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Given a (nonlinear) filtering problem there is associated to it 
a Lie algebra L(I) of differential operators which is the Lie 
algebra generated by the two operators occurring in the Zakai 
equation for the unnormalized conditional density of the prob­
lem. The representability of L(I) or quotients of L(I) by 
means of vectorfields on a finite dimensional manifold is 
strongly related to the existence of exact finite dimensional 
recursive filters. However, in many cases, including the cubic 
sensor problem and the problem dx= dw, dz=(x+EX 3 ) dt 
+do, e:;C=O, the algebra LtI) is isomorphic to the Wey! 
algebra W1 = R(x,d/dx) which admits no nonzero homomor­
phisms into any Lie algebra of vectorfields on a finite dimen­
sional manifold. On the other hand the Lie algebra 'L,(I) mod 
e" •is finite dimensional for all n which opens up the possibility 
of the existence of a sequence of converging approximate 
filters. 

Keywords: Nonlinear filtering, Lie algebra methods, Finite di­
mensional filters. 

1. Introduction 

Consider a stochastic system (in Ito form) 

dx, = f(x 1 ) dt + g(x,) dw,, 

(I .I) 

where f,g,h are vector and matrix valued func­
tions and w, v are independent Wiener processes. 
For convenience we assume scalar observations. 
This paper is concerned with the problem of recur­
sively filtering of the state x 1 given the past ob­
servations z1 = {z,: 0.;;;; s.;;;; t}. 

An unnormalized version of the conditional 
density of x, given z' satisfies the so-called Zakai 
equation [14], which in Fisk-Stratonovic form 
looks as follows: 

dp(t,x) = (Lp(t,x)-th 2(x)) dt 

+h(x)p(t,x) dz, (1.2) 

where L is the Fokker- Planck operator, and re­
cently Brockett and Mitter have shown that the 

32 

Lie algebra of differential operators generated by 
the two operators in this equation, i.e. L -1 h2( x) 
and h(x), plays an important role in (nonlinear) 
recursive filtering (cf. [1,2,3,l l,12] and the contri­
butions of Brockett and Mitter and others in [7]). 

Now, by definition, a finite dimensional (exact) 
filter for some statistic y(x 1 ) of the conditional 
state is a system (on a finite dimensional manifold 
M) of the form 

dTJ1 =a(111 ) dt + b( 71 1 ) dz,. 
-...... 
y(x1 )=c(111 ), 

(1.3) 

i.e. it is a finite dimensional machine driven by the 
observations which calculates the estimate M) = 
E[y(x1)jz 1]. 

Now suppose that a filter (1.3) exists. We can 
assume that ( 1-3) is minimal. Then there are 2 
ways of calculating y(x,), viz. via (1.3) and also via 
(l.2) because given p(x,t), y(x 1) can be obtained 
by first normalizing and then integrating y( x 1) 

against the normalized conditional density. 
Via an as yet conjectural generalization of a 

result of Sussmann [ 13] this means that there must 
be a homomorphism of Lie algebra of the Lie 
algebra L(~) generated by L-t h2(x) and h(x) 
into the Lie algebra of vectorfields generated by 
the vectorfields a( 11 ), b( 11) on the manifold M. In 
the case of the cubic sensor and the systems (2.1) 
and (2.2) to be considered in more detail below 
this result has been proved [6], and this implies (cf. 
below in Section 2) that for the cubic sensor 

( 1.4) 

and for the perturbed linear systems 

dx1 = dw,, (1.5) 

dz 1 =(x1 +ex;}dt+dv,, e:;z!=O, 

no finite dimensional exact filters exist for any 
nonzero statistic. 

Let L.('i.) be the Lie algebra of the Zakai 
equation of the system (1.5). It turns out (cf. 
Section 3 below) that the Lie algebra L[i.) mod en 
is finite dimensional for all n_ Now every finite 
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dimensional Lie algebra can he realized as a Lie 
algebra of vectorfidds, which, conjecturally, would 
give us a convergent sequence of approximate 
filters. (In [8] and [9, 10] there is positive evidence 
for the existence of filters corresponding to suita­
ble homomorphisms of Lie algebras L(~) __.,. 
V( M ), where V( M) is the Lie algebra of smooth 
vectorfields of a smooth manifold M.) 

2. Perturbed linearly observed linear noise 

Consider the following two one-dimensional 
systems: 

dx, = dw" 

dz, =(x, +ex;) dt+dv1 , 

dx, = dw1 , 

dz 1 = (x 1 +ex;) dt + dv1 

(2.1) 

(2.2) 

where e is a (small) real parameter. The two opera­
tors L-1 h 2(x) and h(x) occurring in the Fisk­
Stratonovic form of the Zakai equation are in 
these two cases equal to 

l d 2 l 2 ? 
--.--(x+ex t 
2 dx 2 2 ' 

I d 2 1 3 2 
- - - -( x +ex ) , 
2 dx 2 2 

x + ex 2 , (2.3) 

x + ex 3 . (2.4) 

For a given e :¥= 0 let L 2( e) be the Lie algebra 
generated by the two operators (2.3) and Lle) the 
Lie algebra generated by the operators (2.4). 

Let W1 be the Weyl algebra of all differential 
operators (any order) with polynomial coefficients, 
i.e. 

A basis for W1 consists of all operators 

e,, 1 =x'~. i,jE~U{O}. 
dx 1 

(2.5) 

(2.6) 

We use W{ to denote the subalgebra of W1 

spanned by the operators (2.6) with i -j even. 
Both W1 and W{ are associative algebras but we 
shall only consider them as Lie algebras (with the 
product [D1,D2 ] = D 1D2 - D1 D 1). 

2.7. Theorem. For all e =j=. 0, Li(e) is isomorphic to 
W{. 

2.8. Theorem. For all e :¥= 0, L3(e) is equal to W 1• 

And of course L 2(0) and LJ(O) are both isomor­
phic to the four-dimensional oscillator algebra 
spanned by the operators 

d 
dx' 

1. 

Theorem 2.7 is not difficult to prove. The proof of 
Theorem 2.8 is long and computational. See the 
appendix. 

However, we also have: 

2.9. Theorem (see [4]). Let M be a finite dimen­
sional smooth manifold and V(M) the Lie algebra 
of smooth vectorfields on M. Then there are no 
nonzero homomorphisms of Lie algebras W1 __.,. 

V(M). 

The proof of this theorem can be adapted to 
yield the corresponding result for w;. 

This implies [6] that no nonzero statistic of (2.3) 
and (2.4) for e :¥= 0 admits a finite dimensional 
exact filter. 

3. The Lie algebras L,(2), L.(3) mod en 

Let W1(e) = iR<x,e,d/dx) be the Lie algebra 
of all differential operators with coefficients which 
are polynomial in x and e. That is, a basis for 
W1 ( e) is the set of all operators 

. . d' {O} x'el--, i,j,k EN U . 
dxk 

(3.1) 

Let A= {A 1, •• • ,Am} be a set of elements of W1(e). 
Then L(A) denotes the Lie algebra over IR gener­
ated by A 1, ••• ,Am, i.e. L(A) is the IR-vectorspace 
spanned by A 1, ••• ,Am and all their iterated brac­
kets. A somewhat larger algebra is L'( A) which is 
the algebra generated by A 1, ... ,An over IR[e]. The 
algebra L'( A) consists of all operators of the form 
P( e)A, A EL( A), P( e) a polynomial in e. 

Now let L C W1(e) be a sub-Lie-algebra. Then 
L mod en is the Lie algebra obtained from L by 
setting e; = 0 for all i;;;;., n. More precisely, enW1(e) 
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is an ideal in W1(e) so that L n enW1(e) is an ideal 
in J, and we define 

L mode"= L/L n e"W1(e). (3.2) 

3.3. Theorem. Let P( x) be a polynomial of degree 
n. Let 

A= { i d~2 -i(x + eP(x))2,x + eP(x)}. 

Then the Lie algebras L(A) mod em and L'(A) mod 
em are finite dimensional for all m E 1'1. 

Proof. Observe that 

is a linear combination of terms x; di/dxl with 
i + j ~ r + s + I+ m - 2. Now let L be the sub­
Lie-algebra of W1(e) consisting of all linear combi­
nations of the expressions 

.. dk ( ) 
e'x1 ~, j+k- n-1 i~2. 

dxk 
(3.4) 

It follows immediately from the remark made 
above that Lis indeed a sub-Lie-algebra of W1(e). 
(We are giving e degree (n - I) so to speak.) 

Now for every m E 1'I there are only finitely 
many pairs (j,k), j,k E 1'I U {O} such thatj + k ~ 
2 + (n - l)m. It follows that L mod Em is finite 
dimensional for all m. (In fact the dimension of L 
mod em equals n:r=o1(3 + i(n - 1))(4 + i(n - 1)).) 
Now~ d 2/dx 2 -hx + eP(x))2 and x + eP(x) 

are both in L, and if A E L then so is Q( e )A for 
every polynomial Q( e ). It follows that L( A) and 
L'(A) are both sub-Lie-algebras of L and conse­
quently L(A) mod em and L'(A) mod em are 
sub-Lie-algebras of L mod em and hence finite 
dimensional. 

3.5. Example. Taking P(x) = x 2 and x 3 we find 
the Zakai-Lie algebras L 2(e),L3(e) of the systems 
(2.3) and (2.4). Thus the Zakai-Lie algebras of 
these systems are finite dimensional mod em for all 
m ;;;;.: 0. And in fact we find for m = 2 that Li( e) 
mod e2 is the JO-dimensional Lie algebra with 
basis 

l d2 I 2 3 -----x -ex, x, 
2 dx~ 2 

d d 
ex, e, exdx, edx' 

34 

d 
dx' l, 

d2 
e--2 , ex 2 

dx 

(3.6) 

and L 3(e) mod 1::2 turns out to he the 14-
dimensional algebra with basis 

1 d2 1 2 4 
ex 3, 

d -----x -ex X, 
dx ' 2 dx2 2 ' 

d d 
(3.7) 1, e, ex2- ex, ex dx, dx' 

d2 d d3 d2 
ex 2. e--2· edx' e--3, ex--2 , 

dx dx dx 

3.8. Remark. Note that for the truth of Theorem 
3.3 (and various obvious generalizations) it seems 
quite important that we are dealing with algebras 
generated by second order differential operators 
(and with systems which are deformations of lin­
ear systems). 

4. Implications and conclusions 

We have seen that the Zakai-Lie algebra of the 
perturbed linear system (2.2) is equal to W1 for all 
fixed e ::fa. 0, and this implies that no nonzero 
statistic of the conditional state admits an exact 
finite dimensional filter. However, treating e as an 
indeterminate the Zakai-Lie algebra of this sys­
tem is finite dimensional mod en for all n. Every 
finite dimensional Lie algebra L has a faithful 
representation L ~ glm(IR) for some m E 1'1 and 
glm(IR) is realizable as a Lie algebra of vectorfields 
on IR m by means of the embedding 

a 
(a;)~ ~.a;}XJ ax;. 

I,) 

Thus the quotient Lie algebras L.(3) mod en are 
realizable as Lie algebras of vectorfields which, 
conjecturally, means that there exist corresponding 
filters which then will be approximate filters for 
the conditional density. If the conditional density 
p(x,t,e) admits a power series expansion in e, 
p(x,t,e) = Po(X,t) + EP1(x,t) + e2p2(X,t) + .. ., 
then the filter corresponding to L.(3) mod e" 
calculates p0(x,t), p 1(x,t), ... ,pn- i(x,t). 

Appendix 

Calculation of the Lie algebra of differential 
operators generated by td2/dx2 -t P 2, P where 
P is the polynomial P = x + ex 3 , e ::fa. 0. 
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For convenience write 

d'P 
p =-. 

I dx'' 

l d 2 l l 
e =----x2 -ex4 --e2x 6 

1 2 dx2 2 2 ' 

e2 =x+ex3 , 

. 2 
e4 = [e3 ,e2 ] = P 12 = (l + 3ex2) , 

e5 = [e3 ,e4 ] =P1(Pf)1 

= 2Pf P2 = 2(1+3ex2)26ex, 

e6 = [e3 ,e5 ] = P1(2Pf-P2 ) 1 

= 4p12Pi + 2Pf P3 

= 2(1 + 3ex2 ) 2( 72e2x 2 + (I + 3ex 2 )6e). 

Combining e4 and e6 we can form any element of 
the form 

(I +3ex2)2(ax 2 +b)= 

= (l + 6ex2 + 9e2x 4 )(ax 2 + b) 

=b+(6eb+a)x 2 

+ (9e2b + 6ea )x4 + (9e2a )x6 • 

Now take a= 1/18, b = 2/27e. Then this gives the 
element 

_ 2 ( 12e l ) 2 
e7 - 27e + 27e + 18 x 

+ ( ~87:2 + ~; )x4 + ( ~~2 )x6 

2 1 I 
=-+-x2 +ex4 +-e2x 6 

27e 2 2 · 

Adding this to (1) we obtain the element 

l d 2 2 l d2 

es =1dx2+27e =1 dx2 +c. 

[2e8 ,e2] = [ dd:2 + 2c,P1 ddx + ~P2] 
d 2 d d 1 

=2P2-2 +P3-d +P3-d +-2P4 
dx x x 

d2 d = 12ex-2 + l2e-d . 
dx x 

This gives us the elements 

d2 d 
e9=x-2+-d , 

dx x 
l 

e 10 =1[2e8 ,e9 ] 

=..!.[£+2c x£+,i_] 
2 dx 2 ' dx 2 dx 

-..!.(2~)-~ - 2 dx 3 - dx 3 • 

[e10,e2] = [ dd:3 ,x + ex3] 

d 2 d2 d = 3-2 + 9ex2- 2 + 18ex-d + 6e. 
dx dx x 

Combining this with e8 we see that L contains an 
element 

d2 d 
e 11 =x 2 - 2 +2x-d +c2 , c2 EIR. 

dx x 

[ d2 d2 d ] [e8 ,e 11 ]= --2 +c,x 2 - 2 +2x-d +c2 
dx dx x 

d3 d2 d2 
=4x-3 +2-2 +4-2 . 

dx dx dx 

This gives (in combination with e8) an element of 
the form 

d3 
e12 = x-3 + C3. 

dx 

[x dd:3 +c3 ,x+ex3] = 

d2 d2 d 
= 3x-2 + 9ex3- 2 + 18ex2-d + 6ex. 

dx dx x 

Subtracting 3e9 this gives us 

d2 d d 
9ex3-+ 18ex2-+6ex-3-

dx2 dx dx' 

and subtracting 6e3 from this gives 

d2 d d 
9ex3-+6ex- 3--6--18ex 

dx2 dx dx 

35 



I' . \ 

which 

which 

!.l\ ckmcnt 

2u. 

us an element 

d" d -·- + il(-- - ., __ 
dx 1 •• dx 5 -dx · 

,] ='x--, + d · l dx· 
d2 d --+h-+ 

dx 2 • dx 

d' d2 d2 d2 
-1+2x--, + 4x--, + 2x-­
dx dx- dx• dx 2 

2 ' . 6 d~ 2 d = x·--+ x--+ -
dx3 dx 2 dx' 

us the element 

--+3x--. +~. 
dxJ dx2 dx 

are all linear combinations of 
. d/dx and the coefficient ma­

trix has determinant 

0 1 \ i 0 l 

--l ) 3 3 - 2) = det{ 0 -6 
l 3 } I • } 3 

= det{ 
1 -~)=l. -6 

And it follows that the elements 

are all three in L The rest is easy. 

[e1i,.e"J=[ d ,x+ex3J=l+ 

l + 3ex 2] = 6ex, 

{e 16 ,6i::xJ = 6E, 

and this that (combined with e4 ,e5,e6 ) 

! I ! RS 

art• all m L. Now 

[ d 
(I ! 3n l ' 3u,x 

1.h 

which gives us that 

x" EL for all 11=0,1.2, .... 

Combined with xd 2 2, d/dx EL this suffices 
to show that 

. di 
x"-EL Vk,lENlJ O}. 

dx 1 
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