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INTRODUCTION 

One of the greatest successes in combinatorial optimization in recent years has 

been the algorithm of Khachiyan (1979), which solves the linear programming problem in 

polynomial time. The existence of such an algorithm has been a major unsolved problem 

in the theory of computational complexity, and has been an obstable in the way of the 

classification of various combinatorial problems with respect to the P-NP scheme, 

for example in scheduling theory. There are a large number of problems which have been 

reduced to linear programs; the polynomial solvability of the linear programming problem 

immediately implies the polynomial solvability of these problems. 

It turns out, however, that there is a really wide class of combinatorial problems 

which cannot be reduced to linear programming and yet the method of the new linear pro-

gramming algorithm can be applied to solve them, or more precisely, to reduce them to 

simpler combinatorial problems. It has to be noted that the basic idea of the new 

method, as Khachiyan remarks in his paper, is due to Shor (1970), who applied it in 

non-linear optimization. Since the applications of the method given in this paper are 

somewhere between linear and non-linear programming (or some of them are, in fact, non-

linear), it is more apt to call this method the Shor-Khachiyan method or - rhyming with 

the classical simplex method - the Ellipsoid Method. 

The method will be outlined in Section 1. Here we also describe the general 

approach to combinatorial optimization which makes the application of the method possi-

ble. 

The main result formulated in Section 2 is that every submodular set-function can 

be minimized in polynomial time. This result, combined with the rather trivial Greedy 
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Algorithm and some more applications of the Ellipsoid Method, implies the polynomial 

solvability of a number of combinatorial optimization problems such as the matching, 

matroid intersection, optimum branching, optimum covering of directed cuts, etc. 

In the third section we very briefly mention some other applications and conclude 

with some remarks on the prospects of this method. 

1. THE ELLIPSOID METHOD AND POLYHEDRAL COMBINATORICS 

Let P CRn be a polyhedron, determined by the inequalities 

T T 
a1x ~ b1 , .•• , amx ~ bm' 

and let c!x be a linear objective function that we want to maximize over P. For 

the sake of simplicity assume that P is bounded and full-dimensional; say P is 

contained in the ball S(O,R) of radius R about the origin, and it contains somewhere 

a ball of radius r. 

We define a sequence of points x0,x1 , ... and a sequence of ellipsoids E0,E1 , ... 

such that xi is the centre of E .• 
l 

Let x0 = 0 and E0 = S(O,R). 

and Ek are defined. Then let us check whether or not xk e P. 

Assume that 

Case 1. If xk e P, then consider the half-ellipsoid which is the intersection of 

Ek with the halfspace T T c x ~ c xk' and include it in an ellipsoid with least 

possible volume. Let xk+l be the centre of Ek+l' 

T Case z. If xk ~ P then let aix ~ bi be a constraint which is violated by xk. 

Include the intersection of Ek with the halfspace a!x < b. in an ellipsoid E 
1 1 ~l 

with least possible volume. Let xk+l be the centre of Ek+l' 

The following can be proved : if we look at those values of k for which xk e P 

(call these briefly feasible values), then 

max{cTxk:l ~ k ~ p, k feasible}+ max{cTx:x e P}, (p + ~), (1) 

and the convergence is exponentially fast. In a sense this fact may be considered as 

the polynomial solution of the optimization problem. If we want to get the precise 

solution, we have to know and use something of the arithmetical nature of the vertices 

of P (this is quite natural : if a vertex might have, say, irrational coordinates then 
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it would be impossible to describe the answer). In combinatorial applications, for 

example, we quite often will know that the vertices of P are lattice points. The 

exact optimum then can be obtained simply by rounding. 

The idea of the proof of the fast convergence in (1) is quite simple, although 

precise details are tedious. We look at the piece of P where the value of the object-

ive function is not smaller than the maximum value at feasible points xk found so 

far, and prove by induction on k that this piece is included in the current ellipsoid. 

It is easy to see that the volume of Ek drops exponentially fast with k, and hence 

the volume of the piece of p where the objective function is not smaller than the 

current record also must drop exponentially fast. Hence the difference between the 

current record and the true optimum of the objective function must also decrease expon-

entially fast. 

Details of this argument can be found in [14]. 

Now we come to the combinatorial part of the paper. A general setting in which 

combinatorial optimization problems can be treated is the following. Given a finite 

subset SC Rn and a linear objective function cTx, find 

T max{c x : x e S}. 

Since a linear function always assumes its optimum at a vertex of a polytope, 

-we have 

max{cTx : x e S} = max{cTx : x e conv(S)}. 

Since conv(S) is a polytope, the left hand side is equivalent to a linear program. So 

if we can write up this program explicitly and then solve it by the Simplex or Ellipsoid 

Method, we are done. 

This program, initiated among others by Edmonds, Fulkerson and Hoffman, has moti-

vated the considerable amount of research that has concerned the facial structure of 

combinatorially defined polytopes. But even for classes of polytopes for which the 

facets are well known, this approach could not lead to satisfactory (polynomial) alga-

rithms. The reason for this is that (with a very few exceptions) the number of facets 

of conv(S), i.e. the minimum number of inequalities needed to describe conv(S), is 
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exponentially large in the size of the original combinatorial structure. So even to 

write up the linear program which we have to solve in order to find the desired optimum, 

takes exponential time. (This is not surprising if we think of the fact that S in 

itself is usually exponentially large in the size of the original combinatorial struct-

ure; if not, we can determine the optimum by evaluating the objective function at every 

element of S.) 

It may be the most important feature of the Ellipsoid Method that it overcomes 

this difficulty in many cases. To see how, note that the inequalities defining P enter 

the algorithm only at one point : when we have to decide if xk s P and if not, we 

need an inequality which is violated by xk. One way to do this is to sub-

stitute xk into each of the inequalities T 
aix ; bi; but since in combinatorial opti-

mization problems these inequalities are usually very structured, we may well have a 

subroutine which checks xk E P, and picks a violated inequality if xk i P, without 

explicitly writing up all inequalities defining P. So the Ellipsoid Method reduces 

the original combinatorial problem to another one, which (as we shall illustrate in the 

next section) is quite different from the original and often easier to solve. 

One way to formulate this relation between combinatorial problems is in terms of 

anti-blocking polyhedra (see Fulkerson [12]). Let A be non-negative m x m matrix 

and b a non-negative n-vector. Let 

P = {x s R: : Ax ; b}. (2) 

Then the anti-blocker of the polytope P is the polytope 

m T P* = {y s R+ : x y ; 1 for every x s P}. 

Theorem 1.1. Let K be a class of polytopes of type (2) such that there exists an 

algorithm to maximize an arbitrary linear objective function over polytopes in K in 

time polynomial in nm and the number of decimal digits in the coefficients of the 

objective function. Then there exists such an algorithm for the class of anti-blockers 

of polytopes in K. 
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2. MINIMIZING SUBMODULAR FUNCTIONS AND APPLICATIONS 

Let f be a function defined on the subsets of a set 5. The function f will 

be called submodular if 

f(X n Y) + f(X UY) ~ f(X) + f(Y) 

holds for every pair of subsets of S. Tiie main result which we state in this section 

is the following. 

Theorem 2 .1. Let f be a submodular function on the subsets of a finite set S. 

Assume that we have a subroutine to compute f(X) in time less than T. Then the sub­

set of 5 minimizing f can be determined in time polynomial in T and ISI. 

As a first application we show how to find the value of a maximum flow between 

a,b of a network G. For X C V(G), denote by o(X) the capacity of the cut deter­

mined by X. It is a simple well-known fact that o(X) is a submodular function. By 

the Max-flow-min-cut Theorem, the value of a maximum flow is 

min{o(X) : a e x V(G) - b}. 

This minimum can be determined in polynomial time by minimizing the submodular function 

o(X U {a}) over th~ subsets of V(G)-a-b. It is, of course, also important to find an 

optimum flow, and this does not follow directly from the Ellipsoid Method. But if we 

have a polynomial algorithm to find the value of an optimum flow for every network, then 

there are several quite easy procedures to find a maximum flow. We leave this to the 

reader. 

A more essential application is the following. Let G be a digraph. A directed 

cut is the set of edges connecting X CV(G) to V(G) - X, provided X i cj> or V(G), 

and there is no edge connecting V(G) - X to X. A theorem of Lucchesi and Younger 

asserts that the maximum number of edge-disjoint directed cuts is equal to the minimum 

number of edges covering all directed cuts. More recently Lucchesi [19], Karzanov [15] 

and Frank [10] gave polynomial algorithms to find this number. To show that such an 

algorithm can be based on the Ellipsoid Method, let us assign a variable xj to every 

edge j and consider the polytope 



0 < x. < 1, 
= J = 

E x. > 1 
j~ J 
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(for every edge j) 

(for every directed cut D). 

It easily follows from the Lucchesi-Younger Theorem that the vertices of this polytope 

are 0-1 vectors corresponding to those sets of edges which cover all directed cuts. 

So to determine the minimum number of edges covering all directed cuts we have to mini-

mize the linear objective function Exj over the polytope P. In order to apply the 

Ellipsoid Method, we only need a polynomial subroutine which checks x € P and if the 

answer is in the negative, it finds a constraint which is violated. The first set of 

constraints is easily checked one by one, so we may assume that x > 0 and that we are 

only interested in checking whether or not all the directed cut-constraints are satis-

fied. This is clearly equivalent to the following problem : 

Given a digraph and a weight on every edge, find a directed cut with minimum weight. 

This can be reduced to the problem of minimizing a submodular function as follows. 

For every edge e of G, add a new edge which connects the endpoints of e in the 

reverse order, and let its weight be N, where Define o(X) as the sum of 

weights of edges connecting X to V(G) - X in this new graph. Then o(X) is sub-

modular, and moreover, a non-empty set minimizing it necessarily determines a directed 

cut. So it suffices to minimize the submodular set-function o(X) over the non-empty 

subsets of V(G), which as we have seen, can be done in polynomial time. 

By similar methods we can find algorithms which go with the minimax theorems in 

Edmonds-Giles [6] and Frank [9]. (These results generalize several minimax results, 

like polymatroid intersection (Edmonds [3,5], Lawler [17]), optimum branching (Edmonds 

[2)), packing of rooted cuts (Fulkerson [12)), max-flow-min-cut (Ford-Fulkerson [BJ), 

packing of directed cuts (Lucchesi and Younger [20]), etc.) 

Let us conclude with the discussion of the matching problem. This needs an 

extension of the submodular function minimization problem. The following result general-

izes a recent algorithm of Padberg and Rao [21). 



39 

Theorem 2.2. Let f be a submodular set-function defined on the subsets of a finite 

set 5. Assume that we have a subroutine to compute f(X) in time at most T. Let H 

be a collection of subsets of s with the property that x E H, y ~ H, x n y ~ H 

implies that XU YE H. Also assume that we have a subroutine to check X EH in 

time at most T'. Then there is an algorithm to find 

min{f(X) : X E H} 

in time polynomial in ISI, T and T'. 

An example of a collection H of subsets with the given property is the callee-

tion of all subsets with odd cardinality. 

Let G be a graph with an even number of vertices and let us assign a non-negative 

weight wj to each edge. We want to find a perfect matching with maximum total weight. 

By Edmonds [l] the convex hull of perfect matchings of G is given by the inequalities 

xj > 0 (for every edge j) 

E x. = 1 (for every vertex v) 
j~ J 

E x. > 1 (for every odd cut C), 
jEC J 

where an odd cut means the set of edges connecting X to V(G) - X for some X<;; V(G), 

IXI odd. To be able to apply the Ellipsoid Method we have to be able to check if a 

vector x satisfies these inequalities. The first two kinds of constraints are easily 

checked one by one. To deal with the third kind, we need a subroutine to find an odd 

cut C But this means to minimize a submodular funct-

ion over the odd-size subsets of V(G). By Theorem 2.2, this can be done in polynomial 

time. 

3. CONCLUDING REMARKS 

1. In the combinatorial applications discussed above we were only concerned 

with the speed of our algorithms up to polynomiality. As a matter of fact the running 

times, as far as we could estimate, are rather poor. For those applications where 

polynomial algorithms have been known before these are much faster than ours. The main 

point has been to solve all these problems using one technique, the Ellipsoid Method. 
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It is natural that such a general approach cannot compete with special-pµrpose alga-

rithms. For those problems to which the Ellipsoid method seems to have yielded the 

first polynomial solutions, this fact should be a challenge to find better algorithms 

making better use of the specialities of the problem. 

2. The Ellipsoid Method applies to convex bodies other than polyhedra, and this 

fact can also be utilized in combinatorics. An application of this kind is an algorithm 

to compute the independence number of a perfect graph in polynomial time [14]. More 

generally, one can compute a rather sharp upper bound for the independence number of an 

arbitrary graph (see [lBJ). 

3. It may be interesting to point out that the majority of those combinatorial 

optimization problems which are known to be polynomially solvable, can be solved by a 

combination of the Ellipsoid Method and the Greedy Algorithm. 

4. The Ellipsoid Method shows that the investigation into the facial structure 

of polytopes may be useful in designing algorithms in a more specific way than just 

"gaining insight". This is particularly significant if we consider that the descrip-

tion of facets of combinatorial polyhedra means a "good characterization" of the maximum 

value of linear objective functions. So this is a quite general situation where know-

ing a "good characterization" helps in designing a good algorithm. Thus the Ellipsoid 

Method may also contribute to the problem whether NP n coNP = P. 

REFERENCES 

1. J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices, J. Res. Nat. 
Bur. Stan. 8 69(1965), 125-130. 

2. J. Edmonds, Optimum branchings, J. Res Nat. Bur. Stan. B 71(1967), 233-240. 

3. J. Edmonds, Submodular functions, matroids, and certain polyhedra, in : Combina­
torial Structures and their Appl. (Proc. Intern. Conf. Calgary, 1969; R. Guy, 
H. Hanani, N. Sauer, J. Schonheim, eds.), Gordon and Breach, N.Y. 1970, 69-87. 

4. J. Edmonds, Edge-disjoint branchings, in : Combinatorial Algorithms (Courant 
Comp. Sci. Symp. Monterey, 1972; R. Rustin, ed.) Academic Press, N.Y. 1973, 
91-96. 

5. J. Edmonds, Matroid intersection, Annals of Disctrete Math., 4(1979), 39-49. 

6. J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs, 
Annals of Discrete Math., 1(1977), 185-204. 

7. J. Edmonds and E.L. Johnson, Matching, Euler tours, and the Chinese postman, 
Math. Prag., 5 (1973), 88-124. 



41 

8. L.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton Univ. Press, Prince­
ton, N.J. 1962. 

9. A. Frank, Kernel systems of directed graphs, Acta Sci. Math. Szeged 41(1979), 
63-76. 

10. A. Frank, How to make a digraph strongly connected? Combinatorica (submitted). 

11. D.R. Fulkerson, Packing rooted directed cuts in weighted directed graphs, Math. 
Prag., 6(1974), 1-13. 

12. D.R. Fulkerson, Anti-blocking polyhedra, J. Combinatorial Theory,B 12(1972), 
50-71. 

13. P. Gacs and L. Lovasz, Khachiyan's algorithm for linear programming, Math. Prag. 
Studies (submitted). 

14. M. Grotschel, L. Lovasz and A. Schrijver, The ellipsoid method and its conse­
quences in combinatorial optimization, Combinatorica (submitted). 

15. A.V. Karzanov, On the minimal number of arcs of a digraph meeting all its directed 
cut sets. (To appear). 

16. L.G. Khachiyan, A polynomial algorithm in linear programming, Dokl. Akad. Nauk 
SSSR 244(1979), 1093-1096. 

17. E.L. Lawler, Optimal matroid intersections, in : Combinatorial Structures and 
their Applications (Proc. Intern. Conf. Calgary, 1969; R. Guy, H. Hanani, 
N. Sauer, J. Schonheim, eds.), Gordon and Breach, N.Y. 1970, 233-235. 

18. L. Lovasz, On the Shannon capacity of a graph, IEEE Trans. on Inf. Theory, 
25(1979), 1-7. 

19. C.L. Lucchesi, A minimax equality for directed graphs, Thesis, University of 
Waterloo, 1976. 

20. C.L. Lucchesi and D.H. Younger, A minim~x relation for directed graphs, J. London 
Math. Soc., 17(1978), 369-374. 

21. M.W. Padberg and M.R. Rao, Minimum cut-sets and b-matchings, (to appear). 

22. N.Z. Shor, Convergence rate of the gradient desent method with dilatation of 
the space, Kibernetika 2(1970), 80-85. 


