,b and c denote column vectors of length n-1). 

(36) (0 1 1 Q ••• 0) I ( ) ( ) 2 ( ) 3 perA = per b = per a,b,D +per a,c,D = per a,b+c,D = 
a c D 

1 4 1 (41 n-1 
3Cper(a,d1 ,D)+per(a,d2 ,D)+per(a,d3'D)+per(a,d4 ,D)) ? 3·4 3J = 

(4/3)n. 

(Explanation: 1 follows by expanding the permanent by the upper row; fol-

lows as the permane.nt is linear in the columns; 3 the components of b+c add 
1 

up to 4; hence we can write b+c = 3Cd1+d 2+d 3+d4 ) with a1 ,d2 ,a3 ,d4 nonnegative 

integral column vectors, each with column sum 3; 4 this inequality follows 
~3 

from the induction hypothesis, as each (a,di,D) belongs to An_ 1 .l 

( 37) per A ( 0 2 0 ... 0) J 
per a b D 2.per(a,D) 
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(Explanation: 5 expand the permanent by the upper row; 
~3 

since (a,D) belongs 

to An-l' we can apply the induction hypothesis.) 

(38) A ( 1 1 0 ... 0) 7 ( D)+ (b D) J per(a+b,D) J per = per 0 0 D = per a, per , 
!O 

L ( )) ~ l (±)n-1 > (±3)n. •(per a1,D)+per(d2 ,D)+per(d3 ,D 2 . 3 -

(Explanation: 7 expand the permanent by the upper row; as the permanent is 

linear in the columns; 9 the components of a+b add up to 3; write a+b = ~(d 1+ 
d 2+d 3l withd1,a2 ,d3 nonnegative integral vectors each with sum 2; 10 since 

each matrix (d. ,D) belongs to A3 
1 , this inequality follows from the in-

i n-
duction hypothesis.) 

(39) PerA = per(0
2 0 · 0··

0) M 2 Du 2 D' - - .per ~ .per 

(Explanation: 11 expand the permanent by the upper row; 12 let D' arise from 

D by decreasing one positive entry of D by one; 13 since D' E A;_ 1, this in

equality follows from the induction hypothesis.) D 

By sharpening the method, Voorhoeve showed the better lower bound of 

~(tln. However, the ground number 4/3 is best possible. This follows by 

taking k = 3 in the following result of [ 26] ( cf. Wilf [ 31]) , which is 

proved by an averaging argument. 

THEOREM 5. Let f(k) be the largest number such that perA ~ f(k)n for each 

A E Ak. Then 
n 

(40) f(k) 

PROOF. Let Pk,n be the collection of all ordered partitions of {1,2, .•. ,nk} 

into n classes of size k. So we have 

(41) := IP I = (nk) ! 
Pk,n k,n k!n 

A system of distinct representatives (SDR) of a partition A= CA 1 , ... ,An) 

in Pk,n is a subset S of {1, ... ,nk} such that [SnAil = 1 for i=l, .•. ,n. Clearly, 

the number of SDR's of A is equal to kn. 

Now let A= CA 1 , ... ,An) and B = (B 1 , ... ,Bn) be in Pk,n Let s(A,8) 



Schrijver: Bounds on permanents 121 

denote the number of common SDR's of A and B. Then s(A,B) is equal to the 
n 

permanent of the matrix c = (c .. ) .. 1 , where 
1.J 1., J= 

(42) c .. 
1.J 

(i,j 1, ... ,n). 

Indeed, if a is a permutation of {l, ... ,n}, then IT~ a is the number 
i=l iO (i) 

of common SDR's S contnining an element in AinBO(i), for each i. Hence 

(43) s<A,Bl lo ES 
rrn 

aicr(i) = perc. 
i=l 

n 

Since l~=l c .. IB. I k IA. I l~=l cij, we know that c E Ak. There-
1.J J 1. n 

fore, 

(44) s(A,B) ~ f(k)n. 

Now let A E Pk be fixed. Any SDR S = { s 1, •.. , s } of A is an SDR 
,n n 

of n!pk-l,n partitions Bin Pk,n' as we can distribute s 1 , ... ,sn inn! ways 

among B1 , ... ,Bn, whereas the other elements of s 1 , ... ,Bn can be chosen 

freely. Since A has kn SDR's, we find 

Combining (41), (44) and (45) gives: 

(46) 

n I 

k n.pk-1,n 
~ -----'-- knn!k!n(nk-n)! 

(k-1) !n(nk) ! 

By Stirling's formula, (46) implies (40). 0 

We conjecture that in fact the upper bound in Theorem 5 always gives 

the right value of f (k). This is trivially true if k = 1 or k = 2 (as f (1) = 

f ( 2) = 1) , and is also true for k = 3 by Voorhoeve' s theorem (Theorem 4) • At 

the end of the following Section we shall see some more lower bounds for 

f(k). 

Note that the proof of Theorem 5 in fact gives (cf. (46)): 

(47) 
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4. BANG'S LOWER BOUND AND EDGE-COLOURINGS. 

We now give a proof of Bang's lower bound of e-n for permanents of 

doubly stochastic matrices of order n. His method can be interpreted, and 

extended, in terms of edge-colourings, or 1-factorizations, of bipartite 

graphs. A k-edge-colouring of a bipartite graph is an ordered partition of 

the edge set of the graph into k classes, each class being a perfect match

ing. It is a well-known theorem of Konig [13] that each k-regular bipartite 

graph has at least one k-edge-colouring (see Remark 1 in Section 1). Here 

we consider counting them. 

In [24] it is shown that if k 2a3b, and G is a k-regular bipartite 

graph with 2n vertices, then 

(48) 
k' 2 

G has at least (-t_-) n k-edge-colourings. 
k 

Moreover it is shown that for each fixed k, the ground number in (48) is 

best possible. It is conjectured that (48) holds for every k. This conjecture 

would follow from the conjecture made in Section 3 that f(k) = (k-l)k-l/kk-2 

for each k, that is, that each k-regular bipartite graph has at least 

((k-1)k-l/kk-2)n perfect matchings. We could first choose a perfect matching, 

delete this perfect matching, next choose a perfect matching in the remainder, 

and so on. Hence G would have at least 

(49) 
(k-l)k-1 

( k-2 
k 

k-edge-colourings. 

(k-2) k-2 

(k-l)k-3. 

In other words, let g(k) be the highest number such that each k-regular 

bipartite graph with 2n points has at least g(k)n k-edge-colourings. Then 

g(k) ~ k! 2/kk, and we have equality if k = 2a3b. This is the content of the 

following two theorems, the first one being proved similarly to Theorem 5. 

PROOF. Again, let Pk,n and Pk,n be as in the proof of TheoreP'l 5. Foi;- A,B in 

Pk,n denote by c(A,8) the number of partitions C = (c 1 , ... ,Ck) of {1, ... ,nk} 

into k classes of size n such that 

(50) 
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for i = 1, ... ,n and j = 1, ... ,k. That is, each C. is a common SDR for A and 
J 

B. It is easy to see that c(A,B) is equal to the number of k-edge-colourings 

of the k-regular bipartite graph with vertices, say, v 1 , ... ,vn,w1 , ... ,wn' 

where v. and w. are connected by I A. nB. I edges, for i, j = 1, ... , n. In partic-
1 J J. J 

ular, 

(51) c(A,B) 2 g(k)n. 

Now let A E Pk be fixed. There are k!n possible partitions C = ,n 
(c 1 , ... ,Cn) of {1, ... ,nk} with 1 for i = 1, ... ,n and j = 1, ... ,k. IA.nc. I 

J. Jk 
For each such partition, there are n! partitions B in Pk such that ,n 
\Bincjl = 1 for i=1, ... ,n and j=l, ... ,k. So 

(52) lBEP c(A,B) = k!n.n!k. 
k,n 

Combining (41), (51) and (52) gives 

(53) g(k)n 

By Stirling's formula, (53) implies Theorem 6. D 

A special case of the idea behind the next theorem is the following. 

Let G = (V,E) be a 2k-regular bipartite graph, with 2n points. A k-factor 

is a collection E' of edges of G such that each point is contained in exact

ly k edges in E'. So E' is a k-factor in G if and only if E\E' is a k-factor. 

Now it is easy to see that the number of k-factors of G is equal to 

the number s(G) of eulerian orientations of G. The latter can be seen to 

be at least 

Indeed, we can replace the graph G by a graph G', by splitting each 

point v of G into k copies, and by distributing the 2k edges incident with v 

among the k copies of v, in such a way that G' will be 2-regular. Then G' 

trivially has an eulerian orientation, which induces an eulerian orientation 

in G. Moreover, each eulerian orientation in G arises in this way from an 
2n 

eulerian orientation in exactly k! graphs G' (as in each point of G we 
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have to make pairs of an ingoing and an outgoing edge) . Since there are 

exactly 

(55) 

graphs G' in total, the number of eulerian orientations of G is at least 

(55) divided by k! 2n, which is (54). 

With this it can be seen that any 2t-regular bipartite graph G 

on 2n points has at least 

(56) (2t) !2t 
t2t 

2 

(V,E} 

2t-edge-colourings (by Theorem 6, the ground number in (56) is best possible). 

This can be shown by induction on t, the case t = 0 being trivial. By (54), 

G has at least 

(57) 

2t-l_factors E'. By induction, the graphs (V,E') and (V,E\E') have at least 

(58) 

t-1 t 2 -edge-colourings. So the number of 2 -edge-colourings of G is at least 

(58) squared times (57), which is (56). 

This idea is extended in Theorem 7. 

THEOREM 7. If g(k} k! 2/kk for k = s and k = t, then also for k =st. 

PROOF. Let G = (V,E) be an st-regular bipartite graph with 2n points, with, 

say, ~(G) st-edge-colourings. Consider all possible graphs G' arising from 

G as follows. Each point of G is split into s new vertices, where each edge 

e of G is replaced by one new edge connecting two of the new vertices re

placing the endpoints of the original edge e, in such a way that the new 

graph G' is t-regular. So the number of graphs G' arising in this way from 

G is equal to: 



(59) 
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( (st) !) 2n, 
t!s 

since for each point v of G we have to partition the edges incident to v 

into s classes of size t, which can be done in (stl!/t!s ways. 
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Let IT be the collection of all partitions (E 1 , .•• ,Et) of the edge set 

of G into t classes, such that each class Ej is an s-factor of G. Now any 

t-edge-colouring CE 1 , ... ,Et) of a derived graph G' yields a partition in 

IT. Conversely, each partition in TI arises in this way from at-edge-colour

ing of s! 2tn graphs G' (as for each point v of G and for each j=l, •.. ,t, we 

have to take care that the edges in E. incident to v will go to distinct 
J 

copies of v in G', which means that for each v and 

ities). 

Hence, by (59), 

(60) IITI ;:: ((st) !)2n_g(t)sn/ s!2tn 
t:s I 

there are s! possibil-

as each graph G' has at least g(t)sn t-edge-colourings. 

Now each class E. of a partition E in TI can be refined to ans-edge
J 

colouring of the graph (V,E.l in at least g(s)n ways. So E can be refined 
J 

to an st-edge-colouring of Gin at least g(s)tn ways. Therefore, the total 

number ~(Gl of st-edge-colourings of G satisfies (using (60)): 

(61) ~(G) <: IITl.g(s)tn <: 

As this holds for each st-regular bipartite graph G with 2n points, it 
2 st follows that g(st) <: (st)! /(st) . D 

This implies the following. 

COROLLARY 7a. If k has no other prime factors than 2 and 3, then any k

regular bipartite graph with 2n points has at least (k! 2/kkln k-edge-colour

ings. For fixed k this ground number is best possible. 

PROOF. By Theorems 6 and 7 it suffices to show that g(2) :2: 1 and g(3) :2: 4/3. 

The former inequality is trivial, while the latter follows from Voorhoeve's 

lower bound (Theorem 4) that the number of perfect matchings in a 3-regular 

bipartite graph with 2n points is at least (4/3)n. D 
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From Theorem 7 one can also derive the lower bound of Bang [2] and 

Friedland [10]. 

COROLLARY 7b. The permanent of a doubly stochastic matrix of order n is at 

least e-n. 

126 

PROOF. Since the dyadic doubly stochastic matrices form a dense subset of 

the space of all doubly stochastic matrices, it suffices to prove the lower 
n 

bound for dyadic matrices only. Let A= (aij)i,j=l be a dyadic doubly 

stochastic matrix. Let u be a natural number such that 2uA is integral, and 
t 

let for each t °" u, Gt be the 2 -regular bipartite graph with points v 1 , ... , 

vn,w1, ••• ,wn, where there are 2taij edges connecting ~i and wj, for i,j = 

1, ... ,n. This means that for t °" u, the graph Gt arises from the graph Gu 

by replacing each edge by 2t-u parallel edges. 

Now the number µ of perfect matchings in Gu is easily seen to be equal 

to: 

(62) µ 

Moreover, the number yt of 2t-edge-colourings of Gt satisfies: 

(63) 

since each colouring is determined by specifying 2t perfect matchings in 

together with an ordering of the 2t-u "copies" in Gt of each of the 2un 

edges of Gu. But by Corollary 7a we know: 

(64) 

Combining (62), (63) and (64) gives a lower bound for perA depending on t 

and n, which, by Stirling's formula, tends to e-n as t->-oo. D 

REMARK 2. Concluding we have met above the following upper and lower bounds 

for the functions f(k) and g(k). 

(65) f(k) g(k) f(l)=f(2)=g(l)=g(2)=1, f(3) =j-, 
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f(k) 2: k 
e' g(k)-" f(k)g(k-1) 2: f(k) f(k-1) ••• f ( 1), 
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(cf. Theorem 4, 5, 6, Corollary 7b, (61)). Moreover, by methods similar to 

those for Theorem 7 one shows ( cf. Valiant [ 28]) : 

(To prove this, we first show that each k£-regular bipartite graph G with 

2n points has at least 

k-factors. Indeed, make all possible graphs G' as in the proof of Theorem 7 

(with s=k and t=£). Each of these graphs has at least f(Z)kn 1-factors. 

Each 1-factor of G' corresponds to a k-factor in G. Conversely, any fixed 

k-factor in G corresponds to a 1-factor in exactly 

(68) (k! (k£-k) !)2n 
(£-1) :k 

graphs G' (the edges of the k-factor have to be divided among distinct 

points of G'). So the number of k-factors in G is at least 

(69) 

(using (59)), which is equal to (67). 

Now we have: 

(70) (the number of 1-factors in G)k 2: (the number of k-tuples of pair

wise disjoint 1-factors in G) = (the number of pairs of a k-factor 

in G together with a k-edge-colouring of the k-factor) 2: 

((~£)2.£-2k_f(£)k.g(kl)n, 

which implies (66) • ] 
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Using the bounds of (65) and (66) one can derive the following bounds 

for f(k) and g(k) fork= 1,2,3,4,5,6,7,8,9,10: 

f ( 1) =1, 

f(2)=1, 

f(3)= ~, 

1.5 i $ f(4):5 ~ 1.6875, 

1 .. 839 ~ 5/e::::; f(S) s~ 2.048, 

2.222"' 20/9 $ f(6) $ 55/64 "" 2.411, 

2.575"" 7/e s f(7) s 66/?5""2. 776, 

2.943"' 8/e:5f(8) si/86 ""3.142, 

3.311"" 9/e :5 f(9) :5 88/97 "" 3.508, 

3.679"" 10/e :5f(10):5 99/10~3.874, 

5. BREGMAN'S UPPER BOUND. 

g(l)=l, 

g(2)=1, 

g(3)= ~I 

g(4)= * 
4.139""45/4e:5 g(5) $ 5! 2/55 

g(6) = 6!./66 "' 

28.613"" 7g~OSg(7):57! 2j77 "" 
g(B) = 8! 2/88 "' 

2. 25 , 

4.608, 

11.111, 

30.844, 

96. 899, 

g(9) = 9! 2/99 "" 339.894, 

1250"" lOg( 9 l.5 g(lO) :5 10! 2/1010 "" 1316.819. 
e 

It is easy to see that the maximum permanent of doubly stochastic 

matrices is 1. Similarly, the maximum permanent of matrices in Ak is kn. 
n 

However, if we go over to a further discretization, and we restrict the 

entries of the matrices to 0 and 1 only, less trivial upper bounds can be 

obtained. In 1963, Mine [20] published a conjectured upper bound (see 

Theorem 8 below), which was proved in 1973 by Bregman [4]. His proof is 

based on ideas from convex programming and on some theory of doubly stochas

tic matrices. Here we give the shorter proof as described in [23]. This 

proof uses the fact that if t 1 , ... ,tr are nonnegative real numbers, then: 

(71) 

[This follows from the convexity of the function xlogx, by taking logarithms 

of both sides of (71), and by dividing these logarithms by r.] 

THEOREM 8 (Bregman's upper bound). Let A be a square {0,1}-matrix of order 

n, with ri ones in row i (1 :5 i :5 n). Then 

(72) 
n 

perA :5 IT 
i=l 

, 1/ri 
r.. . 

J. 

PROOF. We use induction on n, the case n= 1 being trivial. Suppose the theorem 

has been shown for (n-l)x(n-1)-matrices. We shall prove: 
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n 
'1/r i) nperA 

(73) (perA)nperA :::; IT ri.. I 

i=l 

which implies (72). 

We first give a series of (in) equalities, which we justify afterwards. 

The variables i, j and k range from 1 to n. Let s denote the set of all 

permutations o of { 1, ... ,n} for which aio (i) = 1 for all i = 1, ... ,n. So 

lsl = perA. 

(74) (perA)nperA ~ IT. (perA)perA ~ rr( perA IT perAik) 
i i ri k perAik 

4 
:::; rr ((IJr.l.CIJC 

OE S l. l. l. 

1/r. n r. ! J). ( 
J J 

j;'i 

ajO(i)=O 

IT (Ulr.).{i}( 
OE S 1 1 J 

1/r. 
I) r. ! J) . ( 
l. J 

i;.fj 

ajo(i)=O 

aik=l 

rr 
j 

jii 

1/r.-1 
(r.-1)! J ll) 

J 

ajo(i)=l 

n 
i 

1/r.-1 
(r.-1)! J )l) 

J 
i;'j 

ajo(i)=l 

(n-r·)/r. (r.-1)/(r.-1) ) 
rr ((IJr.).<IJ'(r.! J J.(r.-1)! J J )) 

l. l. J J J 
oES 

~ (I) r. ! l/r i) nperA 
l. l. 

Explanation: 1 is trivial; 2 use (71) (note that r. is the number of k such 
l. 

that a.k=l and perA = lk _1perA.k); 3 the number of factors r; equals 
1 ,aik- 1 • 

perA on both sides, while the number of factors perAik equals the number of 

a E: S for which a (i) k (this is perAik in case aik =1, and 0 otherwise); 

4 apply the induction hypothesis to each A. (.) (i = 1, ... ,n); 5 change the 
l.0 l. 

order of multiplication; 6 the number of i such that i ;< j and aj 0 (i) =0 is 

n-rJ., while the number of i such that i;.f j and a. (')=1 is r.-1 (note that 
JO l. J 

a. ( ·i=l, and that the equality is proved for all fixed a and j separately); 
JO J 

7 and 8 are trivial. D 

In particular it follows that if all row sums of A are exactly k then 



Schrijver: Bounds on permanents 130 

It is easy to see that for fixed k the ground number here is best possible, 

also if we restrict ourselves to {0,1}-matrices in Ak. 
n 

6. EULERIAN ORIENTATIONS. 

As a further illustration of the results and methods above, we consider 

eulerian orientations. For any undirected graph G = (V,E), let s(G) denote 

the number of eulerian orientations of G. Here an eulerian orientation is 

an orientation of the edges such that at each vertex the indegree is equal 

to the outdegree. 

Then if G is a loopless 2k-regular graph with n vertices, the number 

of eulerian orientations satisfies: 

(76) 

and moreover, for each fixed k, the ground numbers in (76) cannot be im

proved ([25]). 

There exists a direct relation between E(G) and the permanent function. 

Let G = (V,E) be a graph in which each vertex v has degree deg(v) even. Let 

B be the incidence matrix of G, with lvl rows and \El columns. Let the 

matrix A arise from B by repeating, for each vertex v, the row of B corre

sponding with v l:ideg(v) times. Then A is a square {0,1}-matrix of order 

\El. Now one easily checks that: 

(77) E {G) 
per A 

v~V (l:ideg (v)) ! 

Substituting Bregman's upper bound (Theorem 8) in (77) gives: 

(78) {G) < IT (deg(v) 1l:i 
E - VEV l:ideg(v); ' 

and the right hand side in (76) follows. The graph with 2 points connected 

by 2k parallel edges shows that we cannot have a lower ground number in the 

upper bound in (76). 

Concerning lower bounds, Falikman and Egorychev's lower bound, in the 
2k 

form (6), gives that if G is 2k-regular, then AEAkn' and so with (77): 

(79) E (G) 
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Asymptotically this implies: 

(80) e:(G) ~ (k1, (2k)k)n. 
. e 

The conjecture (10) would imply the better lower bound: 

(81) e: (G) 
~ 1 (2k-1) 2k-l)n. 

(k! (2k)2k-2 
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However, the lower bound given in (76) is even higher (and is best possible). 

This is not surprising, as generally the permanent function seems to approach 

its minimum value if the matrix tends to have a random structure, whereas 

the matrix A obtained from G as above, has several equal rows. 

The lower bound in (76) can be shown as follows. Let E(2d1 , ... ,2dn) 

be the minimum of e:(G), where Granges over all undirected graphs (possibly 

with loops) with degree sequence 2d 1 , .•. ,2dn. Then: 

(82) 

This can be seen by induction on 2d 1+ ... +2dn. If this sum is 0, (82) is 

trivial. If, say, d 1 ~1, let G be an undirected graph with degree sequence 

2d 1 , ... ,2dn and with e:(G) = E(2d 1 , ... ,2dn). Let point v have degree 2d1 , 

and let e 1 , ... 1 e2d 1 be the edges incident with v. For 1:::: i < j:::: 2d1 , let 

e: .. (G) denote the number of eulerian orientations of Gin which e. and e. 
J.] ]. J 

are oriented in series (i.e., one of them has v as tail, and the other has 

v as head). If, say, ei = {u,v} and ej = {v,w}, let Gij be the graph ob

tained from G by replacing ei and ej by one new edge {u,w}. Then: 

(83) 

Therefore, inductively, 

(84) l1<·c<2d e:. · (G) 
-1 J- 1 J.] 

So (82) is proved, and the lower bound in (76) follows. 

By averaging techniques, similar to those in the proofs of the Theorems 
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5 and 6, one shows that for fixed k the ground number in the lower bound in 

(76) is best possible. It is also best possible if we restrict G to loop

less graphs. This follows with the help of the Alexandroff-Fenchel perma

nent inequality (Theorem 1) - see [25]. We conjecture that it is even best 

possible if G is restricted to simple graphs (i.e., no loops or multiple 

edges). Moreover, we conjecture that for simple graphs a better upper bound 

can be obtained: if G is a simple undirected graph with degree sequence 

2d 1 , ... ,2dn, then 

(85) (Conjecture) E(G) ~ 
n 1/(2d.+1) 
TI £ (K2d +1) i 

i=l i 

(Kt being the complete undirected graph on t points). A problem we met in 

constructing a proof similar to that of Bregman's upper bound (Theorem 8) 

is that we could not find a suitable formula for E(Kt). 
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