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1. INTRODUCTION. SETTING THE STAGF.

Consider a stochastic dynamical system of the type
(1.1) dxt = f(xt)dt + G(xt)dwt’ dyt = h(xt)dt + dvt

where £,G,h are (sufficiently regular) vector and matrix

valued functions, and w and v are unit variance Wiener processes
independent of the initial state x(0) and independent of each
other. We are interested in ways of calculating the conditional
expectation ;(xt) (best least squares estimates) of functions

Q(xt) given the observatioens yt = (yq: 0<s i.L} through time t.

.ln particular we are interested in finite dimensional recursive
filters for ¢(xt). By definition this means a machine driven by

the observations:
(1.2) dnt = a(nt)dt + B(l)t)dyt

defined on a finite dimensional manifold M (so that n, € M and
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), M'W[‘, are vectortields on MY, such that for a suitable
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(Fguations (1,23, €1.3) togerher furm a finite dimensional

recursive filter (or the statistic Mxt).
Now 1 certain unnermalized version o (x,t) of the conditional

. t P . .
Jimsity for v paten ¥y satistics the Duncan—Mortensen=-akal
¢ )

cquation, written in Fisk-Stratonovic form this equation is ‘
Toi - :
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cilote 1 .h" Is the 1=th component ot ok ond (Lo d the
yio=th entry ol the product of the matrix 6 witho {ts transpuse?;
.

. 17T for a derivatien o tho Suncan=Mortonsensoosdl equation.

The Liv alpebra o diftorentind cperatars cenerated by

. 0

1 N , . . .
[ RYixeT and Boasr, wee. WUn) s called the estimation '

. i . s .
Lle algebra. tHere b7 iy is tne pultiplicatlon operator

N

G LT {x s (x0 ). We refer te Lue two appendices on "manifolds
cad vectorfields” and on Tie aleebras' in this volume for

tasic hackground snloernation on these toples .

Hotl Arockett aod Mitror have i lependently proposed the study

At orhis estimation Tie divebra as an appreach to the filtering
sroperries of (1ob), This idea b been quite remarkably success=

ful, Some evidence for this lies in the following, First equati-n

109 s biliuear talucit Infinite dimensicnal) and the Lie
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dlgebra generated by the matrices A,B in a control system

Ax + (bxJu is known to be influential { 51).

b3
Second in the case of a linear system

(l.b = = ( g
) dxt Axdr + Bdwt, clyt (.xtdt + dvt

tne Lie algebra of equation (1.5) and the Lie algebra of the

Kalman [ilter of (1.6) are closely related [2]. The third point
requires more explanation. Suppose that a finite dimensional

filter (1.2), (1.3) existed. The equatiuvns are suppused to be
In Fisk-Stratonovic: form so that they make sense on a manifold
[#1). Thern we have two ways for caleulating ¢(xt): once Vvia
(1.2), (1.3) and once via (1.4) followed by normalization and
integration. We can assume (1.2), (1.3 to be minimal and by a
conjectured generalization of Sussmann's minimal realizatien
resutt [ 201 we would have a homemerphism of the estimation Lie
alpgebra onto the Lie alpebra generated by the vectorfields A(ﬂt)
and b(nt\ in (1.2), This is precisely what happens in the case
of linear systems [2]. And inversel:s piver such a homomorphism
of Lie algebras satisfying an additional isotropy subualgebra
condition a suitable generalization of the results of [13] or [23]
would give a filter. Thus we would have a correspondence between
statistics which are tinite dimensionally recursively computable
and certain homomorphismsof Lie algebras of the estimation algebra
into Lie algebras of vectorfields on manifolds. Most of what
follows makes little sense unless this Is more or less true.
There is, fortunately, a fair amount of pusitive evidence (linear
case [2,4), finite state casc [4,5] certain bilinear systems
[15,26], cubic sensor [21,11]).

There are still more reasons for the importance of the
estimation algebra inveiving representation theory, functivnal

intepration and deep analogies with quantum physics [17,18,19].
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2, EXAMPLES OF ESTIMATION ALGEBRAS.

Lo

2.1. The simplest nonzero linear system, [2]. The stochastic

dynamical system

i ith observations d = +
is dxt = dwt, wit ] yt xtdt dvt.

The estimation algebra is four dimensional with basis

147 1
2 2 2

dx

s Xy

d
w 1.

It is a well-known Lie algebra (especially

in physics). It is called the oscillator algebra.

2.2. Heisenberg-Weyl algebras. Let Wn

algebra IR<xl,...,x

3

operators in = v
r ax,

1

coefficients. As

symbols x

ey

1)
suggested by the

d

X.X. ¥ X.X

a = = X e

it 3x.
i

denote the associative
d d

> dx, " dx

. > of all (partial) differential

3 .
y %;— (of any order) with polynomial
n

an associative algebra it is generated by the

X, 2—— s eeen AT subject to the relations
n’odx, 2x
. . 3 2

ncotations used, l.e. x, =—x. = X. =— = 1,

1 9x. 1 i 9x.

i i
3 t 3 d 3 . .
g W e and x. = x. Lf 1 .
X, ax. Ax, ' *i Px. Ox. i # 3
] J 1 | J
A basis for wn (as a vectorspace over R) consists of the monomials

an abl 3Bn
X, TE o TET , .2, €N U {0}, In this
1 Rx:l ann i'7]

paper wn is always considered as a Lie algebra (with the

bracket operation [D,D'] = DD'-D'D). The Lie algebra Wn has a

one dimensional centre R.1 (consisting of scalar multiples of the

ldentity operator) and WnﬂR.l is simple.

-

.3
dyt =

2.3. The cubic sensor. The system is dxt = dwt with observations,

xtdt + dvt' In this case the estimation algebra is equal

to all of W . For a proof cf. [10].

2.4, Quadratic obscrvations. Now consider dx

= dw

dy, =

2 . . .
xtdt + dvt. Then the estimation algebra is W

AT
1

which is,

the subalgebra of Wl spanned by all monomials of the form xl-g%

with 1 - j cven,

dx
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2.5. Example of mixed linear bilinear type. The system is

dx]t = dw]t, dxzt = xltdt + dxltdw2t with observations
dyt = thdt + dvt. Here the estimation algebra turns out to be
equal to W,,[10].

. 2 .
2.6. Example. The system is dx N dwt, dx, = xltdt with

1

1 1t
the estimation algebra is wz, [10].

2t

observations dylt- x tdt + dv dy,7t = xztdt + dv,t. Here again

2.7. Example,[15]. The system is dxlt =dw,, dx, = x?tdt with

observations dy]t= x tdt + dvt. In this case the estimation Lie

!
algebra has as a basis the operators

23 13 1.2 3i A

3

= - —t - — = = 3 .= — .. T o —
A X 3% 2 2 RN Bl | L’ CL Ox, 1 °
2 ax ax 1 3x
. 1 2 2
st
D, = — 1 =0,1,2, ... with the bracket relations
i sz

a (¢ = ) N - - - :
[A,Bi] i [A,(‘.i] By o+ 2B, ., [Bi,(,j] ”i+j and all

other brackets between basis elements equal to zero.
2,8. Example. The system is dx_ = dw_ with observations
d
yt
case one finds that the estimation algebra is equal to w] tor
all € # 0 (and of course equal to the oscillator algebra if

e=0).

= (xt+ExZ)dt + dvt. Here ¢ is a (small) parameter. In this

.2.9. Example. The system is dxt = dw1t + sxtdwzt with observations

dyt = xtdt + dvt. In this also one finds that the estimation

algebra is equal to W, for all & ¥ 0.

1

2.10. Degree increasing estimation algebras. Consider systems

of the form dxt - f(xthr+0(xt)dwt, dyt - h(xt)dndvt and assume
that £, G and h are smooth and that all components of £ and G

are zero for x = 0, Consider the Lie algebra of all differential
a

operators of the form I fq(x) §~H , 0 a multiindex.fa(x) smooth
N dx

(finite sums). This algebra acts on the space FQR") of all



596 M. HAZEWINKEL AND S. 1. MARCUS

smooth functions in Xps wees X Let FiORn) denote the subspace
of all functions ¢ € FQR) such that

o

920p) = 0 for all a with |a] = o+ ... + a_ < i, Then

3t 1 n —

FGR“)/FiGRn) is a finite dimensional vectorspace (isomorphic to
the vectorspace of all polynomials in Xps eees X of total degree
< i). Now under the assumptions on f and G stated, the Fokker- ‘
Planck operator £ maps FiGRn) into itself and multiplication with
h(x) always does so. Hence for these systems the estimation
algebra L maps-FiORn\ into itself. Let

L, = (DELDF®R™ < F, ®N} = Rex(L » End(F®R™/F ®R")). Then

Li is an ideal of L, L/Li is finite dimensional, L o L, o...

1
and if f, G, h are all three analytic then N L, = {0}.

2.11. Pro-finite dimensional algebras. An infinite dimensional

Lie algebra L will be called profinite dimensional 1if there
exists a sequence of ideals L] =} L2 O... such that L/Li is finite
dimensional for all i and N Liz {0}. Thus the depree increasing
estimation algebras of 2.10 above are examples if f, G, h are
analytic (or at least not flat at 0). Another example of a
profinite dimensicnal Lie algebra is 2.7. The relevance of this
property for the existence of (approximate) filters will be

discussed in b.1 below. ‘

2012, ldentification of linear systems with noise corrupted

coelfficients.,
The system 1is dxt= atxtdt+dw‘t, dac= dw2t with observations
d}'t = xtdt + dvt' The estimation algebra 1is again W2.
3. WEYL ALGIBR AS.

As we saw in section 2 above the (Heisenberg-)Weyl algebras
wn often occur as estimation algebras.Thus, according to the
introduction, it becomes important to study the homomorphisms
of wu into the Lie algebras V(M) of vectorfields on finite

dimensional manifolds M.
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3.1. Nonimbedding theorem. let M be a finite dimensional smooth

manifold. Then for all n > | there are nu nonzero homomorphisms

of lLie algebras w“ + V(M) or wnﬂR.l > V(M).

3.2. The cubic sensor, For the cubic sensor the conjectured

generalization of Sussmann's minimal realization result has been
proved (durinu this conference in fact) [21,]11] and as a conse-

quence of this and 3.1, 2.3 we have

1.3

3.3, Theorem. For the cubic sensor 2.3 there exist no nonzero
statistics which can be computed by finite dimensivnal filters
(o) = (.

Of course this theorem says nothing about approximate
metiods. The reader is alse Invited in this connection to look
at the contriburion by M., Zakai in this volume [22].

Tt seems most likely that the proof of theurem 3.1 can be
(@3]
1

give an analogue of theorem 3.3 for example 2.4.

adapted easily to vield o similar result for W whiclh would

~. A NUMBER OF OPEN PROBLEMS.
The results of sectious 2 and 3 above suggest a large number

of open problems.

’

4.1. Problem, First and foremost there is the question of the
appropriate gencralizations of the results of Krener and Sussmann
discussed in section 1.

i)

4.2. Problem. Determine (up to isomorphism) all finite dimensional

Lie subalpgebras ol W, and more generally wn. An obvious example

1
is Qn which as a vector space is spauned by the monomials
5
xugué with o] + |B] < 2. Thus Q, is 6 dimensional. Another
dx”™

example is the subalgebra spanned as a vector space by
%; v X ET 1, X, ooy x" for some m. Conjecturally all finite

dimensional subalgebras of W, are isomorphic to  subalgebras of

1

3 23 3J
one of these. Thus the algebra spanned by x e X I iR
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which is isomorphic to glzqa) is also isomorphic to the

d
subalgebra of Ql spanned by — s X 1, x %;. Another example
dx

of a finite subalgebra of W, is the linear span of

2 .
xz, x 4, x3, 2—; + 2xz %; + x4 which is isomorphic

1, Xy =
dx 2
dx

to Q].

4.3. Problem. Are there finite dimensional estimation algebras
(in wn) which are not isomorphic to the estimation algebra of
a linear system? In particular can the classical finite

dimensional Lie algebras arise as estimation Lie algebras?

4,4. Problem. Consider the Lie algebra of all expressions
z fi(x) %;— + g(x), fi(x), g(x) smooth functions on R™. Can this
i

Lie algebra arise as an cstimation Lie algebra (up to isomorphism)?

4.5. Problem. The classical simple infinite dimensional (filtered)
Lie algebras of Lie and Cartan are all subalgebras of the algebra
Qn of formal vectorfields in n-variables. Can one of these
algebras arise -as an estimation Lie algebra? There are many
infinite dimensional Lie algebras contained in the V(M). One
example of an infinite dimensional estimation algebra which can

be embedded in a V(M) occurs in [14]. More are needed.

4.6. Problem. If there is no noise in the state equations the
Fokker-Planck operator degenerates to a first order differential
operator and the resulting estimation algebra is always naturally
an algebra of vectorfields, What does this imply for filtering,
and what happens if the noise term in the state equations is given

a coefficient ¢ and we let £ go to zero?

4,7. Problem. Develop tests for the finite dimensionality of the

Lie algebra generated by a finite set of elements of wn.
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5. MORPHISMS BETWEEN XYSTEMS, COMPATIBLE REPRESENTATIONS
AND ISOTWOPY SUBALGEBRAS.

5.1. Isotropy subalgebras. Let L « V(M) be a Lie algebra of
vectorfields on M. Let x & M., Then the isotropy subalgebra Lx
of L at x consists of all X € L such that the tangent vector

at x of X ls zero. Equivalently if X is seen as a derivation

on the algebra F(M) of smwath functions on M, cf. [12] on the
appendix on manifolds and vectorfields in this volume, then
'x €L iff (X)(x) =0 for all f € F(M). Now let ¢ : M >N
be a morphism of smooth manifolds and suppose that ¢ is
compatible with a homomorshism of Lie algebras o : L = V(N).

This means that (qx)¢(m) = d¢(xm) for all m € M, In terms of
derivations it means that

(5.2) X(¢* (g7 = ¢*(a(X)(g)), g € F(M)

where ¢*(g) is the function on M defined by ¢*(g) (m) = g(o(m)).
Another way of stating (5.2) is that ¢* is a homomorphism of
L-modules where V(N) acquires its L-module structure via u. It
immediately follows from (5.2) that if ¢ : M - N and o : L + V(N)
6(x)" This is

the extra condition on homomorphisms of Lie algebras involved

are compatible, then for all x € M, a(Lx) < V(N)

in Krener's theorem [13]; ¢f. also Sussmann's paper [23].

5.3. Estimation algebras with representations. Thus to construct

finite dimensional filters we need not just any homomorphism of
Lie algebras from the estimation Lie algebra into a V(M), we
need one which is compatible with the natural representation of
the estimation algebra acting on (unnormalized) densities p(x)
and V(M) acting on F(M). That is we need a homomorphism of Lie
algebras a: L +~ V(M) together with a linear map Y: {functions
on densities} + F(M) which is a homomorphism of L-modules
(where V(M) acquires its L-module structure via o). It is easy
to find homomorphisms of lle algebras L +~ V(M) which do not

satisfy this extra condition. Thus for example imn [14] there
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occurs an estimation Lie algebra with basis a, b‘, b2"" and

bracketts [a, b, ] = [b..b ] = 0. An ad hoc representatlon

1*!’
of thisg Lie algebra by means of vectorfields is amr> ey 5—,

bir» .(1—1).ely %; , and this realization of L does not correspond

to a filter for the conditional density.

6. APPROXIMATE AND SUBOPTIMAL FILTERS.

6.1. Power series expansions. Let us consider again the case

of the degree increasing estimation algebras of section 2.10
above. In this case we had a homomorphism of Lie algebras

L - L/Li + End(F/Fi) (where F is the space of smooth functions
on RY. Now F/Fi is a finite dimensional vectorspace, say

F/Fi = RF. Choose coordinates n ey nr in'IRr and map

N
A € End@®") to the vectorfield T a; N %ﬁ' This gives us a

homomorphism of Lie algebras L + V(RT) and this homomorphism
comes together with a natural map {space of smooth densities}

+ RY, viz. pr— diTI(O))a where a runs through all multiindices
Ix

such that |al < i, and, virtually by the definition of the various
maps, L -+ VGRr) is compatible with {space of smooth densities}
-~ RY. Thus the isotropy subalgebra condition is automatically
tui'illed in this case. So that (modulo the approupriate
generalizations of [13], [23]) we should obtain a sequence
of filters for various statistics $1, wz, WB’ ... . The fact that
n Li = {0} if [,G,h are analytic should correspond to a statement
that the statistics Yo wz, ... determine (x,t) uniquely.

In fact 1f p(x,t) admits a power series expansion
g(x,t) = Fx“pq(r). then these various statistics ought to be the

- p) . . . .

Lox pa(t). Quite possibly these filters exist even when
, .

<t

~(x,t) cannot be shown to admit a power series expansion and then
converge to ({x,t) In some singular way. More generally one may

hepe for generalized power series expansions when the estimation
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algebra is profinite dimensional (in an isotropy subalgebra
respecting way).

6.2, Perturbation and detormation techniques. As we have seen

the estimation Lie algebras of examples 2.8 and 2.9 are both
equal to w1 for all € # 0. Yet the associated "Lie algebras

n
mod £ "

are tinite dimensional for all n [8]. There should be
approximate filters corresponding to these Lie algebras
corresponding (more or less) to the calculation of the first n
terms in a power series development (it it exists) of p(t,x)

ial
in powers of €, p(t,x) = oo(t,x) +aplt,x) + e, (E,x) + ...

1
Similar ideas seem to be involved in [1].

v.3, Suboptimal filters. If one throws away the svcond observation

in example 2.6 one finds example 2.7 which has an estimation
algebra of profinite dimensiovnal type. Mureover for this particular
example the various ideals do correspond to filters for various
moments [15]. These are suboptimal filters in the case of the
original system. The question arises whether quite generally a
quotient of a sub-Lie-algebra of the estimation algebra corresponds
(under sultable compatibility, i.e. ilsotropy subalgebra, conditions)
to a suboptimal filter for some statistic. We are also curious to
know whether there exists an estimation Lie algebra L which is

not itself realizable in a V() but which is a union of subalgebras
X0

L = L.,L
. i

1=]

V(M).

;) € L, <... such that each Li is realizable in some

6.4, Changes in output structure. Quite generally the following

question seems to merit investigation: What happens to the

estimation algebra when the output structure is changed, e.g.
when an output is added, when the output is processed through
another system before beiny observed, when a component of the

state is made observable, ... etc.
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