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Abstract

A Lie algebra L(x) can be associated with each
nonlinear filtering problem, and the realizability of
L(Z) or quotients of L(Z) with vector fields on a
finite dimensional manifold is related to the existence
of finite dimensional recursive filters. In this paper
the structure and realizability properties of L(Z) are
analyzed for several interesting classes of problems.
It is shown that, for certain nonlinear filtering
problems, L(Z) is given by the Weyl algebra

3

Nn =R < KyseeesXps s iﬁq; >, It is proved

9
axl
that neither wn nor any quotient of Nn can be realized

with €~ or analytic vector fields on a finite
dimensional manifold, thus showing that for these
problems, no statistic of the conditional density can
be computed with a finite dimensional recursive filter.
For another class of problems (including bilinear
systems with linear observations), it is shown that
L(z) is a certain type of filtered Lie algebra; the
implications of this property are discussed.

I. Introduction

This paper is concerned with the problem of
recursively filtering the state X4 of a nonlinear

stochastic system, given the past observations
2t - {zg, 0<s<th. The systems we consider satisfy
the Ito stochastic differential equations

dx

= f(x,)dt+G(x,)dw
t t t/' 7t (z)

- %
dzy = h(xt)dt-}'thvt

m .

where xe R", we R", z¢ JRp, w and v are independent
unit variance Wiener processes, and R>0. The optimal
(minimum-variance) estimate of X is of course the

conditional mean ?t 4 E[xtlzt] (also denoted Qt[t or
Et[xt]). Aside from the linear-Gaussian case in which

the Kalman filter is optimal, there are very few known
cases in which the conditional mean, or indeed any
statistic of the conditional distribution, can be
computed with a finite dimensional recursive filter

(a number of these are summarized in [1]). More
precisely, a finite dimensional recursive filter is a
stochastic differential equation driven by the
observations of the form

p
dng = alngldts [ bylng)ez, (1)
i

where n evolves on a finite dimensional manifold and
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a and {bi} are sufficiently smooth to insure existence
and uniqueness (these conditions will be strengthened
later). The conditional statistic E[c(xt)lzt] is said

to be finite dimensionally computable (FDC) if it can be
computed "pointwise"” as a function of the state of a
finite dimensional recursive filter:

&xy) & Elclxg) |2 = viny). (2)

As a practical matter, it is also useful to require that
the combined estimator (1)-(2) yield a statistic e(xt)

which is a continuous function of z;
this later in this section.

Recently, Brockett [2],[3] and Mitter [4],[5] have
shown that Lie algebras play an important role in
nonlinear recursive estimation theory; the approach of
Brockett [2] is the following. Consider the Zakai
eguation for an unnormalized conditional density p(t,x)
[61:

we will comment on

p
dp(t,x) = Lp(t,x)dt + 7§ hi(x)p(t,x)dzit (3)
i=1

where z; and hi are the ith components of z and h,

20 ceT
n 3(-f, 97(+(6G").; ,

L) = -7 (31)+%" n_.(__a_(_)ul (4)
if1 i1 =1 %%

is the forward diffusion operator, and p(t,x) is related
to the conditional density p(t,x) of X given zt by

p(t.x) = (t,x)-(fo(t,x)dx)7L, (5)

Notice that (3) is a bilinear differential equation [7]
in p, with z considered as the input. Suppose that, for
some initial density, some statistic of the conditional

distribution of X¢ given zt can be calculated with a
finite dimensional recursive estimator of the form (1)-
(2), where a, bi’ and y are analytic. Of course, this
statistic can also be obtained from p(t,x) by

Cxy) = Je(x)e(tx)dx( fo(t,x)dx) 1. (6)

For the rest of the development, it is more convenient
to write (1) and (3) in Fisk-Stratonovich form (so that
they obey the ordinary rules of calculus and so that Lie
algebraic calculations involving differential operators
can be performed as usual):

. P
dng = a(ny)dt + |

. b_i(nt)dz_it (7)

—_
Ne~10o =

p
do(tx) = (L= ] WGTplEdts ] hiCa(tx)dzy,
i=1

" (8)
where the it
db.

3.0 = 1

component ai(n) = ai(n) -3 jzk bjk(n)

-——15-(n) (here b,, is the Kt component of b.)
an jk i’
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The two systems (7),(2) and (8),(6) are thus two
representations of the same mapping from "input"
functions z to “outputs" c(xt): (8),(6) via a bilinear
infinite dimensional state equation, and (7),(2) via a
nonlinear finite dimensjonal state equation. Motivated
by the results of [8],[9] for finite dimensional state
equations, the major observation of [2] is that, under
appropriate hypotheses including minimality of the
representation (7),(2), the Lie algebra F generated by

,a,bl,...,b (under the commutator [a,b] = 23

ab
b
should be a homomorphic image of the Lie algebra

2
i=1,...,p (under the commutator [eo,ei] = epe;-e;e s
with e0-+5 and ei-+bi, j=1,...,p. On the other hand,

if there is a homomorphism ¢ of L(Z) onto a Lie algebra
generated by p+l complete vector fields a,bl,...,bp, on

a finite dimensional manifold, then this is an indica-
tion that some conditional statistic may be computabie
by an estimator of the form (7),(2). It is not known
in what generality such results are valid, especially
for cases in which L(Z) is infinite dimensional, and
much work remains to be done (the fact that existence
of a finite dimensional filter implies the existence of
a Lie algebra homomorphism has been made rigorous for a
class of estimation problems, including some of those
discussed in Section II, in [26]). However, it is
clear that there is a strong relationship between the
structure of L(Z) and the existence of finite
dimensional filters. In this paper, we discuss the
properties of L(Z) for some interesting classes of
examples. These Lie algebraic calculations give some
new insights into certain nonlinear estimation problems
and some guidance in the search for finite dimensional
estimators.

If L(z) is finite dimensional (this seems to occur
only in very special cases [5],[101), a finite dimen-
sional estimator can in some cases be constructed by
integrating the Lie algebra representation. Indeed, if
L(z) or any of its quotients is finite dimensional,
then by Ado's Theorem [11, p. 202] this Lie algebra has
a faithful finite dimensional representation; thus it
can be realized with linear vector fields on a finite
dimensional manifold, resulting in a bilinear filter
(see, e.g., [12] and [16] for examples). However,
actually computing the mapping from p(t,x) to E(xt)

(i.e., deciding which statistic the filter computes) is
a difficult problem from this point of view; one must
so far use other, more direct, methods to actually
construct this mapping or to derive the filter for a
particular conditional statistic (see, e.g., [14]1-[17]).
On the other hand, if L(I) or its quotients are infinite
dimensional, it is still possible that these Lie
algebras can be realized by nonlinear vector fields on
a finite dimensional manifold. Conditions under which
this can be done is an unsolved problem in general;

we show in Section II that this is not possible for
certain classes of Lie algebras. However, to see that
two vector fields on a finite dimensional manifold can
generate an infinite dimensional Lie algebra, consider

the vector fields a x2 3 and b = x3 2 on a one-

3 x
dimensional manifold; it is easy to see that a and b
generate the infinite dimensional Lie algebra of vector

fields of the form xzp(x) g% , where p is a polynomial.
If a statistic E(xt) is finite dimensionally

computable, the Lie algebraic approach gives some
insight into the continuity of the estimator. Since
there is a Lie algebra homomorphism as discussed above,
the vector fields bl""’bp are homomorphic images of

E hf(x) and e; = hi(x),

L(Z) generated by eq = L-
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the operators el,...,ep which all commute with each

other (these are just multiplication operators). Thus
bys....b  also commute, and the results of [18] imply

that the filter (7) represents a continuous map (in the
CO and L_ topologies) from the space of "inputs" z to

the solutions n. Hence, the estimator (7),(2) gives a
continuous map from z to c(xt); this is a very useful

property, indicating the "robustness" of the filter (see
also [19],[20]).

Brockett and Clark [13] used this approach to study
the estimation of a finite state Markov process observed
in additive Brownian motion; the Lie algebraic approach
led to the discovery of new low dimensional filters for
the conditional distribution, even in some cases when
the number of states is arbitrarily large. In [2], the
Lie algebraic approach is explicitly carried out and
analyzed for the problem in which f and h are Tinear and
G is constant. In that case, the Lie algebra L(Z) of
the Zakai equation is finite dimensional and the
unnormalized conditional density can in fact be computed
with a finite dimensional estimator, the Kalman filter.
In [21], a similar analysis is carried out for an
example of the class of estimation problems considered
in [14]1-[16]; for this class of nonlinear stochastic
systems, the conditional mean (and all conditional

moments) of X given zt are finite dimensionally

computable. For this example, the Lie algebra L(Z) is
infinite dimensional but has many finite dimensional
quotients (the Lie algebras of the finite dimensional
filters), and these are analyzed in detail in [21].
These last two examples, as well as the example of Benes
[171, are special cases of the class considered in
Section III.

In Section II, we consider estimation problems for
which L(Z) is the Weyl algebra wn. A number of examples

are given and useful properties of the Weyl algebra are
derived; some of these results have been obtained
independently by Mitter [5]. The major results of
Section II are that neither Nn nor any quotient of wn

can be realized by vector fields with either ¢ or
formal power series coefficients on a finite dimensional
manifold; this shows that for these problems, no
statistic of the conditional density can be computed
with a finite dimensional recursive filter. Most of the
results in this paper will be stated without proof; for
the proofs, see [27].

II. The Weyl Algebras Nn

The Weyl algebra Nn [22]1,[23, Chapter 1] is the
algebra of all polynomial differential operators; i.e.,

- .9 9 i
wn =R < XpseeesXps T seens axn >. A basis for wn
consists of all monomial expressions
B B8

poad® s ™ % 5 ! 3 "
I N S T (9)
a,B aXB 1 n 81 Bn

axl an

)9

where o,B range over all multiindices a = (al,...,an

B = (By>---»8,)s csBeM U {0} (the non-negative
wn
as an example, we state the general formula for wlz

integers). is a Lie algebra under the Lie bracket;



J £ i . j+e-r
i3 k 9 iy k itk-r 3
X' S=.x =5 1= 1 (2 )r!x S M
ax3 - R T
£ . . j+e-s
24,1 itk-s 3
_Szl(s)(s)s! X LTS (10)
where (‘] ) = i1 is the binomial coefficient and
J-r)lrl

we have used the convention that (J }=0if r<0 or
j<r. The center of W (i.e., the 1dea1 of all
elements Z ewn such that [X,Z]=0 for all xewn) is the

one-dimensional space R- 1 with basis {1} [22, p. 148].
Our first result is the simplicity of the Lie algebra
wn/]R-l; this is of course stronger than showing that

wn is simple as an associative algebra [22, p. 148].

Our proof follows that of Avez and Heslot [24] for the
Lie algebra Pn of polynomials under the Poisson

bracket. A number of the following results are common
to P, and wn, but these two Lie algebras are not

isomorphic (this is basically because the expression in
Pn corresponding to (10) would retain only the terms

for r=1 and s=1). Hence, one must be careful in
literally interpreting results proved for P in the
context of N [30].

Theorem 1: The Lie algebra wn/]R-l is simple; i.e., it
has no ideals other than {0} and wn/]R-l. Equivalently,
the only ideals of W, are {0}, R+1, and Nn.

This theorem basically shows that if Nn occurs as

the Lie algebra L(Z) for some estimation problem, then
“either the unnormalized conditional density itself is
finite dimensionally computable or no statistic at all
is finite dimensionally computable. The next two
theorems complete the argument by showing that in fact
neither N nor its quotients can be realized by vector

fields gn a finite dimensional manifold.
Let V be the Lie algebra of vector fields

m

¢ {.Z fi(xl’”"xm) 5-)-(—‘ } with (formal) power

series coefficients f, sIR[[xl, -exg1ls and let V(M)
be the Lie algebra of c*-vector ﬁe]ds on a C -manifold
M.

Theorem 2: Fix n#0. Then there are no non-zero
homomorphisms from N to V or from W /]R 1 to V for
any m.

Theorem 3: Fix n#0. Then there are no non-zero

homomorphisms from W to V(M) or from wn/IR-l to V(M)
for any finite dimensional ¢*-manifold M.

These results show (assuming the appropriate analog
of the results of [2],[8]) that if a system I has
estimation algebra L(Z) =wn for some n, then neither

the conditional density of x, given 2t nor any nonzero

statistic of the conditional density can be computed
with a finite dimensional filter of the form (7) with

a and {b } C” or analytic. We will give several

examp]es of such systems, but first we present a
general method for showing that L(Z)= w , the proof of

which is similar to that of [24] for Pmsson brackets.
Theorem 4: The Lie algebra wn is generated by the
elements

i=1,...,n; and Xixi+1’ i=1l,...,n-1.

Theorem 4 provides a relatively systematic method
for showing that L(I) = W, for a particular estimation

problem: one need 0n1y show that by taking repeated
Lie brackets of L- 2 hX h2 and {h }, the generating

elements of wn given in Theorem 4 are obtained. Notice

that if n=1, the generating elements are x,

X
x2 aix Some interesting examples are the following.

Example 1 (the cubic sensor problem [5],[251):
Consider the system

2
~§—2-, and
]

dxt = dwt
_ .3

dzt = xtdt+dvt.

The Lie algebra L(Z) is generated by the operators
13 1.6 3

ey =5 —5 -5 X, € =X .

0 2 aXZ 2 1

We can compute a sequence of Lie brackets to obtain a
sequence of elements e; e L(Z), eventually obtaining the

desired generators of w :

= 242 2 3
[e,el] 3x +3x=>e2 Xg’;{*"
adk e, = --(k+2)xk+3 > xKel(z), k>3
€2
(where adO e, =e, and adkHe = [e ad e 1)
e, 1 "1 e, 1 0’ 177
Combined with ey x6€L(E) implies that e3 = = L(z).
Continuing,
[e e]=4x_a_2_+4_3_ = e =Xi+_a_
3°72 3x2 9 4 3x2 )
(e e]=3x 2+6x—+1">e=3x2—3-§—+6—3“+1
4:% 2 5 ol X
legoey] = 60 2+ 9x% = e = 200 L+ 3
leae ] = 1257 iz—+ 24x -2 + 6, which combined with
3°€g axz 3% s n w1 e5
implies that e, =1 and e, = x2 —f—+ 2x 2 are i L(Z)
P 7 8 W 3 n Le).
A few more calculations will complete the demonstration:
3 2 3
3 9 )
[es,e0] = 4X —5 + 6 =5 => gy = X —x
3*"8 3 3 3x2 9 3 3
[el,eB] = -6x4 7(%(- - 12x3 > e T x4 —%
3 2 3 ¢
2 3 ) 2 3 )
[€5,8q] = =5X" == - 9X =5 > e,, = 5x° =5 + 9x
2’79 8x3 aXZ 11 3)(3 aXZ
2 2
[e3’e10] = 8X3 ‘i‘z‘ + 12)(2 ‘3%’(‘ = 912 = 2)(3 ___3__? + 3X2 533('
X X



3 2
2 3 3 )
[e,s8,,] = 12X° ==+ 24x —5 + 6 =
3’712 ax3 sz ax
3 2
2 39 39 )
> ., T 2X" —x + 4x + =
13 3x3 sz X
Now 8135 €9 and e, are all Tinear combinations of the
2 33 32 3
elements x° —5, X =, and ==, and the coefficient
3 2 X
X 3x
matrix
1
9 0
2 4 1
is nonsingular. It follows that L(Z) contains
2 3
3 ) 23 .
€4 = 5=y €9 = X—5, and e, = X~ —x Finally,
14 3x 15 ax2 16 9x3
A _ 2
[e14,e1] = 3x° = g7 = X
[e14,e17] = 2X = g = X

which combined with e, gives x2 é%-sL; thus by Theorem4
L(z) =w1. This example is in the class studied in [26],

for which the ideas of [2] are made rigorous. Thus

we have in fact shown that no conditional statistic is

finite dimensionally computable for the cubic sensor.
Analogous computation of selected Lie brackets and

the use of Theorem 4 yields similar results for the

following examples.

Example 2: For the system
_ .3
Mt—x§t+mt
dzt = xtdti-dvt,
L(z) is generated by %—ji§ -x3E%-- §-x2 and x, and
ax X
L(Z)=w1.

Example 3 (mixed linear-bilinear type): Consider the

system with state equations

dxt =

dyt

dwlt

xtdt + XtdWZt

I

with observations

dzt = ytdti-dvt.

22

axz
y, and L(Z) =w2. The same result is obtained if the
xtdt term is absent in the y equation; in that case we

il

o=

L(z) is generated by

have a multiple Wiener integral of Brownian motion
observed in Brownian motion noise.

Example 4: Consider the system with state equations
dxt = dwt

dy, = xdt

Ve T Xt

and observations

dz1t = xtdt+dvlt
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dzZt = ytdt-+dv2t.
23 1

9
and y; it is easily shown that L(Z) =W,. This is the

example studied in [21], but here we have the
additional observation 2,3 the relationship between

these examples will be examined in the next section.

L(Z) is generated by %

II1.

A Lie algebra L is defined to be a pro-finite
dimensional filtered Lie algebra if L has a decreasing

Pro-Finite Dimensional Filtered Lie Algebras

sequence of ideals L = L_1 > L0: L1 o ... such that
(a) n L= 0

(b) L/L_i is a finite dimensional Lie algebra for all i.

The terminology is analogous to that of pro-finite
groups [28]. Notice that (a) implies that there is an

injection from L to & L/Li' In the context of the
i

estimation problem, this would correspond to L(%)
having an infinite number of finite dimensional
quotients; if each of these can be realized with a
recursively filterable statistic, then the injectivity
of the map makes it reasonable to conjecture that these
statistics represent some type of power series
expansion of the conditional density. Of course, in
addition to those discussed in Section I, other
difficult technical questions such as moment
determinacy will also be relevant here, but the
structure of the Lie algebra should provide some
guidance as to possible successful approaches to the
problem and some insight into the structure of the
resulting approximations.

Example 5 [21]: A simple example of the class
considered in [14]-[16] is given by the state equations

dx dw

t t
_ .2
dyt = xtdt
and the observations

dzt = xtdt+dvt

with Xg Gaussian. The computation of it is of course

straightforward by means of the Kalman filter; however,
as shown in [14]-[16], all conditional moments of Ve

can also be computed recursively with finite
dimensional filters. L(Z) is generated by
2

= 2_.3_- l.a_ l 2 =y i
eg = X 3y * 5 axz -5 X and e X3 as shown in [21],
a basis for L(Z) is given by e and
sl 8 a1 3]
X =55y 5773 i=0,1,2,...}. Defining L, to be
dy dy 9y i
the ideal generated by x JLT, i=0,1,2,..., it is easy
3y

to see that L(L) is a pro-finite dimensional filtered
Lie algebra, and realizations of the L(Z)/Li in terms

of recursively filterable statistics are given in [21].
In addition, L(I) is solvable [21].

A similar analysis for systems of the form of

Example 5, with X4 replaced by a general monomial xg
has also been done [31]; for p>2, a similar but more
complex Lie algebraic structure is exhibited. It is

interesting to compare Example 5 with Example 4, which



is the same except for the additional observation
dz,, = y,dt+dv,,; in that case L(Z) =W,, so that no

conditional statistic can be computed exactly with a
finite dimensional filter.. However, it is probable
that, due to the additional observation, a suboptimal
approximate filter (such as the Extended Kalman Filter)
for the conditional mean of Yt will result in lower

mean-square error than the optimal filter which
computes §t in Example 5. Thus some care must be taken

in interpreting the Lie algebraic structure of a
nonlinear estimation problem; this structure has direct
implications on the exact computation of conditional
statistics, but its implications for approximate
filtering remains to be investigated.

Example 6 (degree increasing operators and bilinear
systems): Consider a system of the form (L), and
suppose that f, G, and h are analytic with f(0) =0 and
G(0) =0, so that the power series expansions of f and
G around zero are of the form

flx) = 7 fx% 6x)= ¥ 6x%
al>1 @ ja]>1 @

(11)

where [a| = a;+ .o to . It follows that

G(x)G'(x) = IZ

lols éa(x)xa.

An example of such systems is the class of bilinear
systems
p

= Ax, + 3

B.x, dw.
ton

dx ittt

dzt = Cxtdti-dvt.

Another example is

dxt = xtdt+sin Xtdwt

dz, = h(xt)dt+dvt

with h analytic; in general, a wide variety of examples

can be found.
Let M = R [[xl,...,xn]] be the module of all

(formal) power series in XpseeesXs and define the
submodules

- o = . s =
M, {z a X |au 0 for |a| <1}, i=0,1,2,...,

so that, e.g., MO consists of those power series with
zero constant term. If I is a system satisfying the

condition (11), it follows that for all i, the forward
diffusion operator (4) satisfies
LM, CM1.;
hence,
1,2
(L- 5h x)M,i [ Mi
and of course
h(X)Mi CM’i'
Since the two generators of L(Z) thus leave Mi
invariant, it is obvious that L(z)Mic: Mi; thus, each

element of L(Z) can only increase (or Teave the same)
the degree of the first term in the power series
expansion of an element of M. Let

L, = Xel(D)[Me M, ), 1=-1,0,1,2,....

70

Then Li is an ideal in L(Z) and we have an induced
representation

pst

3 L/Li -+ End(M/M

141

Because M/Mi+1 is finite dimensional, so is L/Li, since
o is injective (by definition of Li)' It is obvious
that nLi = {0}; thus L(Z) is a pro-finite dimensional
filtered Lie algebra, with filtration Li' One

additional structural feature of this filtration is
that LO/Li is a nilpotent Lie algebra for i=1,2,...;
also, L1./L1.+1 is abelian for all i>0. The nilpotency
of the LO/Li is a property also possessed by the
filtration of Example 5.

Since many systems can be well approximated by
bilinear ones, these results may have important
implications for approximate nonlinear filtering. We
close this section with two interesting examples of
this class; the first is a bilinear system of the form
(12), but in which some elements of A are also unknown

and must be estimated. The second is an angle
modulation problem.

Example 7 (bilinear system with unknown parameter):

The simplest example of this type is
dxt = atxtdt-i-xtdwt

dat =0

dzt = xtdt+dvt

Here both the state X¢ and parameter o are to be
estimated recursively. The Lie algebra L(Z) is

2
1.2 3 3 3 1.2
generated by 5 X~ 5 + 2Xx ==+ l-0X 5 - & - 5 X
2 3x2 X X 2

and x. Both of these operators are "degree increasing"
when operating on R [[x,a]], so L(X) is a pro-finite
dimensional filtered Lie algebra.

Example 8 (angle modulation without process noise):
Consider the problem of observing

dz

1t = sin(wt-+e)dt-+dv1t
dzzt = cos(mt*—e)dti-dv2t

where w and 6 are constant random variables to be
estimated. To place this problem in the present
framework, we have the three state equations

w=0

=0

t=1

The Lie algebra L(Z) is generated by & = g% - % s
e = sin(wt+8), and f1 = cos(wt+0). It is easily

—-

shown that L(Z) has basis elements €g-8; =
. =y cos(wt +0), i=0,1,2,....
relations are [eo,ei] = f

sin(wt +8),
The nonzero commutation
41> 18gef3l = -eq . Hence
L(z) is a pro-finite dimensional filtered Lie algebra,
with filtration {Li}’ where Li is the ideal generated
by €41 and f1+1, i=0,1,2,.... Phase-lock loops are

often used for filtering problems such as this, but the
form of the optimal estimator is unknown. This
calculation suggests that an infinite number of
statistics of the conditional density may be finite
dimensionally computable.
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