ON THE SNAPPER / LIEBLER-VITALE / LAM THEOREM ON PERMUTATION REPRESENTATIONS OF THE SYMMETRIC GROUP

Michiel HAZEWINKEL and Ton VORST

Department of Mathematics, Erasmus University, Rotterdam, The Netherlands

Communicated by K.W. Gruenberg Received 6 October 1980

1. Introduction

Let $\kappa = (\kappa_1, ..., \kappa_m)$, $\kappa_i \in \mathbb{N} \cup \{0\}$, $\kappa_1 \ge \kappa_2 \ge \cdots \ge \kappa_m \ge 0$ be a descending partition of *n*. We identify partitions which differ only by the addition of some additional zero's. An ordering, which we call the specialization order, is defined on the set of all partitions by

$$\kappa > \lambda \Leftrightarrow \sum_{i=1}^{r} \kappa_i \le \sum_{i=1}^{r} \lambda_i, \quad r = 1, 2, \dots.$$
(1.1)

The reverse order has been called the dominance order. It occurs in many, seemingly unrelated parts of mathematics [1, 2, 3], and one of the central occurrences is in the representation theory of the symmetric groups in characteristic zero.

Let $S_{\kappa} = S_{\kappa_1} \times \cdots \times S_{\kappa_m}$ be the Young subgroup of S_n (S_{κ_i} is viewed as the permutation subgroup of S_n permuting the letters $\kappa_1 + \cdots + \kappa_{i-1} + 1, \ldots, \kappa_1 + \cdots + \kappa_i$) corresponding to the partition κ and let $\varrho(\kappa)$ be the representation of S_n obtained by inducing the trivial representation of S_{κ} up to S_n . Also let $[\kappa]$ be the irreducible representation of S_n (in characteristic zero) associated to the partition κ . Snapper [5] proved that $[\kappa]$ occurs in $\varrho(\lambda)$ implies $\kappa < \lambda$ (this also follows readily from Young's rule) and conjectured the reverse, which he proved for m=2. Proofs of the conjecture were given by Liebler–Vitale [4] and Lam [3]. Liebler and Vitale proved more precisely that $\kappa < \lambda$ implies that $\varrho(\kappa)$ is a subrepresentation of $\varrho(\lambda)$ (which obviously implies the conjecture because $[\kappa]$ occurs in $\varrho(\kappa)$).

In this note we give a completely elementary direct proof of the Liebler-Vitale result which requires no representation theory at all (beyond the definition of the permutation representations $\varrho(\kappa)$) by constructing explicit homomorphisms of representations.

0022-4049/82/0000-0000/\$02.75 © 1982 North-Holland

2. The Snapper/Liebler-Vitale/Lam Theorem

2.1. Description of the permutation representation $\varrho(\kappa)$. Let $W(\kappa)$ be the set of all words of length *n* in the symbols a_1, \ldots, a_m such that each a_i occurs exactly κ_i times. The group S_n acts in the obvious way on $W(\kappa)$ ($\sigma^{-1}(b_1 \cdots b_n) = b_{\sigma(1)} \cdots b_{\sigma(n)}, \sigma \in S_n$) and the vector-space $V(\kappa)$ with the elements of $W(\kappa)$ as basis and the action extended linearly is the representation $\varrho(\kappa)$. We shall denote the elements of $W(\kappa)$ and the corresponding basis elements of $V(\kappa)$ with the same symbols.

2.2. Reduction to the case m=2. It obviously suffices to prove the statement " $\kappa < \lambda \Rightarrow \varrho(\kappa)$ is a subrepresentation of $\varrho(\lambda)$ " in the case that $\kappa < \lambda$ and $\kappa < \mu < \lambda \Rightarrow \kappa = \mu$ or $\lambda = \mu$. In this case there exist *i* and *j*, *i*>*j*, such that $\lambda_i = \kappa_i + 1$, $\lambda_j = \kappa_j - 1$ and $\lambda_r = \kappa_r$ for $r \neq i, j$.

This statement is standard and its proof is easy, but we give it for completeness sake. We use induction on *m*. For m=2 the statement is trivial. If $\lambda_m = \kappa_m$ then $(\lambda_1, \ldots, \lambda_{m-1}) > (\kappa_1, \ldots, \kappa_{m-1})$ as partitions of $n - \lambda_m$ and we have reduced to m - 1. If $\lambda_m > \kappa_m$ consider $\mu = (\mu_1, \ldots, \mu_m) = (\lambda_1, \ldots, \lambda_{s-1}, \lambda_s + 1, \lambda_{s+1}, \ldots, \lambda_m - 1)$ where *s* is such that $\lambda_{s-1} \neq \lambda_s = \lambda_{m-1}$. Clearly $\lambda > \mu$, $\lambda \neq \mu$. It remains to prove that $\mu > \kappa$ and hence $\mu = \kappa$. For $r \leq s$ we have

$$\sum_{i=r}^{m} \mu_i = \sum_{i=r}^{m} \lambda_i \ge \sum_{i=r}^{m} \kappa_i.$$

For r > s we have

$$1+\sum_{i=r}^m \mu_i=\sum_{i=r}^m \lambda_i\geq \sum_{i=r}^m \kappa_i.$$

But if $\sum_{i=r}^{m} \kappa_i = \sum_{i=r}^{m} \lambda_i = (m-r)\lambda_{m+1} + \lambda_m$, then $\lambda_{r-1} \ge \kappa_r > \lambda_r$ because $\sum_{i=r-1}^{m} \kappa_i \le \sum_{i=r-1}^{m} \lambda_i$ and $\kappa_m < \lambda_m$ hence $r \le s$. So we must have $\sum_{i=r}^{m} \kappa_i < \sum_{i=r}^{m} \lambda_i$ which implies that $\sum_{i=r}^{m} \kappa_i \le \sum_{i=r}^{m} \mu_i$. This proves the statement. The idea of the proof is that of [4] but there the details are not entirely correctly written down.

In the case described above we define a linear map

$$\beta_{\lambda,\kappa} \colon V(\lambda) \to V(\kappa) \tag{2.3}$$

by the formula

$$\beta_{\lambda,\kappa}(b_1\cdots b_n) = \sum b'_1\cdots b'_n \tag{2.4}$$

٤

where the sum extends over all words $b'_1 \cdots b'_n$ such that $b'_t = b_t$ for all but one t. And for that one t we have $b_t = a_i$ and $b'_t = a_j$. That is, the words in the sum on the right are obtained by replacing precisely one occurrence of a_i by a_j . This is obviously an S_n -equivariant map.

We shall prove that $\beta_{\lambda,\kappa}$ is surjective if (and only if) $\lambda > \kappa$. This proves the theorem because the category of S_n -modules (in characteristic zero) is semisimple. Alternatively observe that if $\alpha_{\kappa,\lambda}: V(\kappa) \to V(\lambda)$ is defined as $\beta_{\lambda,\kappa}$ with the letters a_j and a_i interchanged then $\alpha_{\kappa,\lambda}$ and $\beta_{\lambda,\kappa}$ are adjoint to each other in the sense that

$$\langle \alpha_{\kappa,\lambda} v, \omega \rangle = \langle v, \beta_{\lambda,\kappa} \omega \rangle, \quad v \in V(\kappa), \, \omega \in V(\lambda)$$
(2.5)

where the inner products on $V(\lambda)$ and $V(\kappa)$ are the ones for which $W(\lambda)$ and $W(\kappa)$ form orthonormal bases. This $\alpha_{\kappa,\lambda}$ is an S_n -equivariant injection iff $\beta_{\lambda,\kappa}$ is surjective and it remains to prove that $\beta_{\lambda,\kappa}$ is surjective if $\kappa < \lambda$.

To do this observe that as a vectorspace $V(\lambda)$ is the direct sum of

$$\binom{n}{\lambda}\binom{\lambda_i+\lambda_j}{\lambda_i}^{-1}$$

copies of $V(\lambda_j, \lambda_i)$ indexed by all words in the symbols $a_1, \ldots, \hat{a}_j, \ldots, \hat{a}_i, \ldots, a_m, c$ ([^] denotes deletion) such that a_i occurs λ_i times and c occurs $\lambda_i + \lambda_j$ times. Similarly $V(\kappa)$ is the direct sum of

$$\binom{n}{\kappa}\binom{\kappa_i+\kappa_j}{\kappa_i}^{-1} = \binom{n}{\lambda}\binom{\lambda_i+\lambda_j}{\lambda_i}^{-1}$$

copies of $V(\kappa_j, \kappa_i)$ and the homomorphism (2.4) maps the copies of $V(\lambda_j, \lambda_i)$ and $V(\kappa_j, \kappa_i)$, labelled by the same word in $a_1, \ldots, \hat{a}_j, \ldots, \hat{a}_i, \ldots, a_m, c$, into each other and is in fact the direct sum of these induced maps. Hence it is sufficient to prove the surjectivity of $\beta_{\lambda,\kappa}$ in the case m = 2.

2.6. Proof of the surjectivity of $\beta_{\lambda,\kappa}$ in the case m = 2. Let $\lambda = (r-1, s+1)$, $\kappa = (r, s)$, r+s=n and write x for a_i and y for a_j . Then W(r-1, s+1) consists of words of length n in (r-1) x's and (s+1) y's and $\beta = \beta_{\lambda,\kappa}$ changes such a word into the sum of all words which can be obtained from this word by chancing precisely one y into an x. For example,

$$\beta(xxxyyy) = xxxyy + xxxyy + xxxyyx. \tag{2.7}$$

We shall now show that β is surjective if $r \ge s+1$. (We only need the case $r \ge s+2$). Let $W = W(r-1,s+1) \cup W(r,s)$. For each pair $\omega_1 = b_1 \cdots b_n$, $\omega_2 = b'_1 \cdots b'_n$ in W we define the distance $d(\omega_1, \omega_2)$ by

$$d(\omega_1, \omega_2) = \#\{t \mid b_t \neq b_t'\}.$$
(2.8)

(This distance is called Hamming distance in coding theory). Now for $\omega_0 = x \cdots xy \cdots y \in W(r, s)$ let

$$E_t = \{ \omega \in W \mid d(\omega_0, \omega) = t \}$$

$$(2.9)$$

Then $E_t \subset W(r,s)$ if t is even and $E_t \subset W(r-1,s+1)$ if t is odd. Note that $\omega \in E_{2t}$ iff there are precisely t y's among the first r letters and t x's among the second s letters and similarly $\omega \in E_{2t+1}$ iff there are precisely t+1 y's among the first r letters of ω and t x's among the last s letters. Now let

f

$$\Gamma = r^{-1} \left(c_0 \sum_{\omega \in E_1} \omega + c_1 \sum_{\omega \in E_3} \omega + \dots + c_s \sum_{\omega \in E_{2s+1}} \omega \right)$$
(2.10)

where

$$c_t = (-1)^t \binom{r-1}{t}^{-1}.$$
(2.11)

We claim that $\beta(f) = \omega$. To see this observe that since $\omega \in W(r, s)$ and $r \ge s+1$ the maximum distance of an $\omega \in W$ to ω_0 is 2s+1. Observe that if $\omega' \in E_{2t+1}$ then $\beta(\omega')$ is a sum of elements in E_{2t} and E_{2t+2} (except when t = s, then only elements of E_{2s} can occur by the maximum distance observation).

Now let $\omega'' = b_1 \cdots b_n \in E_{2t}$ ($t \ge 1$) then the coefficient of $\omega'' \in \beta(f)$ is equal to

$$r^{-1}c_{t}(\#\{i \in \{1, ..., r\} | b_{i} = x\}) + r^{-1}c_{t-1}(\#\{i \in \{r+1, ..., r+s\} | b_{i} = x\}) = r^{-1}c_{t}(r-t) + r^{-1}c_{t-1}t.$$
(2.12)

(The first contribution comes from the elements in E_{2t+1} whose *i*th element was y and is transformed to x to decrease the distance to ω_0 ; the second contribution comes from elements of E_{2t-1} whose *i*th element was y and is transformed to x to increase the distance). By definition of c_t the right-hand side of (2.12) is zero.

The coëfficient of $\omega_0 \in \beta(f)$ is equal to

$$r^{-1}c_0(\#\{i \in \{1, \dots, r\} \mid b_i = x\} = r^{-1} \cdot 1 \cdot r = 1.$$
(2.13)

This proves that $\omega_0 = \beta(f) \in \text{Im } \beta$ and hence $\omega \in \text{Im } \beta$ for all $\omega \in W(r, s)$ because β is S_n -equivariant and S_n acts transitively on W(r, s). This concludes the proof.

References

- [1] T. Brylawsky, The lattice of integer partitions, Discrete Math. 6 (1973) 201-219.
- [2] M. Hazewinkel and C. Martin, Representations of the symmetric groups, the specialization order, systems and Grassman manifolds, Report 8103, Econometric Institute, Erasmus University, Rotterdam (1981).
- [3] T.Y. Lam, Young diagrams, Schur functions, the Gale-Ryser theorem and a conjecture of Snapper, J. Pure Appl. Algebra 10 (1977) 81-94.
- [4] R.A. Liebler and M.R. Vitale, Ordering the partition characters of the symmetric group, J. Algebra 25 (1973) 487-489.
- [5] E. Snapper, Group characters and nonnegative integral matrices, J. Algebra 19 (1971) 520-535.

32