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1. Introduction 

Let K = (K1, ... ,~), Kl ~ ... ~ ~· Ki E lN U 

{O}, EK; = n be a partition of n. We define a par­
tial order on the set of all m-part partitions of n as 
follows 

K > Kj.,. ± K. s t K11 , r=l, ... ,m (l.l) 
i =l 1 i=l 

We shall say that K specializes to K' or that K is 
more general tha.n K' if (1. 1) holds. The reverse 
ordering has been called the dominance or~er [l]. This 
order occurs in many different parts of pure and applied 
mathematics and we now proceed to discuss some of these. 

1.2. The Snapper Conjecture 

Let K = (K1, •••• ~) be a partition of n. Let 
SK be the subgroup SK x SK x ••• x SK of Sn' the 

1 2 ·m 
symmetric group on n letters. For examp 1 e S ( 2, 2, 1) 

c s5 is the subgroup consisting of the permutations 
(1), (12), (34), (12)(34). Let p(K) be the represen­
tation of Sn obtained by taking the trivial represen-
tation of the subgroup SK and inducing it up to Sn. 
Then the Snapper conjecture says that p(K) is a direct 
summand of p(K') if K < K'. Proofs of this statement 
can be found in [2] and [3]. • · 

1.3. The Gale-Ryser Theorem [5],[6] 

Let µ and v be two partitions of n. Then 
there is a matrix of zeros and ones whose columns sum 
to µ and whose rows sum to v i ff v ~ µ*. There µ* 
is the dual partition of µ defined by µ~ = 
#{jlµj ~ i}. For example (2,2,1)* = (3,2}. As a rule 
we shall not distinguish between two partitions if one 
of them is obtained from the other by adding some zeros. 

1.4. Double Stochastic Matrices ([5]) 

A matrix M = (m .. ) 
lJ 

if mij ~ O for all i,j 
is called double stochastic 
and :Em .. = l for all j 

i lJ 
and ~mij = 1 for all i. 

J 
partitions of n. Then there 
matrix M such that µ = Mv 
age of v) if µ > v. 

Let µ and v be two 

is a double stochastic 
(so that µ is an aver-

1.5. Completely Reachable Systems 

Let I er denote the space of all completely rn,n . 
reachable control systems x =Ax+ Bu, x E Rn, 
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u E 1Rm. That is, L~:n is the space of all pairs 
(A,B) consisting of a real n x n matrix A and a real 
n x m matrix B such that the n x ( n+ 1 )m matrix 
R(A,B) = (B;AB; ... ;AnB) has rank n. The transforma­
tions: (A,B) r+ (A+BK,B), K a real mxn matrix 
(feedback), (A,B) ... (SAS-1 ,SB), S an invertible real 
n x n matrix (basis change in state space) and (A,B) ... 
(A,BT), T an invertible real m xm matrix (basis 
change in input space) define an action of the Lie group 
of all block triangular matrices 

[: ~] E GLn+mOR) 

on L er . This group is ea l led the feedback group. m,n 
For each (A,B) E L~:r let K(A,B) be the set of 

Kronecker indices of (A,B) (ordered in descending 
order). For each m-part partition K of n let OK = 
{(A,B)IK(A,B) = K}. Then 

1.6. Theorem ([15]) 

The orbits of the feedback 
precisely the OK. 

F acting on Lcr are m,n 

It follows that the topological closure OK' i.e. 
the set of systems whi eh can arise as limits (degenera­
tions) of a family of systems with Kronecker indices K 
is necessarily a union of OK and some other orbits 
(possibly none). Concerning this, several people 
(Byrnes, Hazewinkel, Kalman, Martin ..• ) have noticed 
that 

1.7. Theorem 

OK ::i OK' iff K > K'. 

1.8. Gerstenhaber-Hesselink Theorem 

Let N be the space of a 11 nil potent n x n 
matrices, i.e. Nn = {A E lRnxnlAn = 0}. Let Sln('R) 
act on N by conjugation, i.e. Ns = SNS-1• Every 

n 
NE N is similar to a Jordan normal form matrix with 
zeros on the diagonal and thus the orbits of SLn(R) 
acting on N are labelled by partitions K = 

n 
(K1 , ... ,Kn) of n, where the K; represent the sizes 
of the Jordan blocks. Let NK be the orbit correspond­
ing to K. Then the Gerstenhaber-Hesselink theorem 
[11], [17] says 

1. 9. Theorem 

iJK ::i NK' iff K < K'. 

Note the reversal of the order in this statement with 
respect to the statement of Theorem 1.7. 
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1.10. Degeneration of Vector Bundles 

Let E b2 a holomorphic_vectorbundle over !he Rie-
·mann sphere S . Then according to [16] E splits as 
a direct sum of line bundles (i.e. vectorbundles of 
dimension 1) E = L(K1) E9 ... E9 L(~) and in turn line 
bundles are classified by their degree (or firs~ Chern­
class). Thus holomorphic vectorbundles over S of 
dimension m are classified by an m-tuple of integers 
K(E) = (K1(E), ... ,Km(E)), Ki(E) E "ll.., K1(E);::: ••• ;::: 

Km(E). The bundle E is called positive (or ample) if 
Ki(E);::: O for all i. We have 

1 .11. Theorem 

Let Et be a2holomorphic family of positive vec­
torbundles over S . Then K(E 0 ) < K(Et) for all 
small enough t. Inversely if K < K' are two parti­
tions of n, then there is a holomorphic family of 
bundles Et such that K(E0 ) = K and K(Et) = K' for 
allt'/-0. 

1.12. Interrelations 

It is well-known that Snapper conjecture implies 
the Gale-Ryser theorem, the result on doubly stochastic 
matrices as well as another combinatorial result known 
as Muirhead's inequality, cf. [l], [2]. On the other 
hand, the Hermann-Martin vectorbundle associated to a 
system provides the connection between theorems l. 11 
and 1.7, cf. [13], [4], and explains why the same par­
tial order occurs in the two theorems. In this paper 
we present a direct link between theorems 1.8 and 1.7 
and show how the Snapper-conjecture and theorem l. 11 
relate to the ordering of the Weyl group Sn+m of the 
semi simple Lie group SLn+m([), the so-called BGG order 
[9], or, more precisely how these results relate to the 
natural "closure ordering" on the Schubert eel ls of the 
Grassmann manifold Gn([n+m). These notions will be 
defined below. This explains why the same ordering 
occurred again and again above. It also gives us a new 
deformation type proof of the Snapper conjecture. In 
addition to these new connections there is also a direct 
connection between the Snapper conjecture and the 
Gerstenhaber-Hesselink theorem [12] which completes the 
picture in a very nice way, as illustrated by the fol­
lowing diagram 

[12] 

Snapper Conjecture 

Gale-Ryser Theorem 
Doubly Stoch. Matrices 
Muirheads Ine ualit 

Kronecker indices 
of systems 
is 

Holomorohic 
vectorbundles 

c 
Schubert-Cell ordering 

(BGG Order) 

2. Grassmann Manifolds, the Canonical 
Bundle and Schubert Cells 

The Grassmann manifold G ([n+m) is, as a set, 
n 

the collection of all n-dimensional subspaces of [n+m. 
This set has a natural structure of an analytic mani­
fold. We define a holomorphic vectorbundle ~ over 

( n+m) . · . m Gn [ by taking as the fibre over x the 

m-dimensional quotient space [n+m/x. Let p: ~m-+ 
Gn([n+m) be the projection, and let r(sml be the 
vector space of holomorphic sections of p, i.e. the 
space of all holornorphic s: G ([n+m)-+ s such that n m 
p · s = id. There are (n+m) obvious elements in 
r(~ ) defined by E-(x) =e. mod x Es (x) = ll:n+m/x 

m i i m n+m 
where ei is the i-th canonical basis vector of [ 
These elements are linearly independent (obviously) 
and, though we shall not need this, they form a basis 
for r(~m). 

For each sequence of n subspaces A = (0) A1 
1 A2 ... 1 An) of [n+m we define the closed Schubert 
cell 

SC(A) = {x E Gn(ltn+m) ldim(x n Ai) <: i}. (2.1) 

In particular if :\ = (1.1, ... ,:\n) is a strictly in­
creasing sequence of natural numbers we define 

"1 "n . SC(:\) = SC(ll: c: ... c: It ) • 

One easily checks that SC(:\) c: SC(:\') if and only if 
:\i :S i-j for all i. Now assign to an m-part partition 
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K = (K1 , ... ,Km) the sequence of natural numbers 

:\(K) = (,2,3, ... ,Kl+l,, K2+3, ... ,K1+K2+2, ... ' 

Ki K2 
(2.2) 

K1 + ... +~- l + m + 1 , ... ,K1 + ... + Km+ m) 

Then, clearly K > K' if and only if :\i(K) ~ :\i(K'), 
i = 1, ... ,n so that the mapping K I-+ :\(K) exhibits 
the specialization order as a suborder of the. ordering 
defined by the inclusion relations between the Schubert 
cells SC(\). This ordering in turn is a quotient 
ordering of the Bernstein-Gelfand-Gelfand ordering on 
the Weyl group Sn+m' cf. [9]. 

3. Vectorbundles and Systems 
(Connection B) 

Consider a system E = (A,B) E Lcr . Assign to 
2 m,n n+m 

it the holomorphic map ~E:S = It u {00}-+ Gn(lt ) 

s1-+[sin-A,B], =1->[In OJ (3.1) 

where In is the n x n unit matrix and [M] for an 
n x (n+m) matrix M denotes the subspace of [n+m 
spanned by the rows of M. This is modified version 
of the map defined in [13]. And correspondingly one 
has 

3.2. Theorem 

Let E(l:) be the pullback vectorbundle ~i ~­
Then K(E(E)) K(E). 

With the present defi ni ti ons the proof turns out 
to be almost a triviality, cf. [14]. 



4. Systems and Nilpotent Matrices 
(Connection A) 

This connection takes the form of a common proof 
of both theorems. The idea of the proof is two exhibit 
a small closed set that intersects each orbit in the 
closure of some fixed orbit. This closed set is con­
structed in terms of certain filtrations that uniquely 
define the orbit. We first consider the case of nil­
potent matrices. 

with 
i.e. 

Let A be the partition A1, ... ,An and associate 
A the Young tableaux numbered from left to right 

2 3 4 5 

6 7 8 

9 

Let y be a partition such that y > A and 
y > T 2 A implies T = A. Then as in the introduction 
we know that the Young diagram for y is obtained from 
the Young diagram for A by shifting an end block to 
the first possible row above. For example 

Associate with the diagram the Young tableaux numbered 
from left to right as above 

l 2 3 4 I s I 
6 7 8 

9 10 

Now define a function on the first n integers in 
terms of Young Tableaux for y by f(i) is the number 
assigned to the box immediately above the i-th box, if 
such a box exists, if not let f(i) = 0. Note that 
f(i) = 0 iff i is a number in the first row. Also 
that if k is in the i-th row of A then f(k) is in 
a row of A with number less than or equal to i-1. We 
will occassionally refer to f as the upward shift 
operator. 

Let A be a nilp~tent matrix with associated fil­
tration Ker A<:;_ Ker A '= ... ~Ker An of type A. 
Choose a basis for Ker An such that e1 , ... ,eA gen-

1 
erate Ker A and in general e Al + ... + '-i-1 + l " . ., 
e 

Al + ... + Ai generate Ker Ai. Now define a linear 

function F by defining F(ei) = ef(i)' where we 
take e0 = 0, and extending F linearly. Now from 
the definition of f we have the following two facts. 

1) Ker Fi =.Ker Ai 

2) F Ker Ai+l ~Ker Ai 

We first prove a lemma about ranks of sums matrices. 

4. l. Lemma 

Let A and B be arbitrary matrices. The rank 
of (tA + sB)i is constant except on a finite number 
of lines in [ 2\{(0,0)} and rk(tA +SB); 2 

max rk{Ai, rk Bi}. 

Proof. Suppose the max rank (tA + sB)1 = k. Then 
t,s 

there is a k x k minor that evaluated at t 0 ,s0 does 
not vanish. Since the minor is polynomial in t,s 
then there is a Zariski open set on which it doesn't 
vanish. The polynomial is homyseneous so we can con­
clude that it is defined on 'P ([) and doesn't vanish 
on a Zariski open set of P1([) and hence it vanishes 
at a finite number of points on ·F1([) hence on a 
finite number of lines. Thus the rank can only go 
down at these isolated points. The Lemma follows by 
choosing t = 0 s = 1 and t = 1 s = 0. 

The next lemma will be the key for the proof of 
the theorem. 

4.2. Lemma 

Let A and F be as above, then tA + F is con­
jugate to A for all but finitely many values of t. 

Proof. We wil 1 prove by induction that Ker(tA+F)i 
=> Ker~ For i = 1 let x E Ker A. Then x E ker F 
and hence (tA+ F)x = 0 for all t. Now assume i = k 
that Ker (tA+F)k =>Ker Ak. Let x E Ker Ak+l and 
note that x E Ker "fk+l. We calculate (tA+ F)k+\ = 

( tA + F)kitAx + Fx) but Ax E Ker Ak and Fx E I.er Ak 
and by the induction hypothesis Ker (tA+ F)k ~ 
Ker Ak. Thus x E Ker (tA+ F)k+l for all t. Thus we 
haveproventhat rk(tA+F)isrkAi forall i. By 
1 emma 4. 1 we know that rk Ai :S rk( tA + F) for a 11 but 
finitely many t. Thus for all but finitely many t 
we have equality of rank and this proves conjugacy. 

Define a set M = {F:Fn = O and for all i Ker Fi 
:::>Ker Ai}. M is clearly an algebraic subvariety of 
the nilpotent matrices defined in terms of n homo­
geneous equations. [Let a be a basis element in 
Ker Ai then Fia = O is one such equation.] Let T 
be any partition greater than A. Then there is an 
element of type T in M and further more there is a 
sequence of line segments in M from A to an element 
of type T. Thus M is contained in the closure of 
the orbit of A. 

4.3. Lemma 

The closure of the oribt of A is contained in 
the set 
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M = ~ {F:rkF; s rk Ai}. 
i=l 

Proof. If F is conjugate to A then rk Fi 
rk Ai~ all i and hence the orbit of A is con­
tained in M. Each of the sets in the intersection 
is closed (even algebraic) and hence M is closed and 
the lemma follows. 

The main theorem now follows trivially. 



4.1. Theorem (Gerstenhaber-Hesselink) 

A matrix B is contained in the closure of the 
orbit of A iff the filtration type of B is larger 
than the filtration type of A. 

Proof. If BE M then there is an F in M of 
the same type and F is in the closure of the orbit 
of A. 

We now consider the case of pairs of matrices and 
the feedback group. Again we must define a shift func­
tion but this time we need a down shift instead of an 
up shift. Let A be a partition with Young tableaux 
T. Let y be less than A and again have the prop­
erty that y < 1 s A implies T = A. Let T' be the 
tableaux for y obtained by moving the appropriate 
box of the diagram for A. Define a function on the 
first n integers by f(i) is the number of the box 
in the tableaux T' inrnediately below the box of i 
if such a box exists and zero otherwise. 

Let (A,B) be a controllable pair and let the 
filtration of controllable subspaces have type A. Re­
call that this filtration is defined by Bl is the 
space spanned by the columns of B and Bk+ 1 = ABk + 
Bk. One of the standard theorems is that (A,B) is 
controllable iff Bn = En. See [ 4] for a survey. 
Choose a basis for En such that the first Ai in Bi 
for all i. Let the tableaux for y be defined as 
above. We will define a pair (F,G) in terms of the 
tableaux of y. Let G be the matrix whose columns 
are the basis elements numbered by the first row of y. 
Define F by defining F on the basis by F(ei) = 

ef(i) with e0 = 0 and extend F to a linear func­
tion. Now note that F and G have the following 
eroperti es. Let G1 c: ..• c: G be the fi 1 tration of 
LF,G]. - - n 

1) (F,G) is controllable 
2) Gi !::: Bi 

3) FBi = Bi+l 

The following lemma is the counterpart of le1T111a 4.2. 

4.4. Lemma 

Let (A,B) and (F ,G) be as above. Then the sys­
tem (tA+F, tB+G} is equivalent to (A,B) for all 
but finitely many t. 

Proof. We use the fact that two systems are feed­
back equivalent iff the filtrations are of the same 
type (18]. Let v1 ~ v2 !::: ••• £ Vn be the filtration 
of (tA+F, tB+G). First since G1 !::: s1 we have that 
v1 ~ B1 for all t. Assume Vk : Bk and we are given 
that Gk c:: Bk. Let x E Vk+l then by construction 
there is a y1 and y2 E V k such that 

(F+tA)y1 + y2 = x 

but y2 E Vk !::: Bk c:: Bk+l and y1 E Vk : Bk and hence 
Fy1 E Bk+l" By definition Ay1 E Bk+l so we have that 
x E Bk+l" Thus we have tha~ Vk !::: Bk for all k. This 
proves that the rk[(tA+ F) 1 (tB+ G) , ... ,{tB+G)] s 
rk[AiB, ... ,B] for all i and all t. A slight modifi­
cation of lemma 4.1 yields that for all but finitely 
many t the reverse inequality holds and thus the lenma 

is proven. 

Now define a set of pairs S = {(F,G): the filtra­
tion of (F,G) is contained subspace by subspace in 
the filtration of (A,B) and (F,G) is controllable}. 
Again S is an algebraic subvariety of the controll­
able pairs, but seen by choosing, with respect to some 
innerproduct, a complementary set of subspaces. Let T 
be any partition less than y then there is a pair 
{F,G) ES of type ' and furthermore the pair can be 
reached from {A,B) by a sequence of line segments as 
constructed in the previous lemma. Thus S is con­
tained in the closure of the orbit. of (A,B). 

For a pair (F,G) denote the filtration by 
Vl(F,G} = ... £ Vn(F,G). 

4.5. Le11111a 

The closure of the orbit of (A,B) is contained 
in the set 

n 
s = n {(F,G):dim V.(F,G) 

i =l , 
dim V.(A,B) and 

l 

(F,G) controllable} 

Proof. Clearly the orbit of {A,B) is contained 
in s---an<r since each set in the intersection is closed 
so is S. 

The main theorem now follows trivially. 

4.2. Theorem 

A pair (F,G) is in the closure of the orbit of 
{A,B) if the filtration type of (F,G) is less than 
or equal to the filtration type of (A,B). 

Proof. If T s y then there is a system of type 
' in~S~and hence if (F,G) is of type T then its 
equivalent to a system in S. 

The two theorems have almost identical proofs. In 
both cases the key is that there is a map from each 
orbit onto a flag manifold that is really the crucial 
element. The set M and the set S are closely re­
lated to this map for let x be either a nilpotent 
matrix or a controllable system and let rr{x) be the 
corresponding element of the flag manifold. Let H be 
the stabilizer of the flag and consider the set in the 
original variety of H • x. It is not hard to show 
that H • x c: Mor S as the case may be. The closure 
of Hx seems to be in genera 1 sma l 1 er than M or S, 
but if we do the same trick for each y in the c 1 osure 
of Hx then the union is M or S. Closing the sta­
bilizer picks up those elements with adjacent types 
and perhaps a little more. 

The key to the simplicity of these proofs was the 
fact that in both cases we were working with the cor­
responding filtration instead of the canonical forms. 

5. Classifying Maps 
(Connection CJ 

Let E = L(K1) e ... e L(K,J be a positive vector­
bundl e of dimension m over s'~. Now r ( L ( i) ) has 
dimension i + 1 and it follows that r(E) is of dimen-
sion n+m. For each s E s2 let x(s) be the Kernel 
of the evaluation map y ->y(x), y E r(E}, y(s) E 
E{s) the m-dimensiona1 fibre of E over s. The vec­
torspace homomorphism r(E) ... E(s) is surjective (posi­
tivity of E) and x(s) therefore has dimension n. 
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We can therefore define a morphism l)>E :S2 .... Gn (r(E)) 
by s .... x(s). This map is classifying (meaning that 

I 
l)>E~m ""' E (Easy) and moreover 

5.1 Theorem 
2 Let S ,E,l)>E be as above and let K = (K1, .•• , 

~). Then 
( i) There is a Schubert-ce 11 SC(A) such that 

Im(l)>E) c: SC(A) and such that dim Ai = 
i·)K) i=l, ... ,n (cf. (2.2) for the defini-
tion of ;>..i ( K)). 

(ii) If a Schubert-cell SC( B) is such that 
Iml)>E c: SC( B) then dim Bi ~ ;>..i (K), 
i = l, ... ,n. 

6. S stems and Schubert Cells 
(the combined connection C • B 

Let E = (A,B) € L~:n· There as in section 3 
above we associate to E to holomorphic map $E:s2 .... 
G (an+m) defined by 

n 

s >-+ [sl -A ,BJ, "",... [I , O] (6.1) 

This is the classifying map of the vectorbundle E(E) 
of E (by definition of the latter). It follows that 
in tenns of systems theorem 5. l translates as 

6.2. Theorem 

Let !, $E be as above and let K = (K1(E), ... , 
~m(E)}, ;>.. = ;>..(K). 

(i) There is a Schubert-cell SC(A) such that 
dim(Ai) = A;(K) such that Im $!c:SC(A). 

(ii) If Im $E c: SC(B) then dim(Bi) ~ ;>..i(K). 

Assume E = (A,B) to be in Brunovsky canonical 
form. Then after renumbering the usual basis of 
ltn+m, which amounts to rearranging the columns of 
(sI-A,B), the map $E looks particularly simple. 
For example if K = (3,2,l) we find 

s -1 0 ' 0 ' 0 0 ' 0 ' 0 ' 0 

0 s -1 ' 0 ' 0 0 ' 0 ' 0 ' 0 

0 0 ' l ' 0 0 I 0 ' 0 I 0 
s ... I !.. - !.. - !.. - (6.3) 

0 0 0 ' 0 I s -1 0 I 0 0 

0 0 0 I 0 ' 0 
I 1 ' 0 ' 0 s 

I !.. !.. - !.. - !. -
0 0 0 I 

0 I 0 0 
I 0 ' s ' l 

and we observe that indeed Im ~E c: SC(2,3,4,6,7,9). 

i.e. 
and 

7. A Family of Representations of Sn+m 
Parameterized by G (ltn+m) 

n 

Let M be the regular representation of Sn+m; 
M is a vector space wit~ basis ecr' cr E Sn+m 

Sn+m acts on e by (e ) = e . Let ~ be cr cr -rcr m 
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the classifying vectorbundle over G (ltn+m) defined 
n 

in section 2 above,whose fibre over x is equal to 
~m(x) = ltn+m /x .. 

Now for each x E Gn ( an+ml we defi.ne an homomor­
phic of vector spaces 

( )lll(n+m} . ( ) 
Xx:M ... ~ x. , ecr ... Ecr(_l) x Ill ••• Ill Ecr(_n+m)(x) 

{_7. 1 )_ 
where the El,. .. ,En+m are the n + m hol omorphi c sec-
tions of ~m defined in section 2, i.e. Ei(x) = 
e. mod x, e; the i-th basis vector of ltn m_ Sn+m acts 

1 s(n+m) on ~(x) be permuting the factors and with 
respect to this action (7.1) is Sn+m-equivariant and 
thus defines a continuous family of homomorphisms. More 
precisely we have a homomorphism of vector bundles 

X:M x G (ltn+m) .... ~lll(n+m) (7.2) 
n m 

which on each fibre is equivariant with respect to the 
Sn+m action on M x {x} and ~m(x)lll(n+m)_ 

For each x E Gn(ltn+m) let n(x) be the Sn+m­
module Xx(M). This gives us a family of representa­
tions of Sn+m which is "continuous" in the sense that 
it arises as the family of images of a continuous fam­
ily of homomorphisms of representations. 

Very many representations of Sn+m arise in this 
way. We have not yet determined completely which repre­
sentations of S + occur among the n(x). But, for nm 
example, if K is a partition of n and R = (K1 + l, 
... ,K + l) then the induced representation p(K) = 

m 
5n+m ' Ind5_ l occurs among the n(x). For example if K = 

K -
(3,1,0) then p(K) = n(x) if x is the row vector 
space of a matrix of the form 

* 0 0 0 0 0 

0 * 0 0 0 0 

0 0 * 0 0 0 

0 0 0 0 * 0 

where the * elements are all nonzero. Indeed in this 
case the vectors e1,e2,e3,e4 are scalar multiples of 
each other mod x and so are e5 and e6 , while e1 
mod x, e5 mod x and e7 mod x are linearly indepen­

dent in ~(x). 

By letting Sn be the group of permutations of 
various sets of n letters among the symbols on 
which S acts, many representations of Sn arise. 

n+m 
Conjecturally all representations of Sn arise in this 
way. 

It is perhaps also worth observing that for all 
s 1 O the representation TI(~E(s)), where E is a 
system in Brunowsky canonical form is the induced repre­
sentation p(K). It would be nice to be able to inter­
pret this in control theoretic terms. 



8. Fami1ies of Representations and 
Snapper Type Resu1ts 

Now 1et us see how "continuous" famili.es. of repre­
sentations yie1ds the type of result occurring in the 
Snapper conjecture. The re1evant theorem is 

8. 1. Theorem 

Let V and W be two Sn-modu1es. Suppose we 
have a continuous fami1y of homomorphisms 4t:V ~ W. 
Let cr(D) = Im 40 . cr(t) = Im 4t· Then the representa­
tion cr(O) is a direct summand of the representation 
cr(t) for sma11 t. 

The proof is easy. Because the category of Sn­
modu1es is semi-simp1e, there exists a homomorphism of 
Sn-modules w0 :Im(40) ~ V such that 40 • w0 = id. 
Then because 4t is continuous in t it fo1lows that 
4t • w0 is injective for smal1 t. This gives us an 
embedding of Sn-modu1es cr(O)c...., cr(t) and hence, using 
semisimplicity again, cr(O) is a direct suIT1Tiand of 
cr( t). 

9. On the Proof of the Snapper Conjecture 

Thus to prove the Snapper conjecture it suffices 
to find families of maps of representations 4t:V ~ W 
such that for a given K > K' we have Im 4t "'p(K) 
if t t O (and small) and Im 40 "' p(K'). Quite pos­
sibly such fami1ies can be found within the grand fam­
ily constructed above in section 7. Certainly th~ 
~rand-fami1y contains all the representations p(K) 
(as pointed out in section 7. To prove the Snapper 
conjecture we re1y on a slightly more complicated con­
struction which is perhaps best il1ustrated by means 
of the fol1owing example. 

Consider the representation in the famil~ of sec­
tion 7 defined over an xt' t E F in Gn([n+ ) given 
by a matrix of the form 

* 0 0 0 0 0 

* 0 0 0 0 0 

* 0 0 0 0 0 

z 0 0 0 y t 0 

0 0 0 0 0 * 

(9.1) 

where y,z and all the *'s are nonzero elements. 
Consider the element 

(9.2) 
- el ® e2 ® e3 ® e4 ® el ® e5 ® e7 

. (~n+m)®n+m, h . h in ~ w ere ei 1s t e standard i-th basis 
vector. There m = 2, n = 5. Now consider the Sn+m 
submodule Kt of t;m(xt)®(n+m) generated by the image 
of the element a. 

Now note that te6 + ye5 + ze1 = 0. Using this 
and the extra relation that the image of (9.2) is zero 

mod Kt it follows readily that for t 1 O the images 
of the two elements 
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(9.3) 

are equal in mod Kt. From this it easi1y follows that 
the image of 

M ~t t;m(xt)®(n+m) ~ t;m(xt)®(n+m) /Kt (9.4) 

is p(K) for t t 0 where K = (9.3). 

But for t = 0, ye5 + ze1 = O so that K0 = {O}. 
Also Im 40 "" p(K'), where K' = (5,2) as we saw in 
section 7 above. Now choose w0 :Im 40 -+ M such that 

4oWo = id. 

Let us take y = -1, z = 1 for convenience. Then 

e5 = e1 + te6 mod t;m(xt) (9.5) 

Consider 4tw0 :Im40 -+ Im4t. A basis for t;m(xt) for 
a 11 t is given by the images el and e5 of e1 
and en respective1y. Now because of (9.5) (and the 
other relations given by ~m(xt) 

~t(e0 ) = ~ 0 (e0 ) + tB(e0 ) (9.6) 

where s( ea) is a tensor product e of el and e6 
i nvo 1 vi ng 3 factors e6 and 4 factors el and 40 (ea) 

involves 2 factors e6 and 5 factors el. 

Now observe that the image of a in t;m(xt)®n+rn 
is a sum of terms i nvo l vi ng 5 factors e1 and 2 fac­
tors e6. So that 4tw0 (v) = v + tS(w0 (v)) can be 
in Kt iff 

v E Kt' S(wo(v)) = 0, \) E Im 40 (9.7) 

Using the usua1 lift w (defined 
- - ( i-1 "" 0 ) e6 "'e6 -+ 5!2! L.,, e, it is 

by e1 0 ••• Ill> e1 ® 

a straightforward 
TES5xs2 

matter to check that B~0 is injective on 
proves that rrt9two is injective so that 
is a direct summand of Im rrt4t"' p(K). 

Kt. This 
Im <P 0 "" p( K') 

In this vein one proves the Snapper conjecture for 
K > K' with K; ,Kj ~ l. The remaining cases are 
handled by embedding S c..., S + in in the obvious way n n m ~ 

and by letting K correspond to K = (K1 + l, ..• , 
Km+ 1). 

Observe that the representations we are using from 
the grand-family are precisely (up to taking a quotient 
of one of them) among those living over the Schubert­
cells SC(K) and SC(K'). 
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