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Given a (nonlinear) filtering problem there is associated to it 
a Lie algebra L(l:) of differential operators which is the Lie 
algebra generated by the two operators occurring in the Zakai 
equation for the unnormalized conditional density of the prob
lem. The representability of L(l:) or quotients of L(l:) by 
means of vectorfields on a finite dimensional manifold is 
strongly related to the existence of exact finite dimensional 
recursive filters. However, in many cases, including the cubic 
sensor problem and the problem dx = dw, dz = (x + ex 3) dt 
+ d v, e * 0, the algebra L,( l:) is isomorphic to the Wey! 
algebra W1 ==R(x,d/dx) which admits no nonzero homomor
phisms into any Lie algebra of vectorfields on a finite dimen
sional manifold. On the other hand the Lie algebra 'L.( l:) mod 
en' is finite dimensional for all n which opens up the possibility 
of the existence of a sequence of converging approximate 
filters. 

Keywords: Non!inear filtering, Lie algebra methods, Finite di
mensional filters. 

1. Introduction 

Consider a stochastic system (in Ito form) 

dx 1 = J(x1 ) dt+ g(x 1) dw1 , 

(1.1) 

where j,g,h are vector and matrix valued func
tions and w, v are independent Wiener processes. 
For convenience we assume scalar observations. 
This paper is concerned with the problem of recur
sively filtering of the state x 1 given the past ob
servations z1 = { zs: 0..,;; s..,;; t}. 

An unnormalized version of the conditional 
density of x 1 given z 1 satisfies the so-called Zakai 
equation [14), which in Fisk-Stratonovic form 
looks as follows: 

dp(t,x) = (Lp(t,x)-~h2(x)) dt 

+ h(x)p(t,x) dz1 (1.2) 

where L is the Fokker-Planck operator, and re
cently Brockett and Mitter have shown that the 
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Lie algebra of differential operators generated by 
the two operators in this equation, i.e. L -1- h2(x) 
and h(x), plays an important role in (nonlinear) 
recursive filtering (cf. [l,2,3,ll,12] and the contri
butions of Brockett and Mitter and others in [7]). 

Now, by definition, a finite dimensional (exact) 
filter for some statistic y( x 1 ) of the conditional 
state is a system (on a finite dimensional manifold 
M) of the form 

d711 =a(111 ) dt+b(711) dzl' 
-...._ 
y(xJ = c( 711 ), 

(1.3) 

i.e. it is a finite dimensional machine driven by the 
observations which calculates the estimate AA)= 
E[y(x1)iz1]. 

Now suppose that a filter (1.3) exists. We can 
assume that (1.3) is minimal. Then there are 2 
ways of calculating y(x1), viz. via (1.3) and also via 
(1.2) because given p(x,t), y(x1) can be obtained 
by first normalizing and then integrating y(x1) 

against the normalized conditional density. 
Via an as yet conjectural generalization of a 

result of Sussmann [13] this means that there must 
be a homomorphism of Lie algebra of the Lie 
algebra L(~) generated by L-1- h2(x) and h(x) 
into the Lie algebra of vectorfields generated by 
the vectorfields a( 'I/), b( 71) on the manifold M. In 
the case of the cubic sensor and the systems (2.1) 
and (2.2) to be considered in more detail below 
this result has been proved [6], and this implies (cf. 
below in Section 2) that for the cubic sensor 

(1.4) 

and for the perturbed linear systems 

dx1 = dwl' ( 1.5) 

dz1 =(x1 +exi}dt+dvt> e¥=0, 

no finite dimensional exact filters exist for any 
nonzero statistic. 

Let L[2 .. ) be the Lie algebra of the Zakai 
equation of the system (1.5). It turns out (cf. 
Section 3 below) that the Lie algebra L,("'2..) mod e" 
is finite dimensional for all n. Now every finite 
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dimensional Lie algebra can be realized as a Lie 
algebra of vectorfields, which, conjecturally, would 
give us a convergent sequence of approximate 
filters. (In [8] and [9,10] there is positive evidence 
for the existence of filters corresponding to suita
ble homomorphisms of Lie algebras L( ~) ~ 
V(M), where V(M) is the Lie algebra of smooth 
vectorfields of a smooth manifold M.) 

2. Perturbed linearly observed linear noise 

Consider the following two one-dimensional 
systems: 

dx, =dw1 , 

dz, = (x, +exn dt+ dv" 

dx1 = dw1 , 

dz 1 = (x1 +ex;) dt + dv1 

(2.1) 

(2.2) 

where e is a (small) real parameter. The two opera
tors L-! h2(x) and h(x) occurring in the Fisk
Stratonovic form of the Zakai equation are. in 
these two cases equal to 

I d 2 I 2 2 ----(x+ex ) 
2 dx2 2 , 

.!. ~ _.!_(x + ex3 ) 2 
2 dx2 2 , 

(2.3) 

(2.4) 

For a given e =!= 0 let L2(e) be the Lie algebra 
generated by the two operators (2.3) and L3(e) the 
Lie algebra generated by the operators (2.4). 

Let W1 be the W eyl algebra of all differential 
operators (any order) with polynomial coefficients, 
Le. 

(2.5) 

A basis for W1 consists of all operators 

. di 
e;,1 =x'dxi' i,jEl\IU{O}. (2.6) 

We use WI to denote the sub algebra of W1 

spanned by the operators (2.6) with i - j even. 
Both W1 and W{ are associative algebras but we 
shall only consider them as Lie algebras (with the 
product [D1,D2]=D1D2 -D2D 1). 

2.7. Theorem. For all e=/=O, L2(e) is isomorphic to 
W{. 

2.8. Theorem. For all e =!= 0, L 3( e) is equal to W1• 

And of course Lz(O) and L3(0) are both isomor
phic to the four-dimensional oscillator algebra 
spanned by the operators 

Theorem 2. 7 is not difficult to prove. The proof of 
Theorem 2.8 is long and computational. See the 
appendix. 

However, we also have: 

2.9. Theorem (see [4]). Let M be a finite dimen
sional smooth manifold and V(M) the Lie algebra 
of smooth vectorfields on M. Then there are no 
nonzero homomorphisms of Lie algebras W1 ~ 

V(M). 

The proof of this theorem can be adapted to 
yield the corresponding result for W{. 

This implies [6] that no nonzero statistic of (2.3) 
and (2.4) for e =!= 0 admits a finite dimensional 
exact filter. 

3. The Lie algebras L.(2), L,(3) mod en 

Let W1(e) = IR(x,e,d/dx) be the Lie algebra 
of all differential operators with coefficients which 
are polynomial in x and e. That is, a basis for 
W1(e) is the set of all operators 

; i dk . . k E "'' U {O} x e --k , i, J, '"" . 
dx 

(3.1) 

LetA = {A 1, .. • ,Am} be a set of elements of W1(e). 
Then L( A) denotes the Lie algebra over IR gener
ated by A 1, ••• ,Am, i.e. L(A) is the IR-vectorspace 
spanned by A 1, ... ,Am and all their iterated brac
kets. A somewhat larger algebra is L'(A) which is 
the algebra generated by A 1, ••• ,An over IR[e]. The 
algebra L'(A) consists of all operators of the form 
P(e)A, A E L(A), P(e) a polynomial in e. 

Now let Le W1(e) be a sub-Lie-algebra. Then 
L mod en is the Lie algebra obtained from L by 
setting e; = 0 for all i ~ n. More precisely, enW1(e) 
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is an ideal in W1(e) so that L n enW1(e) is an ideal 
in L and we define 

(3.2) 

3.3. Theorem. Let P( x) be a polynomial of degree 

n. Let 

A={l. d 2 _l_(x+eP(x))2,x+eP(x)}. 
2 dx2 2 

Then the Lie algebras L(A) mod em and L'(A) mod 
em are finite dimensional for all m E ~. 

Proof. Observe that 

r / __ [ ds dm ] 
X dxs ,x dxm 

is a linear combination of terms x; di/dx1 with 
i+j..;;r+s+l+m-2. Now let L be the sub
Lie-algebra of W1( e) consisting of all linear combi
nations of the expressions 

eixi dd:k' J+k-(n-l)i..;;2. (3.4) 

It follows immediately from the remark made 
above that Lis indeed a sub-Lie-algebra of W1(e). 
(We are giving e degree (n - 1) so to speak.) 

Now for every m E ~ there are only finitely 
many pairs (j,k),j,k E ~ U {O} such that)+ k..;; 
2 + (n - l)m. It follows that L mod em is finite 
dimensional for all m. (In fact the dimension of L 
mod em equals ~2:~(/(3 + i(n - 1))(4 + i(n - 1)).) 
Now~ d 2/dx 2 --i(x + eP(x))2 and x + eP(x) 

are both in L, and if A EL then so is Q( e )A for 
every polynomial Q( e ). It follows that L( A) and 
L'(A) are both sub-Lie-algebras of L and conse
quently L(A) mod em and L'(A) mod em are 
sub-Lie-algebras of L mod em and hence finite 
dimensional. 

3.5. Example. Taking P(x) =x 2 and x 3 we find 
the Zakai- Lie algebras L 2( e ), L3( e) of the systems 
(2.3) and (2.4). Thus the Zakai-Lie algebras of 
these systems are finite dimensional mod em for all 
m;;;. 0. And in fact we find for m = 2 that L 2(e) 
mod e2 is the 10-dimensional Lie algebra with 
basis 

1 d2 I 2 3 d 
1, -----x -ex X, 

dx 
, 

2 dx2 2 , 

d d d2 
(3 .6) 

ex, e, ex dx' edx' e--2, ex 2 

dx 
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and L 3(e) mod e2 turns out to be the 14-
dimensional algebra with basis 

l d 2 l 
-ex4 , ex 3 , 

d -----x2 X, 
dx' 2 dx 2 2 

1, 2 d d 
(3.7) e, ex dx' ex, ex dx' 

d2 d d3 d2 
ex 2 . e--2, edx' e--3, ex--

d 0' dx dx x-

3.8. Remark. Note that for the truth of Theorem 
3.3 (and various obvious generalizations) it seems 
quite important that we are dealing with algebras 
generated by second order differential operators 
(and with systems which are deformations of lin
ear systems). 

4. Implications and conclusions 

We have seen that the Zakai-Lie algebra of the 
perturbed linear system (2.2) is equal to W1 for all 
fixed e =I= 0, and this implies that no nonzero 
statistic of the conditional state admits an exact 
finite dimensional filter. However, treating e as an 
indeterminate the Zakai- Lie algebra of this sys
tem is finite dimensional mod en for all n. Every 
finite dimensional Lie algebra L has a faithful 
representation L - glm(IR) for some m EN and 
gl m(IR) is realizable as a Lie algebra of vectorfields 
on ~ m by means of the embedding 

a 
(a;) -4 2: a;jXJ ax;. 

l,j 

Thus the quotient Lie algebras L.(3) mod en are 
realizable as Lie algebras of vectorfields which, 
conjecturally, means that there exist corresponding 
filters which then will be approximate filters for 
the conditional density. If the conditional density 
p(x,t,e) admits a power series expansion in e, 
p(x,t,e) = p0(x,t) + ep 1(x,t) + e2p2(x,t) + · · ·, 
then the filter corresponding to L,(3) mod en 
calculates p0(x,t ), p1( x, t ), ... , Pn- 1( x, t ). 

Appendix 

Calculation of the Lie algebra of differential 
operators generated by 1d2/dx 2 -1 P 2 , P where 
P is the polynomial P = x + ex 3 , e =fa 0. 
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For convenience write 

dip 
P.=, dx;' 

1 d2 1 1 
e =----x2 -ex4 --e2x6 

I 2 dx2 2 2 ' 

e =x + ex3 
2 ' 

. 2 
e4 = [e3 ,e2 ] = P( = (1+3ex2) , 

e5 = [e3,e4] =Pi( Pn 1 

= 2P12P2 = 2(1+3ex2)26ex, 

e6 = [e3,e5 ] = P1(2PtP2 ) 1 

= 4P12Pz2 + 2Pf P3 

= 2(1 + 3ex2 )2(72e2x 2 + (1 + 3ex 2 )6e ). 

Combining e4 and e6 we can form any element of 
the form 

(1+3ex2)2(ax2 + b) = 

=(l +6ex2 +9e2x 4 )(ax2 +b) 

=b+(6eb+a)x 2 

+ (9e2b + 6ea )x 4 + (9e2a )x6 • 

Now take a= 1/18,b=2/27e. Then this gives the 
element 

+ ( 18e2 + 6e ) 4 + ( 9e2 ) 6 
27e 18 x 18 x 

2 l 1 
=-+-2x2 +ex4 +-2e2x6. 

27e 

Adding this to (1) we obtain the element 

1 d2 2 1 d 2 
e8 =--+-=--+c. 

2 dx 2 27e 2 dx 2 

[2e8 ,e2] = [ dd:2 + 2c,P1 ddx + IP2] 

d 2 d d 1 
=2P2- 2 +P3 -d +P3 -d +-2 P4 

dx x x 

d2 d 
= 12ex-+ 12e-. 

dx 2 dx 

This gives us the elements 

d2 d 
e9=x-2+-d ' 

dx x 

1 
e 10 =1[2e8 ,e9 ] 

1 [ d 2 d2 d ] =-2 -2+2c,x-2+-d 
dx dx x 

-1-(2~)-~ - 2 dx 3 - dx 3 • 

[e 10 ,ez] = [ d~3 ,x+ ex3] 

d2 d2 d 
= 3-2 + 9ex2- 2 + 18ex-d + 6e. 

dx dx x 

Combining this with e8 we see that L contains an 
element 

d2 d 
e 11 = x 2 - 2 + 2x-d + c2, c2 E IR. 

dx X 

[eg,e11]=[ d22+c,x2 d22+2xdd +c2] 
dx dx x 

d3 d2 d2 
=4x-+2-+4-. 

dx 3 dx 2 dx2 

This gives (in combination with e8) an element of 
the form 

d3 
e12 = x-3 + C3. 

dx 

[x dd:3 +c3,x+ex3] = 

d2 d2 d 
= 3x-2 +9ex3- 2+18ex2-d + 6ex. 

dx dx x 

Subtracting 3e9 this gives us 

d2 d d 
9ex3-+ 18ex2-+6ex-3-

dx2 dx dx' 

and subtracting 6e3 from this gives 

d 2 d d 
9ex3-+6ex-3--6--18ex 

dx2 dx dx 
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giving us an element 

d 2 d 
e =ex3-----2ex. 

13 dx2 dx 

[2e8,e 13 ] = [ d2~ + c,e 13 ] 
dx-

d3 d2 d 
= 6ex2--+ 6ex-- - 4e-, 

dx3 dx2 dx 

which gives us an element 

d 3 d 2 d 
e =3x2-+3x--2-. 

14 dx3 dx3 dx 

[ d2 d d2 d ] [e9,e11l= x-2 +-d ,x2 __ 2 +2x-d +c2 
dx x dx x 

d3 d2 d2 d2 
= 4x2 - + 2x- + 4x- + 2x--

dx3 dx 2 dx 2 dx 2 

d d3 d2 
+2--2x 2--2x-

dx dx3 dx2 

d3 d2 d 
= 2x2 - 3 + 6x-2 + 2-d , 

dx dx x 

which gives us the element 

d3 d2 d 
e1s =x2 __ 3 + 3x--2 +-d . 

dx dx x 

Now e9, e14 and e15 are all linear combinations of 
x 2d3/dx 3 , xd2/dx2, d/dx and the coefficient ma
trix has determinant 

l 
3 
3 

= det( _ ~ 

l 
-6 

3 

And it follows that the elements 

d3 
eis =x2 __ 

dx 3 

are all three in L. The rest is easy. 

[e16,e2] = [ d~ ,x + ex3] =I+ 3ex2, 

[ e16 ,l + 3ex2] = 6ex, 

[e 16 ,6ex] = 6e, 

and this gives that (combined with e4,e5,e6) 

e19=l, e20 =x, e21 =x2 , e22 =x3 , 

e13=x4, e1s=xs, e26=x6 

36 

are all in L. Now 

which gives us that 

x" EL for all n = 0,1,2, .... 

Combined with xd2/dx 2, d/dx EL this suffices 
to show that 

di 
xk-EL 'Vk,lEN U {O}. 

dx' 
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