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1. Introduction

Let K=(K1,...,Km), Kyz oo 2K, Ko eNU
{0}, ZK; = n be a partition of n. We define a par-

tial order on the set of all m-part partitions of n as
follows

>

K> Ko ﬁb Ki < 55 Ky, r=1,...,m (1.1)
=1 i

We shall say that K specializes to K' or that K <s
more gemeral than K' if (1.1) holds. The reverse

ordering has been called the dominance order [1]. This
order occurs in many different parts of pure and applied
mathematics and we now proceed to discuss some of these.

1.2. The Snapper Conjecture

)

Llet K = (K],...,Km be a partition of n. Let
K be the subgroup SK1 X SK2 . xS of Sn’ the
symmetric group on n letters. For example 3(2 2,1)
[ 55 is the subgroup consisting of the permutations

(1), (12), (34), (12)(34). Let p(K) be the represen-
tation of Sn obtained by taking the trivial represen-

tation of the subgroup SK and inducing it up to Sn'

Then the Snapper conjecture says that p(K) isadirect
summand of p(K') if K< K'. Proofs of this statement
can be found in [2] and [3]. -

1.3.

S

X ..

The Gale-Ryser Theorem [5],[6]

Let ¢ and v be two partitions of n. Then
there is a matrix of zeros and ones whose columns sum
to u and whose rows sum to v iff v > u*. There u*
is the dual partition of n defined by u¥ =
#{jluj >1i}.  For example (2,2,1)* = (3,2). As a rule

we shall not distinguish between two partitions if one
of them is obtained from the other by adding some zeros.

1.4,

Double Stochastic Matrices ([5])

A matrix M = (mi.) is called double stochastic
if m; 20 forall i,j and Zmij 1 for all
i

J
and EZ"Hj =1 forall 4. Let u and v be two

J
partjtions of n. Then there is a double stochastic
matrix M such that p = Mv (so that p is an aver-
age of V) if u > v.

1.5. Completely Reachable Systems

Let L;rn denote the space of all completely
reachable control systems Ax + Bu, x € Rn,

X
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ueR". That is, L;rn is the space of all pairs
(A,B) consisting of a real nxn matrix A and a real

nxm matrix B such that the nx(n+1)m matrix

R(A,B) = (B;AB;...;A"8) has rank n. The transforma-
tions: (A,B) » (A+BK,B), K a real mxn matrix

(feedback), (A,B) » (SAS™V,SB), S an invertible real
nxn matrix (basis change in state space) and (A,B) &
(A,BT), T an invertible real mxm matrix (basis
change in input space) define an action of the Lie group
of all block triangular matrices

s 0
¢ 1 € 6L (R

Ler This group is called the feedback group.

m,n’
For each (A.B) € L;‘"n Jet K(A,B) be the set of

Kronecker indices of (A,é) (ordered in descending
order). For each m-part partition K of n Tlet OK =

{(A,B)|K(A,B) = K}. Then

on

1.6. Theorem ([15])
The orbits of the feedback F acting on L;rn are
precisely the OK'

It follows that the topological closure 5k, i.e.

the set of systems which can arise as 1imits (degenera-
tions) of a family of systems with Kronecker indiges K
is necessarily a union of 0K and some other orbits

Concerning this, several people

(possibly none).
.) have noticed

(Byrnes, Hazewinkel, Kalman, Martin . .
that

1.7. Theorem
0K ) OK‘ iff K> K'.

1.8. Gerstenhaber-Hesselink Theorem

Let N be the space of all nilpotent nxn
matrices, i.e. N = {A eRVM A" = 01, Le% sL,(R)
act on N by conjugation, i.e. NS = sasT. Every

N € N is similar to a Jordan normal fqrm matrix with
zeros on the diagonal and thus the orbits of SLn(R)

acting on Nn are labelled by partitions K
(K1,...,Kn) of n, where the K, represent the sizes
of the Jordan blocks. Let N, be the orbit correspond-

ing to K. Then the Gerstenhaber-Hesselink theorem
[113, [17] says
1.9. Theorem

NK > NK. iff K< K'.

Note the reversal of the order in this statement with
respect to the statement of Theorem 1.7.
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1.10.

Degeneration of Vector Bundles
let E bE a holomorphic vectorbundle over the Rie-
‘mann sphere S%. Then according to [16] E splits as
a direct sum of line bundles (i.e. vectorbundles of
dimension 1) E L(K]) ®...® L(Km) and in turn line

bundles are classified by their degree (or first Chern-
class). Thus holomorphic vectorbundles over S$¢ of
dimension m are classified by an m-tuple of integers
K(E) = (K(E)son oK (ED)s Ki(E) € Z, Ky(E) 2 ... 2
Km(E). The bundle E ds called positive (or ample) if

Ki(E) >0 for all i. We have

1.11. Theorem
let E, be a_holomorphic family of positive vec-
torbundles Bver S2. Then K(EO) < K(Et) for all

small enough t. Inversely if K < K' afe two parti-
tions of n, then there is a holomorphic family of
bundles E; such that K(Eo) = K and K(Et) =K' for

all t # 0.

1.12. Interrelations

It is well-known that Snapper conjecture implies
the Gale-Ryser theorem, the result on doubly stochastic
matrices as well as another combinatorial result known
as Muirhead's inequality, cf. [1], [2]. On the other
hand, the Hermann-Martin vectorbundle associated to a
system provides the connection between theorems 1.11
and 1.7, cf. [13], [4], and explains why the same par-
tial order occurs in the two theorems. In this paper
we present a direct 1ink between theorems 1.8 and 1.7
and show how the Snapper-conjecture and theorem 1.11
relate to the ordering of the Weyl group Sn+m of the

semisimple Lie group SLn+m(E), the so-called BGG order

[91, or, more precisely how these results relate to the
natural "closure ordering" on the Schubert cells of the

Grassmann manifold Gn(En+m). These notions will be

defined below. This explains why the same ordering
occurred again and again above. It also gives us a new
deformation type proof of the Snapper conjecture. In
addition to these new connections there is alsoadirect
connection between the Snapper conjecture and the
Gerstenhaber-Hesselink theorem [12] which completes the
picture in a very nice way, as illustrated by the fol-
Towing diagram

"

Snapper Conjecture

Gerstenhaber-Hesselink

Theorem
"\\i:

Kronecker indices
of systems
B

Gale-Ryser Theorem

Doubly Stoch. Matrices HoTomorphic
Muirheads Inequality vectorbundles
C

N

Schubert-Cell ordering
(BGG Order)

2. Grassmann Manifolds, the Canonical

Bundle and Schubert Cells

The Grassmann manifold Gn(¢n+m) is, as a set,
thg collection of all n-dimensional subspaces of g,
This set has a natural structure of an analytic mani-
fO]dh+mNe define a holomorphic vectorbundle & over
Gn(m ) by taking as the fibre over x the
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. . +
m-dimensional quotient space " m/x. Let p: Em -

Gn(¢n+m) be the projection, and let T(Em) be the
vector space of holomorphic sections of p, 1i.e. the
space of all holomorphic s: Gn(¢n+m) -» Em such that
p-s = id. There are (n+m) obvious elements in
P(gm) defined by Ei(x) = e, mod x € Em(x) = ¢"+m/x
where e. 1is the i-th canonical basis vector of (In+m.

5
These elements are linearly independent (obvious1y)'
and, though we shall not need this, they form a basis
for T(gm).

For each sequence of n subspaces A = (0 g A
A2 v ? An) of m"*m we define the closed Schubert

]

o ~#)

el

SC(A) = {x € 6 (€™M |din(xn A;) = i}, (2.1)

In particular if X = (A],...,kn) is a strictly in-
creasing sequence of natural numbers we define

A
et My

One easily checks that SC(X) = SC(X') if and only if
Ai < k% for all 1. Now assign to an m-part partition

K = (K1,‘..,Km) the sequence of natural numbers

A(K) = (?,3,...,Kfi, |§2+3,...;K1+K2+2j...,
K Ky

(2.2)
M+.“+§m1+m+1,“.,K]+...+Km+m)

« )

v

K

Then, clearly K > K' if and only if Ai(K) > Ai(K'),

i=1,...,n so that the mapping K~ A(K) exhibits

the specialization order as a suborder of the. ordering
defined by the inclusion relations between the Schubert
cells SC(A). This ordering in turn is a quotient
ordering of the Bernstein-Gelfand-Gelfand ordering on
the Weyl group Sn+m’ cf. [9].

3. Vectorbundles and Systems

(Connection B)

Consider a system = = (A,B) € L;rn- Assign to
it the holomorphic map ¢Z:S2 = T U {=} » Gn(¢n+m)

s»[sIn-A,B], ' w;—»[In 0] (3.1)

where I is the nxn unit matrix and [M] for an

nx (n+m) matrix M denotes the subspace of En+m
spanned by the rows of M. This is modified version
of the map defined in [13]. And correspondingly one

has
3.2. Theorem

Let E(z) be the pullback vectorbundle ¢é -
Then K(E(Z)) = K(Z).

With the present definitions the proof turns out
to be almost a triviality, cf. [14].



4, Systems and Nilpotent Matrices
(Connection A)

This connection takes the form of a common proof
of both theorems. The idea of the proof is two exhibit
a small closed set that intersects each orbit in the
closure of some fixed orbit. This closed set is con-
structed in terms of certain filtrations that uniquely
define the orbit. We first consider the case of nil-
potent matrices.

Let A be the partition A],...,An and associate

with A the Young tableaux numbered from left to right
i.e.

1234]51
6] 7|8
9

ho |

Let vy be a partition such that y > A and
vy >1 =X implies T = XA. Then as in the introduction
we know that the Young diagram for vy is obtained from
the Young diagram for X by shifting an end block to
the first possible row above. For example

[ ]

Associate with the diagram the Young tableaux numbered
from Teft to right as above

11213 4Tsl
617 |8
9 |10

Now define a function on the first n integers in
terms of Young Tableaux for y by f(i) is the number
assigned to the box immediately above the i-th box, if
such a box exists, if not let f(i) = 0. Note that
f(i) = 0 iff 1 is a number in the first row. Also
that if k 1is in the i-th row of A then f(k) is in
a row of A with number less than or equal to i-1. We

will occassionally refer to f as the upward shift
operator.

let A be a nilpgtent matrix with associated fil-

tration Ker A c Ker A¢c ... < Ker A" of type A

Choose a basis for Ker A" such that €yse- 58y gen-
1

erate Ker A and in general e>\.l Y : + 10

generate Ker A'. Now define a linear

eA1 + ...+ Xi
function F by defining F(ei) = eg(4)
take e, = 0, and extending F 1linearly. Now from

the definition of f we have the following two facts.

, where we

1) Ker F' o Ker Al
2) F Ker Ai+1 < Ker Ai .

We first prove a lemma about ranks of sums matrices.

4.1. Lemma

let A §nd B be arbitrary matrices. The rank
of (tA + sB)1 is constant except on a fjnite number
of Tines in Ez\{(0,0)} and rk(tA + SB)' 2
max rk{A', rk 8'}.

Proof. Suppose the max rank (tA + sB)i = k.

Then
t,s
there is a kxk minor that evaluated at t_,s. does

0’70
not vanish. Since the minor is polynomial in t,s
then there is a Zariski open set on which it doesn't
vanish. The polynomial is hom? eneous So we can con-
clude that it is defined on P %E) and doesn't vanish

on a Zariski open set of P1(E) and hence it vanishes

at a finite number of points on ‘P1(¢) hence on a
finite number of lines. Thus the rank can only go
down at these isolated points. The Lemma follows by
choosing t=0 s=1 and t=1 s =0.

The next lemma will be the key for the proof of
the theorem.

4.2. Lemma
Let A and F be as above, then tA+F is con-
jugate to A for all but finitely many values of t.

Proof. We will prove by induction that Ker (tA+F)

> Ker A'. For =1 let x € Ker A. Then x € ker F
and hence (tA+F)x =0 for all t. Now assume i=k

that Ker (tA+F)k o Ker Ak Let x € Ker A¥Y and
note that x € Ker FrHl We calculate (tA+F)k+1
(tA-+F)kCtAx~+Fx) but Ax € Ker Ak and Fx € ter A
and by the induction hypothesis Ker (tA+F)k >

Ker AK. Thus x € Ker (tA-{F)k+] for all t. Thus we
have proven that rk(tA+F)1 <rk A" for all i. By

Temma 4.1 we know that rk A' < rk(tA+F) for all but
finitely many t. Thus for all but finitely many t
we have equality of rank and this proves conjugacy.

X =

Define a set M= {F:Fn = 0 and for all i Ker F'

> Ker A1}. M is clearly an algebraic subvariety of
the nilpotent matrices defined in terms of n hgmo-
geneous equations. [Let a be a basis element in

Ker A' then F'a = 0 is one such equation.] Llet T
be any partition greater than A. Then there is an
element of type T 1in M and further more there is a
sequence of line segments in M from A to an element

of type 1. Thus M is contained in the closure of
the orbit of A.
4.3. Lemma
The closure of the oribt of A is contained in
the set
r i i
M= n {F:rkF <rk A}
i=1 )
Proof. If F is conjugate to A then rk Flo=
rk A for all i and hence the orbit of A is con-

tained in M. Each of the sets in the intersection
is closed (even algebraic) and hence M 1is closed and
the lemma follows.

The main theorem now follows trivially.
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4.1. Theorem (Gerstenhaber-Hesselink)

A matrix B s contained in the closure of the
orbit of A iff the filtration type of B is larger
than the filtration type of A.

Proof. If B €& M then there is an F in M of
the same type and F s in the closure of the orbit
of A.

We now consider the case of pairs of matrices and
the feedback group. Again we must define a shift func-
tion but this time we need a down shift instead of an
up shift. Let A be a partition with Young tableaux
T. Let vy be less than X and again have the prop-
erty that vy <t <A implies v = X. Let T' be the
tableaux for <y obtained by moving the appropriate
box of the diagram for A. Define a function on the
first n integers by f(i) is the number of the box
in the tableaux T' 9immediately below the box of i
if such a box exists and zero otherwise.

Let (A,B) be a controllable pair and let the
filtration of controllable subspaces have type A. Re-
call that this filtration is defined by B] is the
space spanned by the columns of B and Bk+1 = ABk +
B,- One of the standard theorems is that (A,B) s

controllable iff Bn = E". See [4] for a survey.

Choose a basis for E" such that the first )\1. in 81.

for all i. Let the tableaux for vy be defined as
above. We will define a pair (F,G) in terms of the
tableaux of y. Let G be the matrix whose columns
are the basis elements numbered by the first row of .
Define F by defining F on the basis by F(ei) =

ef(i) with €, = 0 and extend F to a linear func-

tion. Now note that F and G have the following

;Eroperties. Let 6,2 ... G, be the filtration of
F.G]. "

1) (F,G) is controllable
2) 6; B,
3 FB; < Biu

The following Temma is the counterpart of lemma 4.2.

4.4, Lemma

Let (A,B) and (F,G) be as above.
tem (tA+F, tB+G) ds equivalent to
but finitely many t.

Then the sys-
(A,B) for all

Progf. We use the fact that two systems are feed-
back equivalent iff the filtrations are of the same
type [18]. Let VieVye ... eV be the filtration
of (tA+F, tB+G). First since G, < By we have that
V, =By forall t. Assume Ve
that G

Y K Let x € Vk+1 then by construction
there is a ¥ and ¥y € Vk such that

c Bk and we are given
cB

(F+th)y, +y, = x

but Y, €V e Bk € B,y and ¥y € V. =B, and hence
F_y1 € Bk+'|' By definition Ay] € Bk+] so we have that
X € Bk+1' Thus we have that Vk < Bk for all k. This
proves that the rk[(tA+F) (tB+G),...,(tB+G)] <

rk[A'B,...,B] for all i and all t. A slight modifi-
cation of Temma 4.1 yields that for all but finitely
many t the reverse inequality holds and thus the lemma

is proven.

Now define a set of pairs S = {(F,G)! the filtra-
tion of (F,G) 1s contained subspace by subspace in
the filtration of (A,B) and (F,G) dis controllable}
Again S is an algebraic subvariety of the controli-
able pairs, but seen by choosing, with respect to some
innerproduct, a complementary set of subspaces. Let T
be any partition less than vy then there is a pair
(F,G) € S of type T and furthermore the pair can be
reached from (A,B) by a sequence of line segments as

constructed in the previous lemma. Thus S is con-
tained in the closure of the orbit. of (A,B).
For a pair (F,G) denote the filtration by
V.l(F,G) c ... cV (F,G).
= ='n
4.5. Lemma
The closure of the orbit of (A,B) ds contained
in the set
n
S = n {(F,G):dim Vi(F,G) = dim Vi(A,B) and
i=1
(F,G) controllable}
Proof. Clearly the orbit of (A,B) is contained

in S and since each set in the intersection is closed
so is 8.

The main theorem now follows trivially.
4.2. Theorem

A pair (F,G) 1is in the closure of the orbit of
(A,B) if the filtration type of (F,G) 1is less than
or equal to the filtration type of (A,B).

Proof. If 1 <y then there is a system of type
t in S and hence if (F,G) s of type T then its
equivalent to a system in S.

The two theorems have almest identical proofs. In
both cases the key is that there is a map from each
orbit onto a flag manifold that is really the crucial
element. The set M and the set S are closely re-
lated to this map for let x be either a nilpotent
matrix or a controllable system and let w(x) be the
corresponding element of the flag manifold. Let H be
the stabilizer of the flag and consider the set in the
original variety of H-. x. It is not hard to show
that H-x<cMor S as the case may be. The closure
of Hx seems to be in general smaller than M or S,
but if we do the same trick for each y 1in the closure
of Hx then the union is M or S. Closing the sta-
bilizer picks up those elements with adjacent types
and perhaps a little more.

The key to the simplicity of these proofs was the
fact that in both cases we were working with the cor-
responding filtration instead of the canonical forms.

5. Classifying Maps
(Connection C)
Let E=L(K) & ...eL(K)

bundle of dimension m over S¢.
dimension i+ 1 and it follows that T(E) 1is of dimen-

sion n+m. For each s € s2 et x(s) be the Kernel

of the evaluation map vy - v(x), v € I'(E), v(s) €

E(s) the m-dimensional fibre of E over s. The vec-

torspace homomorphism T(E) » E(s) is surjective (posi-
tivity of E) and x(s) therefore has dimension n.

be a positive vector-

Now T(L(i)) has
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We can therefore define a morphism wE:SZ - 6, (r(E))

by s - x(s). This map is classifying (meaning that
1

bpE, = E (Easy) and moreover

5.1 Theorem

Let SZ,E,wE be as above and let K = (K],...,
Km). Then

(i) There is a Schubert-cell SC(A) such that
Im(wE) < SC(A) and such that dim A, =
xi(K) i=1,...,n (cf. (2.2) for the defini-

tion of Ai(K)L

(i) If a Schubert-cell SC(B) is such that

Impe = SC(B) then dim B, 2 A,(K),

i=1,...,n.

6. Systems and Schubert Cells
(the combined connection C - B)

let £ = (A,B) € L;rn. There as in section 3
above we associate to £ to holomorphic map ¢Z:S2 -

6, (€™ defined by
s» [sI-A,B], o~ [I,0] (6.1)
This is the classifying map of the vectorbundle E(Z)

of I (by definition of the latter). It follows that
in terms of systems theorem 5.1 translates as

6.2. Theorem

Llet £, oy be as above and let K = (K1(Z),...,
Kk (2)), A = A(K).

(i) There is a Schubert-cell SC(A) such that
dim(Ai) = Ai(K) such that Im ¢2c:SC(A);

(ii) If Im ¢y < SC(B) then dim(Bi) > Ai(K).

Assume I = (A,B) to be in Brunovsky canonical
form. Then after renumbering the usual basis of

H -
" m, which amounts to rearranging the columns of

(sI-A,B), the map ¢y looks particularly simple.

For example if K = (3,2,1) we find
(s -1 0 P0'0 0'o0'0'o0
0 s -1'0'0 0'0'0'o0
00 s'1'0 0'0'0'0
§ o |- == - Ll L (6.3)

0 0 0!0's - '0'o0'o

0 0'0'0 s!1'0 L0
0 0 0o0'0o'0 0'0's"'1

and we observe that indeed Im ¢y © $€(2,3,4,6,7,9).

7. A Family of Representations of Sn+m
Parameterized by Gn(¢"+m)

Let M be the regular representation of §

n+m’
i.e. M is a vector space w1t2 basis e , 0 €S .,
and sn+m acts on ey by (ec) =e - Let & be
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the classifying vectorbundle over Gn(¢n+m) defined
in section 2 above,whose fibre over x
_ pnim
g,(x) = T /x.
Now for each x € Gn(m
phic of vector spaces

is equal to

n+m .
) we define an homomor-

XX:M - gm(x)ﬁ(n"’m)’ e(’j - 50(-])‘()() @ ... ® Ec(,n+m)(x)

(7.1)
where the Eys-csEpyy AT the n+m holomorphic sec-

tions of £ defined in section 2, i.e. e.(x) =
e; mod x, e. the i-th basis vector of g Spém
on Em(x)@(n m) be permuting the factors and with
respect to this action (7.1) is Sn+m—equivariant and
thus defines a continuous family of homomorphisms. More
precisely we have a homomorphism of vector bundles

. nmy | c@(n+m)
X:M x Gn(ﬁ ) 5m

acts

(7.2)

which on each fibre is equivariant with respect to the

. 2{n-+m)
Spam action on M x {x} and gm(x) .

For each x € Gn( let mw(x) be the S ™
module XX(M). This gives us a family of representa-
tions of Sn+m which is "continuous" in the sense that
it arises as the family of images of a continuous fam-
ily of homomorphisms of representations.

u:n+m)

Very many representations of S arise in this

n+m

way. We have not yet determined completely which repre-
sentations of S .~ occur among the w(x). But, for
example, if K {s a partition of n and RK=(K, +1,

%

oKt 1) then the induced representation po(K) =
S

Indsf+m 1 occurs among the m(x). For example if K =

K -~
(3,1,0) then p(K) = m(x) if x 1is the row vector

space of a matrix of the form
* 1 0 0 O
o * 1 0 0 O
6 o * 1 0

o O o o

o o0 0 o0 * 1

where the * elements are allnonzero. Indeed.in this
case the vectors e1,e2,e3,e4 are scalar multiples of
each other mod x and so are e and €g> while eq
mod X, eg mod x and ey mod x are linearly indepen-

dent in g#xL

By letting Sn be the group of permutations of

various sets of n Tletters among the symbols on
which sn+m acts, many representations of Sn arise.

Conjecturally all representations of S, arise in this
way.

It is perhaps also worth observing that for all
s # 0 the representation w(¢z(s)), where I is a
system in Brupowsky canonical form is the induced repre-
sentation p(K). It would be nice to be able to inter-
pret this in control theoretic terms.



8. Families of Representations and

Snapper Type Results

Now let us see how "continuous" families of repre-
sentations yields the type of result occurring in the
Snapper conjecture. The relevant theorem is

8.1. Theorem

let V and W be two Sn-modu1es. Suppose we
have a continuous family of homomorphisms ¢t:V - W.
Let o(0) = Im L oft) = Im ¢4- Then the representa-
tion o(0) is a direct summand of the representation
a(t) for small t.

The proof is easy. Because the category of Sn~

modules is semi-simple, there exists a homomorphism of
Sn-modu1es wO:Im(¢0) -V such that 4 * Yy = id.

Then because ¢t is continuous in t it follows that
¢t . wo is injective for small t. This gives us an
embedding of Sn—modules 6(0)~ o(t) and hence, using

semisimplicity again, o(0)

is a direct summand of
o(t)

9. On the Proof of the Snapper Conjecture

Thus to prove the Snapper conjecture it suffices
to find families of maps of representations ¢t:V -> W

such that for a given K > K' we have Im 9, o o(K)
if t#0 (and small) and Im % =~ o(K'). Quite pos-

sibly such families can be found within the grand fam-
ily constructed above in section 7. Certainly the
%rand-family contains all the representations p(K)

as pointed out in section 7. To prove the Snapper
conjecture we rely on a slightly more complicated con-
struction which is perhaps best illustrated by means
of the following example.

Consider the representation in the fami1% of sec-
tion 7 defined over an Xes tER in Gn(tt“+ ) given

by a matrix of the form

(%

1 0 0 0 0 Q
* 01 0 0 0 O
* 00 1 0 0 0 (9.1)
z 0 0 0 y t 0
(0 0 0 0 0 * 1
where y,z and all the *'s are nonzero elements.

Consider the element
a=e @e, 8e; @ e @ e ®e@ey
(9.2)
- e1 [} e2 @ 93 2 e4 -] e.| -] e5 (-] e7

in (mn"'ﬂl)an""m

where e;
There m= 2, n

[
submodule K. of Em(xt)
of the element .

is the standard i-th basis

5. Now consider the S "
(n+m) . n+m
generated by the image

vector.

Now note that teg + yeg + zeq 0. Using this
and the extra relation that the image of (9.2) is zero
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mod Kt it follows readily that for t # O the images
of the two elements

e1 @ e2 @ e3 @ 64 2 es e @e

6 7

(9.3)
e1 ] e2 ] e3 -] e4 [} e6 2 e. e

5 7

are equal in
the image of

mod Kt' From this it easily follows that

¢
Mot

p(K)

But for t =0, yeg + ze; = 0 so that Ko = {0}.
Also Im ¢, = o(K'), where K' = (5,2) as we saw in
section 7 above. Now choose wo:Im ¢0 - M such that
¢owo = id.

Let us take y = -1, z

£, (x)°m™ TE g (xyemm)

for t# 0 where K= (9.3).

+ (9.9)

is

1 Then

(9.5)

for convenience.
eg = eq + teg mod gm(xt)
Consider OpUo:Ing > Imp, . A bi§is for _gm(xt) for
all t is given by the images & and eg of e
and e, respectively. Now because of (9.5) (and the
other Relations given by gm(xt)

op(e,) = o, (e) + tBle,) (9.6)

where B(eo) is a tensor product e of E} and Eé
involving 3 factors and 4 factors E} and ¢0(e6)
involves 2 factors Eé and 5 factors

Eé K
e

Now observe that the image of a in gm(xt)sn+m
is a sum of terms involving 5 factors E} and 2 fac-

tors Eé. So that ¢two(v) = v+ tB(y (v)) can be

in Kt iff
v EK, B(wo(v)) =0, velImo, (9.7)
Using the usual 1ift o, (defined by E} e ... & E& @
e . ®e, »(5!2”'] e ) it is a straightforward
6 "6 T
TESSXS2

matter to check that BYq is injective on Kt' This
proves that ”t¢two is injective so that Im ¢o==p(K')
is a direct summand of Im M0y o(K).

In this vein one proves the Snapper conjecture for
K> K' with Ki,K% > 1. The remaining cases are
handled by embedding Sn&» Sn+m ig in the obvious way
and by letting K correspond to K = (K] +1,...
Km+1).

Observe that the representations we are using from
the grand-family are precisely (up to taking a quotient
of one of them) among those 1iving over the Schubert-
cells SC(K) and SC(K').
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