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Lei K=(K 1, . .. ,11:.,), K,e':NUjO}, K 12:Kz2:"'"'"'"''2:0 be a d~cending partition 
of n. We idemify pani1ions which differ only by the addition of some addi1io11al 
zero's. An ordermg, "hkh we call the specialization order, is defined on the sei of 
all !Pilf!iUOllS by 

K>.1. .. I;K,'5L)·.• r~l,2, .... (I.I) 
_pol, 

The reverse order has been called the dominance order. It occurs in many, seemillgly 
mm:laled parts of mathem:a!ics [I, 2, 3], and one of 1he central occ1.mences is i111he 
n:presemation theory of the symmetric groups in characteristic zern. 

Let s. ~ S, 1 x "· x S,M be the Young subgroup of s. (S., is viewed as the permu­
tation subgroup of S, permuting 1he leuers x:, + · .. + K, 1 + l, ... , K 1 + ··· + i<·,) 
corresponding to the partition K and iet l?(K) be the representation of s. obtained by 
mducing :he trivial representation of S, up lo S-.. Also lei !Kl be the irreducible 
represemation of s. (in characteristic zero) associated to the partition"· Snapper !51 
proved that !Kl QCcurs m e(,l) implies"< A. (th!s also follows readily from Young's 
rnle) and conjectured the reverse, which he prmed for m "' 2. Proofs of the 
conjec111re were given by Liebler-Vitale 14l and Lano (3J. L!-ebler and Vitale proved 
more precisely that K <le impiie> that ~IC) is a subrepresemation of q(.l) (which 
obviously implies the conjecture because [IC] occurs m ;?{K)l. 

In this note v.e give a completely elememary direct proof of the liebler-Vita!e 
result whkh requires 110 representation theory at all {beyond the definition of tlle 
permutation representations i((IC)) by cons1ructi11g explicit homomorphisms of 
representations. 

1982 North-Holland 
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l. The Snapper/Liebler-Vitale/Lam Theorem 

2.1. Description of the permutation representation '1(K). Let W(IC) be the set of all 
words of length n in the symbols ai. ... , am such that each a; occurs exactly IC; times. 
The group s. acts in the obvious way on W(IC) (a- 1(b1 ... bn) = bm.11 ... ba<•» ae S.) 
and the vector-space V(IC) with the elements of W(K) as basis and the action 
extended linearly is the representation (l(K). We shall denote the elements of W(K) 
and the corresponding basis elements of V(1C) with the same symbols. 

2.2. Reduction to the case m = 2. It obviously suffices to prove the statement 
"IC<A.=-e(K) is a subrepresentation of o(J.)" in the case that K<A. and K<µ<A.• 
IC=µ or),,=µ. In this case there exist i andj, i>j, such that J.; 2 1C;+ I, ;..1=K1 - I 
and J., = K, for '* i, j. 

This statement is standard and its proof is easy, but we give it for completeness 
sake. We use induction on m. For m=2 the statement is trivial. If A.m=Km then 
(). 1, ... , ).m- 1) > (K 1' ... , Km- il as partitions of n - Am and we have reduced to m - I. 
If ).m>Km considerµ=(µ., ... ,µm) =().1, ... ,A,_ 1, A.,+ 1,A.s+ I• ... ,).m - 1) where sis 
such that).,_ 1 .;.A., =A.m- 1. Clearly).>µ, ). *µ· It remains to prove thatµ >Kand 
henceµ= K. For r::ss we have 

f µ;= E ).,<?: f K;. ;,,., ,.._, ,,,., 

For r>s we have 

I+ f µ, = t A., 2: E K1. 
/>:f /"-'f ,,.,., 

But if E7'=rK;=E7'=,).1=(m-r)).m+i+).,,,, then ;..,_ 12:K,_ 1<?:K,>)., because 
E7'=r-iK;SE7'=r-I)., and Km<).,,, hence r::ss. So we must have I;/':,,K 1 <E7'=,). 1 

which implies that E/'!.,K, :s 1:7'.,µ 1• This proves the statement. The idea of the proof 
is that of (4) but there the details are not entirely correctly written down. 

In the case described above we define a linear map 

P •.• : V().)-+ V(K) 

by the formula 

P1..K(b1 ... b.)=~ b'1 ... b~ 

(2.3) 

(2.4) 

where the sum extends over all words b'1 ... b'• such that b; = b, for all but one/. And 
for that one t we have b1=a1 and b; =or That is, the words in the sum on the right 
are obtained by replacing precisely one occurrence of a1 by a,. This is obviously an 
s.-equivariant map. 

We shall prove that P;.," is surjective if (and only if) ). >K. This proves the 
1heorem because the category of s.-modules (in characteristic zero) is semisimple. 
Alternatively observe that if aK.I: V(K)-+ V(.l.) is defined as Pi .• with the letters a1 
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and a, interchanaed then a, , and /J4 •• are &djoint lo each other 111 the sense that 

(a,_,v,w) • (v,,8,,w), •E V(K},wt! VOI t2.5) 

... here the inner products on VO.J and r(K) are the ones for whi<:h WUl and W{K) 

form orthonormal bases. This a,,. is an S,-equivariant injection iH {J,_, 1s surjective 
and it remain~ to prove that fJ, • is sur1ectiH~ if K < J. 

To do thi~ observe that as a \ectorspece V(J.) is the d11ec1 \um of 

copies of V{J.1,.1.,) indexed by all words in the symbols ai. ... ,1,, ... ,1., .. .,a.,,c 
r denotn deletion) such that a, occurs A, times and c ~un J. 1 + A1 times. Similarly 
V(K) is the Jirect sum of 

copies of V(K1, K,) and the homomorphism (2.4) map~ the copic~ of V(A, . .l.) anJ 
V(K1, K,), labelled b> the same word in ah ... ,d1 , .. ,d,, . . ,a,..,c, into each 01her and 
ism fact the direct sum of these induced maps. Hence 11 is ~uffk1en1 to piove the 
suriec1ivity of Pi .• in the ca~c m: 2. 

2.6. Proof of rhe sur;ei:t1vily uf P •.• in the case m = 2. let A= (r- l,s ·• I). 11 "'(r,s), 
r+s=n and wnte x for a, and y for a,. Then W(r-1,s+ I) consists of ... ord~ or 
length n in (r- I l x's and (s-+ I) y·~ and fJ "'{J,,. changes ~uch a word into thnum of 
all words which can be obtained from this word by chancing prc.:isely one .r in10 an 
x. For e'ample, 

/JI i:xxyJ1y I ~ xxxxyy-+ x.uyx_y + xxxyyx. (2.7) 

~e shall now show that fJ is surjec11~e if r;e:s+ I. (We only need the case r<:::s + 2). 
Let w~ W(r-1,s+ l)UW(r,s). For each pair w, ab, ... b •• W: =b"1 .. b~ in w Wt 

define the distance d(w 1,w2) by 

(2.8) 

(This distan.:e is ~ailed Hamming distance in codi111 theory). Now for w 0 = 
X···Xy·· JIE W(r,s) let 

(2.9) 

Then E,c W(r,s) if r is even and E, c W(r- l,s+ I) if I is ood. Note that we E", iff 
there are precisely t y's among the fir>! r letters and t x's among the seconds letters 
and similarly we E:.i • 1 iff there arc precisely I+ l y's among the firn r lcners of w 
and 1 .r'; among the la~t s letten. 
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Now let 

(2.10) 

where 

c,=(-1)'('~1y1. (2.11) 

We claim thatP(f)=w. To see this observe that since we W(r,s) and ra:s+ I the 
maximum distance of an we Wto w 0 is 2s+ I. Observe that if w' eEu+ 1 thenP(w') 
is a sum of elements in £ 21 and Eu+i (except when t=s, then only elements of Eis 
can occur by the maximum distance observation). 

Now let w• = b1 ... bneE21(tc: I) then the coefficient of w• eP(f) is equal to 

r- 1c,(#{ie {I, .. .,r} lb1 =x}) 

+r- 1c,_ 1(#{ie {r+ I, .. .,r+s} I b1 =x}) 

= ,- 1c,(r- t) + r- 1c,_ 1t. (2.12) 

(The first contribution comes from the elements in E21 + 1 whose ith element was y 
and is transformed to x to decrease the distance to w0 ; the second contribution 
comes from elements of £ 2,_ 1 whose ith element was y and is transformed to x to 
increase the distance). By definition of c, the right-hand side of (2.12) is zero. 

The coefficient of w0 e P(f) is equal to 

r 1c0(#{ie {l, .. .,r} I b1 =x} =r 1·1·r=1. (2.13) 

This proves that w0 =P(f)e ImP and hence we Imp for all we W(r,s) because P is 
s.-equivariant and Sn acts transitively on W(r,s). This concludes the proof. 
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