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1. Introduction 

Let K = (K1, ... ,~), Kl ~ ... ~ ~· Ki E lN U 

{O}, EK; = n be a partition of n. We define a par
tial order on the set of all m-part partitions of n as 
follows 

K > Kj.,. ± K. s t K11 , r=l, ... ,m (l.l) 
i =l 1 i=l 

We shall say that K specializes to K' or that K is 
more general tha.n K' if (1. 1) holds. The reverse 
ordering has been called the dominance or~er [l]. This 
order occurs in many different parts of pure and applied 
mathematics and we now proceed to discuss some of these. 

1.2. The Snapper Conjecture 

Let K = (K1, •••• ~) be a partition of n. Let 
SK be the subgroup SK x SK x ••• x SK of Sn' the 

1 2 ·m 
symmetric group on n letters. For examp 1 e S ( 2, 2, 1) 

c s5 is the subgroup consisting of the permutations 
(1), (12), (34), (12)(34). Let p(K) be the represen
tation of Sn obtained by taking the trivial represen-
tation of the subgroup SK and inducing it up to Sn. 
Then the Snapper conjecture says that p(K) is a direct 
summand of p(K') if K < K'. Proofs of this statement 
can be found in [2] and [3]. • · 

1.3. The Gale-Ryser Theorem [5],[6] 

Let µ and v be two partitions of n. Then 
there is a matrix of zeros and ones whose columns sum 
to µ and whose rows sum to v i ff v ~ µ*. There µ* 
is the dual partition of µ defined by µ~ = 
#{jlµj ~ i}. For example (2,2,1)* = (3,2}. As a rule 
we shall not distinguish between two partitions if one 
of them is obtained from the other by adding some zeros. 

1.4. Double Stochastic Matrices ([5]) 

A matrix M = (m .. ) 
lJ 

if mij ~ O for all i,j 
is called double stochastic 
and :Em .. = l for all j 

i lJ 
and ~mij = 1 for all i. 

J 
partitions of n. Then there 
matrix M such that µ = Mv 
age of v) if µ > v. 

Let µ and v be two 

is a double stochastic 
(so that µ is an aver-

1.5. Completely Reachable Systems 

Let I er denote the space of all completely rn,n . 
reachable control systems x =Ax+ Bu, x E Rn, 
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u E 1Rm. That is, L~:n is the space of all pairs 
(A,B) consisting of a real n x n matrix A and a real 
n x m matrix B such that the n x ( n+ 1 )m matrix 
R(A,B) = (B;AB; ... ;AnB) has rank n. The transforma
tions: (A,B) r+ (A+BK,B), K a real mxn matrix 
(feedback), (A,B) ... (SAS-1 ,SB), S an invertible real 
n x n matrix (basis change in state space) and (A,B) ... 
(A,BT), T an invertible real m xm matrix (basis 
change in input space) define an action of the Lie group 
of all block triangular matrices 

[: ~] E GLn+mOR) 

on L er . This group is ea l led the feedback group. m,n 
For each (A,B) E L~:r let K(A,B) be the set of 

Kronecker indices of (A,B) (ordered in descending 
order). For each m-part partition K of n let OK = 
{(A,B)IK(A,B) = K}. Then 

1.6. Theorem ([15]) 

The orbits of the feedback 
precisely the OK. 

F acting on Lcr are m,n 

It follows that the topological closure OK' i.e. 
the set of systems whi eh can arise as limits (degenera
tions) of a family of systems with Kronecker indices K 
is necessarily a union of OK and some other orbits 
(possibly none). Concerning this, several people 
(Byrnes, Hazewinkel, Kalman, Martin ..• ) have noticed 
that 

1.7. Theorem 

OK ::i OK' iff K > K'. 

1.8. Gerstenhaber-Hesselink Theorem 

Let N be the space of a 11 nil potent n x n 
matrices, i.e. Nn = {A E lRnxnlAn = 0}. Let Sln('R) 
act on N by conjugation, i.e. Ns = SNS-1• Every 

n 
NE N is similar to a Jordan normal form matrix with 
zeros on the diagonal and thus the orbits of SLn(R) 
acting on N are labelled by partitions K = 

n 
(K1 , ... ,Kn) of n, where the K; represent the sizes 
of the Jordan blocks. Let NK be the orbit correspond
ing to K. Then the Gerstenhaber-Hesselink theorem 
[11], [17] says 

1. 9. Theorem 

iJK ::i NK' iff K < K'. 

Note the reversal of the order in this statement with 
respect to the statement of Theorem 1.7. 
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1.10. Degeneration of Vector Bundles 

Let E b2 a holomorphic_vectorbundle over !he Rie-
·mann sphere S . Then according to [16] E splits as 
a direct sum of line bundles (i.e. vectorbundles of 
dimension 1) E = L(K1) E9 ... E9 L(~) and in turn line 
bundles are classified by their degree (or firs~ Chern
class). Thus holomorphic vectorbundles over S of 
dimension m are classified by an m-tuple of integers 
K(E) = (K1(E), ... ,Km(E)), Ki(E) E "ll.., K1(E);::: ••• ;::: 

Km(E). The bundle E is called positive (or ample) if 
Ki(E);::: O for all i. We have 

1 .11. Theorem 

Let Et be a2holomorphic family of positive vec
torbundles over S . Then K(E 0 ) < K(Et) for all 
small enough t. Inversely if K < K' are two parti
tions of n, then there is a holomorphic family of 
bundles Et such that K(E0 ) = K and K(Et) = K' for 
allt'/-0. 

1.12. Interrelations 

It is well-known that Snapper conjecture implies 
the Gale-Ryser theorem, the result on doubly stochastic 
matrices as well as another combinatorial result known 
as Muirhead's inequality, cf. [l], [2]. On the other 
hand, the Hermann-Martin vectorbundle associated to a 
system provides the connection between theorems l. 11 
and 1.7, cf. [13], [4], and explains why the same par
tial order occurs in the two theorems. In this paper 
we present a direct link between theorems 1.8 and 1.7 
and show how the Snapper-conjecture and theorem l. 11 
relate to the ordering of the Weyl group Sn+m of the 
semi simple Lie group SLn+m([), the so-called BGG order 
[9], or, more precisely how these results relate to the 
natural "closure ordering" on the Schubert eel ls of the 
Grassmann manifold Gn([n+m). These notions will be 
defined below. This explains why the same ordering 
occurred again and again above. It also gives us a new 
deformation type proof of the Snapper conjecture. In 
addition to these new connections there is also a direct 
connection between the Snapper conjecture and the 
Gerstenhaber-Hesselink theorem [12] which completes the 
picture in a very nice way, as illustrated by the fol
lowing diagram 

[12] 

Snapper Conjecture 

Gale-Ryser Theorem 
Doubly Stoch. Matrices 
Muirheads Ine ualit 

Kronecker indices 
of systems 
is 

Holomorohic 
vectorbundles 

c 
Schubert-Cell ordering 

(BGG Order) 

2. Grassmann Manifolds, the Canonical 
Bundle and Schubert Cells 

The Grassmann manifold G ([n+m) is, as a set, 
n 

the collection of all n-dimensional subspaces of [n+m. 
This set has a natural structure of an analytic mani
fold. We define a holomorphic vectorbundle ~ over 

( n+m) . · . m Gn [ by taking as the fibre over x the 

m-dimensional quotient space [n+m/x. Let p: ~m-+ 
Gn([n+m) be the projection, and let r(sml be the 
vector space of holomorphic sections of p, i.e. the 
space of all holornorphic s: G ([n+m)-+ s such that n m 
p · s = id. There are (n+m) obvious elements in 
r(~ ) defined by E-(x) =e. mod x Es (x) = ll:n+m/x 

m i i m n+m 
where ei is the i-th canonical basis vector of [ 
These elements are linearly independent (obviously) 
and, though we shall not need this, they form a basis 
for r(~m). 

For each sequence of n subspaces A = (0) A1 
1 A2 ... 1 An) of [n+m we define the closed Schubert 
cell 

SC(A) = {x E Gn(ltn+m) ldim(x n Ai) <: i}. (2.1) 

In particular if :\ = (1.1, ... ,:\n) is a strictly in
creasing sequence of natural numbers we define 

"1 "n . SC(:\) = SC(ll: c: ... c: It ) • 

One easily checks that SC(:\) c: SC(:\') if and only if 
:\i :S i-j for all i. Now assign to an m-part partition 
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K = (K1 , ... ,Km) the sequence of natural numbers 

:\(K) = (,2,3, ... ,Kl+l,, K2+3, ... ,K1+K2+2, ... ' 

Ki K2 
(2.2) 

K1 + ... +~- l + m + 1 , ... ,K1 + ... + Km+ m) 

Then, clearly K > K' if and only if :\i(K) ~ :\i(K'), 
i = 1, ... ,n so that the mapping K I-+ :\(K) exhibits 
the specialization order as a suborder of the. ordering 
defined by the inclusion relations between the Schubert 
cells SC(\). This ordering in turn is a quotient 
ordering of the Bernstein-Gelfand-Gelfand ordering on 
the Weyl group Sn+m' cf. [9]. 

3. Vectorbundles and Systems 
(Connection B) 

Consider a system E = (A,B) E Lcr . Assign to 
2 m,n n+m 

it the holomorphic map ~E:S = It u {00}-+ Gn(lt ) 

s1-+[sin-A,B], =1->[In OJ (3.1) 

where In is the n x n unit matrix and [M] for an 
n x (n+m) matrix M denotes the subspace of [n+m 
spanned by the rows of M. This is modified version 
of the map defined in [13]. And correspondingly one 
has 

3.2. Theorem 

Let E(l:) be the pullback vectorbundle ~i ~
Then K(E(E)) K(E). 

With the present defi ni ti ons the proof turns out 
to be almost a triviality, cf. [14]. 



4. Systems and Nilpotent Matrices 
(Connection A) 

This connection takes the form of a common proof 
of both theorems. The idea of the proof is two exhibit 
a small closed set that intersects each orbit in the 
closure of some fixed orbit. This closed set is con
structed in terms of certain filtrations that uniquely 
define the orbit. We first consider the case of nil
potent matrices. 

with 
i.e. 

Let A be the partition A1, ... ,An and associate 
A the Young tableaux numbered from left to right 

2 3 4 5 

6 7 8 

9 

Let y be a partition such that y > A and 
y > T 2 A implies T = A. Then as in the introduction 
we know that the Young diagram for y is obtained from 
the Young diagram for A by shifting an end block to 
the first possible row above. For example 

Associate with the diagram the Young tableaux numbered 
from left to right as above 

l 2 3 4 I s I 
6 7 8 

9 10 

Now define a function on the first n integers in 
terms of Young Tableaux for y by f(i) is the number 
assigned to the box immediately above the i-th box, if 
such a box exists, if not let f(i) = 0. Note that 
f(i) = 0 iff i is a number in the first row. Also 
that if k is in the i-th row of A then f(k) is in 
a row of A with number less than or equal to i-1. We 
will occassionally refer to f as the upward shift 
operator. 

Let A be a nilp~tent matrix with associated fil
tration Ker A<:;_ Ker A '= ... ~Ker An of type A. 
Choose a basis for Ker An such that e1 , ... ,eA gen-

1 
erate Ker A and in general e Al + ... + '-i-1 + l " . ., 
e 

Al + ... + Ai generate Ker Ai. Now define a linear 

function F by defining F(ei) = ef(i)' where we 
take e0 = 0, and extending F linearly. Now from 
the definition of f we have the following two facts. 

1) Ker Fi =.Ker Ai 

2) F Ker Ai+l ~Ker Ai 

We first prove a lemma about ranks of sums matrices. 

4. l. Lemma 

Let A and B be arbitrary matrices. The rank 
of (tA + sB)i is constant except on a finite number 
of lines in [ 2\{(0,0)} and rk(tA +SB); 2 

max rk{Ai, rk Bi}. 

Proof. Suppose the max rank (tA + sB)1 = k. Then 
t,s 

there is a k x k minor that evaluated at t 0 ,s0 does 
not vanish. Since the minor is polynomial in t,s 
then there is a Zariski open set on which it doesn't 
vanish. The polynomial is homyseneous so we can con
clude that it is defined on 'P ([) and doesn't vanish 
on a Zariski open set of P1([) and hence it vanishes 
at a finite number of points on ·F1([) hence on a 
finite number of lines. Thus the rank can only go 
down at these isolated points. The Lemma follows by 
choosing t = 0 s = 1 and t = 1 s = 0. 

The next lemma will be the key for the proof of 
the theorem. 

4.2. Lemma 

Let A and F be as above, then tA + F is con
jugate to A for all but finitely many values of t. 

Proof. We wil 1 prove by induction that Ker(tA+F)i 
=> Ker~ For i = 1 let x E Ker A. Then x E ker F 
and hence (tA+ F)x = 0 for all t. Now assume i = k 
that Ker (tA+F)k =>Ker Ak. Let x E Ker Ak+l and 
note that x E Ker "fk+l. We calculate (tA+ F)k+\ = 

( tA + F)kitAx + Fx) but Ax E Ker Ak and Fx E I.er Ak 
and by the induction hypothesis Ker (tA+ F)k ~ 
Ker Ak. Thus x E Ker (tA+ F)k+l for all t. Thus we 
haveproventhat rk(tA+F)isrkAi forall i. By 
1 emma 4. 1 we know that rk Ai :S rk( tA + F) for a 11 but 
finitely many t. Thus for all but finitely many t 
we have equality of rank and this proves conjugacy. 

Define a set M = {F:Fn = O and for all i Ker Fi 
:::>Ker Ai}. M is clearly an algebraic subvariety of 
the nilpotent matrices defined in terms of n homo
geneous equations. [Let a be a basis element in 
Ker Ai then Fia = O is one such equation.] Let T 
be any partition greater than A. Then there is an 
element of type T in M and further more there is a 
sequence of line segments in M from A to an element 
of type T. Thus M is contained in the closure of 
the orbit of A. 

4.3. Lemma 

The closure of the oribt of A is contained in 
the set 
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M = ~ {F:rkF; s rk Ai}. 
i=l 

Proof. If F is conjugate to A then rk Fi 
rk Ai~ all i and hence the orbit of A is con
tained in M. Each of the sets in the intersection 
is closed (even algebraic) and hence M is closed and 
the lemma follows. 

The main theorem now follows trivially. 



4.1. Theorem (Gerstenhaber-Hesselink) 

A matrix B is contained in the closure of the 
orbit of A iff the filtration type of B is larger 
than the filtration type of A. 

Proof. If BE M then there is an F in M of 
the same type and F is in the closure of the orbit 
of A. 

We now consider the case of pairs of matrices and 
the feedback group. Again we must define a shift func
tion but this time we need a down shift instead of an 
up shift. Let A be a partition with Young tableaux 
T. Let y be less than A and again have the prop
erty that y < 1 s A implies T = A. Let T' be the 
tableaux for y obtained by moving the appropriate 
box of the diagram for A. Define a function on the 
first n integers by f(i) is the number of the box 
in the tableaux T' inrnediately below the box of i 
if such a box exists and zero otherwise. 

Let (A,B) be a controllable pair and let the 
filtration of controllable subspaces have type A. Re
call that this filtration is defined by Bl is the 
space spanned by the columns of B and Bk+ 1 = ABk + 
Bk. One of the standard theorems is that (A,B) is 
controllable iff Bn = En. See [ 4] for a survey. 
Choose a basis for En such that the first Ai in Bi 
for all i. Let the tableaux for y be defined as 
above. We will define a pair (F,G) in terms of the 
tableaux of y. Let G be the matrix whose columns 
are the basis elements numbered by the first row of y. 
Define F by defining F on the basis by F(ei) = 

ef(i) with e0 = 0 and extend F to a linear func
tion. Now note that F and G have the following 
eroperti es. Let G1 c: ..• c: G be the fi 1 tration of 
LF,G]. - - n 

1) (F,G) is controllable 
2) Gi !::: Bi 

3) FBi = Bi+l 

The following lemma is the counterpart of le1T111a 4.2. 

4.4. Lemma 

Let (A,B) and (F ,G) be as above. Then the sys
tem (tA+F, tB+G} is equivalent to (A,B) for all 
but finitely many t. 

Proof. We use the fact that two systems are feed
back equivalent iff the filtrations are of the same 
type (18]. Let v1 ~ v2 !::: ••• £ Vn be the filtration 
of (tA+F, tB+G). First since G1 !::: s1 we have that 
v1 ~ B1 for all t. Assume Vk : Bk and we are given 
that Gk c:: Bk. Let x E Vk+l then by construction 
there is a y1 and y2 E V k such that 

(F+tA)y1 + y2 = x 

but y2 E Vk !::: Bk c:: Bk+l and y1 E Vk : Bk and hence 
Fy1 E Bk+l" By definition Ay1 E Bk+l so we have that 
x E Bk+l" Thus we have tha~ Vk !::: Bk for all k. This 
proves that the rk[(tA+ F) 1 (tB+ G) , ... ,{tB+G)] s 
rk[AiB, ... ,B] for all i and all t. A slight modifi
cation of lemma 4.1 yields that for all but finitely 
many t the reverse inequality holds and thus the lenma 

is proven. 

Now define a set of pairs S = {(F,G): the filtra
tion of (F,G) is contained subspace by subspace in 
the filtration of (A,B) and (F,G) is controllable}. 
Again S is an algebraic subvariety of the controll
able pairs, but seen by choosing, with respect to some 
innerproduct, a complementary set of subspaces. Let T 
be any partition less than y then there is a pair 
{F,G) ES of type ' and furthermore the pair can be 
reached from {A,B) by a sequence of line segments as 
constructed in the previous lemma. Thus S is con
tained in the closure of the orbit. of (A,B). 

For a pair (F,G) denote the filtration by 
Vl(F,G} = ... £ Vn(F,G). 

4.5. Le11111a 

The closure of the orbit of (A,B) is contained 
in the set 

n 
s = n {(F,G):dim V.(F,G) 

i =l , 
dim V.(A,B) and 

l 

(F,G) controllable} 

Proof. Clearly the orbit of {A,B) is contained 
in s---an<r since each set in the intersection is closed 
so is S. 

The main theorem now follows trivially. 

4.2. Theorem 

A pair (F,G) is in the closure of the orbit of 
{A,B) if the filtration type of (F,G) is less than 
or equal to the filtration type of (A,B). 

Proof. If T s y then there is a system of type 
' in~S~and hence if (F,G) is of type T then its 
equivalent to a system in S. 

The two theorems have almost identical proofs. In 
both cases the key is that there is a map from each 
orbit onto a flag manifold that is really the crucial 
element. The set M and the set S are closely re
lated to this map for let x be either a nilpotent 
matrix or a controllable system and let rr{x) be the 
corresponding element of the flag manifold. Let H be 
the stabilizer of the flag and consider the set in the 
original variety of H • x. It is not hard to show 
that H • x c: Mor S as the case may be. The closure 
of Hx seems to be in genera 1 sma l 1 er than M or S, 
but if we do the same trick for each y in the c 1 osure 
of Hx then the union is M or S. Closing the sta
bilizer picks up those elements with adjacent types 
and perhaps a little more. 

The key to the simplicity of these proofs was the 
fact that in both cases we were working with the cor
responding filtration instead of the canonical forms. 

5. Classifying Maps 
(Connection CJ 

Let E = L(K1) e ... e L(K,J be a positive vector
bundl e of dimension m over s'~. Now r ( L ( i) ) has 
dimension i + 1 and it follows that r(E) is of dimen-
sion n+m. For each s E s2 let x(s) be the Kernel 
of the evaluation map y ->y(x), y E r(E}, y(s) E 
E{s) the m-dimensiona1 fibre of E over s. The vec
torspace homomorphism r(E) ... E(s) is surjective (posi
tivity of E) and x(s) therefore has dimension n. 
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We can therefore define a morphism l)>E :S2 .... Gn (r(E)) 
by s .... x(s). This map is classifying (meaning that 

I 
l)>E~m ""' E (Easy) and moreover 

5.1 Theorem 
2 Let S ,E,l)>E be as above and let K = (K1, .•• , 

~). Then 
( i) There is a Schubert-ce 11 SC(A) such that 

Im(l)>E) c: SC(A) and such that dim Ai = 
i·)K) i=l, ... ,n (cf. (2.2) for the defini-
tion of ;>..i ( K)). 

(ii) If a Schubert-cell SC( B) is such that 
Iml)>E c: SC( B) then dim Bi ~ ;>..i (K), 
i = l, ... ,n. 

6. S stems and Schubert Cells 
(the combined connection C • B 

Let E = (A,B) € L~:n· There as in section 3 
above we associate to E to holomorphic map $E:s2 .... 
G (an+m) defined by 

n 

s >-+ [sl -A ,BJ, "",... [I , O] (6.1) 

This is the classifying map of the vectorbundle E(E) 
of E (by definition of the latter). It follows that 
in tenns of systems theorem 5. l translates as 

6.2. Theorem 

Let !, $E be as above and let K = (K1(E), ... , 
~m(E)}, ;>.. = ;>..(K). 

(i) There is a Schubert-cell SC(A) such that 
dim(Ai) = A;(K) such that Im $!c:SC(A). 

(ii) If Im $E c: SC(B) then dim(Bi) ~ ;>..i(K). 

Assume E = (A,B) to be in Brunovsky canonical 
form. Then after renumbering the usual basis of 
ltn+m, which amounts to rearranging the columns of 
(sI-A,B), the map $E looks particularly simple. 
For example if K = (3,2,l) we find 

s -1 0 ' 0 ' 0 0 ' 0 ' 0 ' 0 

0 s -1 ' 0 ' 0 0 ' 0 ' 0 ' 0 

0 0 ' l ' 0 0 I 0 ' 0 I 0 
s ... I !.. - !.. - !.. - (6.3) 

0 0 0 ' 0 I s -1 0 I 0 0 

0 0 0 I 0 ' 0 
I 1 ' 0 ' 0 s 

I !.. !.. - !.. - !. -
0 0 0 I 

0 I 0 0 
I 0 ' s ' l 

and we observe that indeed Im ~E c: SC(2,3,4,6,7,9). 

i.e. 
and 

7. A Family of Representations of Sn+m 
Parameterized by G (ltn+m) 

n 

Let M be the regular representation of Sn+m; 
M is a vector space wit~ basis ecr' cr E Sn+m 

Sn+m acts on e by (e ) = e . Let ~ be cr cr -rcr m 
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the classifying vectorbundle over G (ltn+m) defined 
n 

in section 2 above,whose fibre over x is equal to 
~m(x) = ltn+m /x .. 

Now for each x E Gn ( an+ml we defi.ne an homomor
phic of vector spaces 

( )lll(n+m} . ( ) 
Xx:M ... ~ x. , ecr ... Ecr(_l) x Ill ••• Ill Ecr(_n+m)(x) 

{_7. 1 )_ 
where the El,. .. ,En+m are the n + m hol omorphi c sec-
tions of ~m defined in section 2, i.e. Ei(x) = 
e. mod x, e; the i-th basis vector of ltn m_ Sn+m acts 

1 s(n+m) on ~(x) be permuting the factors and with 
respect to this action (7.1) is Sn+m-equivariant and 
thus defines a continuous family of homomorphisms. More 
precisely we have a homomorphism of vector bundles 

X:M x G (ltn+m) .... ~lll(n+m) (7.2) 
n m 

which on each fibre is equivariant with respect to the 
Sn+m action on M x {x} and ~m(x)lll(n+m)_ 

For each x E Gn(ltn+m) let n(x) be the Sn+m
module Xx(M). This gives us a family of representa
tions of Sn+m which is "continuous" in the sense that 
it arises as the family of images of a continuous fam
ily of homomorphisms of representations. 

Very many representations of Sn+m arise in this 
way. We have not yet determined completely which repre
sentations of S + occur among the n(x). But, for nm 
example, if K is a partition of n and R = (K1 + l, 
... ,K + l) then the induced representation p(K) = 

m 
5n+m ' Ind5_ l occurs among the n(x). For example if K = 

K -
(3,1,0) then p(K) = n(x) if x is the row vector 
space of a matrix of the form 

* 0 0 0 0 0 

0 * 0 0 0 0 

0 0 * 0 0 0 

0 0 0 0 * 0 

where the * elements are all nonzero. Indeed in this 
case the vectors e1,e2,e3,e4 are scalar multiples of 
each other mod x and so are e5 and e6 , while e1 
mod x, e5 mod x and e7 mod x are linearly indepen

dent in ~(x). 

By letting Sn be the group of permutations of 
various sets of n letters among the symbols on 
which S acts, many representations of Sn arise. 

n+m 
Conjecturally all representations of Sn arise in this 
way. 

It is perhaps also worth observing that for all 
s 1 O the representation TI(~E(s)), where E is a 
system in Brunowsky canonical form is the induced repre
sentation p(K). It would be nice to be able to inter
pret this in control theoretic terms. 



8. Fami1ies of Representations and 
Snapper Type Resu1ts 

Now 1et us see how "continuous" famili.es. of repre
sentations yie1ds the type of result occurring in the 
Snapper conjecture. The re1evant theorem is 

8. 1. Theorem 

Let V and W be two Sn-modu1es. Suppose we 
have a continuous fami1y of homomorphisms 4t:V ~ W. 
Let cr(D) = Im 40 . cr(t) = Im 4t· Then the representa
tion cr(O) is a direct summand of the representation 
cr(t) for sma11 t. 

The proof is easy. Because the category of Sn
modu1es is semi-simp1e, there exists a homomorphism of 
Sn-modules w0 :Im(40) ~ V such that 40 • w0 = id. 
Then because 4t is continuous in t it fo1lows that 
4t • w0 is injective for smal1 t. This gives us an 
embedding of Sn-modu1es cr(O)c...., cr(t) and hence, using 
semisimplicity again, cr(O) is a direct suIT1Tiand of 
cr( t). 

9. On the Proof of the Snapper Conjecture 

Thus to prove the Snapper conjecture it suffices 
to find families of maps of representations 4t:V ~ W 
such that for a given K > K' we have Im 4t "'p(K) 
if t t O (and small) and Im 40 "' p(K'). Quite pos
sibly such fami1ies can be found within the grand fam
ily constructed above in section 7. Certainly th~ 
~rand-fami1y contains all the representations p(K) 
(as pointed out in section 7. To prove the Snapper 
conjecture we re1y on a slightly more complicated con
struction which is perhaps best il1ustrated by means 
of the fol1owing example. 

Consider the representation in the famil~ of sec
tion 7 defined over an xt' t E F in Gn([n+ ) given 
by a matrix of the form 

* 0 0 0 0 0 

* 0 0 0 0 0 

* 0 0 0 0 0 

z 0 0 0 y t 0 

0 0 0 0 0 * 

(9.1) 

where y,z and all the *'s are nonzero elements. 
Consider the element 

(9.2) 
- el ® e2 ® e3 ® e4 ® el ® e5 ® e7 

. (~n+m)®n+m, h . h in ~ w ere ei 1s t e standard i-th basis 
vector. There m = 2, n = 5. Now consider the Sn+m 
submodule Kt of t;m(xt)®(n+m) generated by the image 
of the element a. 

Now note that te6 + ye5 + ze1 = 0. Using this 
and the extra relation that the image of (9.2) is zero 

mod Kt it follows readily that for t 1 O the images 
of the two elements 
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(9.3) 

are equal in mod Kt. From this it easi1y follows that 
the image of 

M ~t t;m(xt)®(n+m) ~ t;m(xt)®(n+m) /Kt (9.4) 

is p(K) for t t 0 where K = (9.3). 

But for t = 0, ye5 + ze1 = O so that K0 = {O}. 
Also Im 40 "" p(K'), where K' = (5,2) as we saw in 
section 7 above. Now choose w0 :Im 40 -+ M such that 

4oWo = id. 

Let us take y = -1, z = 1 for convenience. Then 

e5 = e1 + te6 mod t;m(xt) (9.5) 

Consider 4tw0 :Im40 -+ Im4t. A basis for t;m(xt) for 
a 11 t is given by the images el and e5 of e1 
and en respective1y. Now because of (9.5) (and the 
other relations given by ~m(xt) 

~t(e0 ) = ~ 0 (e0 ) + tB(e0 ) (9.6) 

where s( ea) is a tensor product e of el and e6 
i nvo 1 vi ng 3 factors e6 and 4 factors el and 40 (ea) 

involves 2 factors e6 and 5 factors el. 

Now observe that the image of a in t;m(xt)®n+rn 
is a sum of terms i nvo l vi ng 5 factors e1 and 2 fac
tors e6. So that 4tw0 (v) = v + tS(w0 (v)) can be 
in Kt iff 

v E Kt' S(wo(v)) = 0, \) E Im 40 (9.7) 

Using the usua1 lift w (defined 
- - ( i-1 "" 0 ) e6 "'e6 -+ 5!2! L.,, e, it is 

by e1 0 ••• Ill> e1 ® 

a straightforward 
TES5xs2 

matter to check that B~0 is injective on 
proves that rrt9two is injective so that 
is a direct summand of Im rrt4t"' p(K). 

Kt. This 
Im <P 0 "" p( K') 

In this vein one proves the Snapper conjecture for 
K > K' with K; ,Kj ~ l. The remaining cases are 
handled by embedding S c..., S + in in the obvious way n n m ~ 

and by letting K correspond to K = (K1 + l, ..• , 
Km+ 1). 

Observe that the representations we are using from 
the grand-family are precisely (up to taking a quotient 
of one of them) among those living over the Schubert
cells SC(K) and SC(K'). 
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