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1. Introduction 
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Let K = (K 1' ••• , Km), Ki E rN U {0}, K1 2:: K1 2:: •• • 2:: Km 2:: 0 be a descending partition 
of n. We identify partitions which differ only by the addition of some additional 
zero's. An ordering, which we call the specialization order, is defined on the set of 
all partitions by 

r r 

K>A~LKi-:5LA;, r=l,2, .... (1.1) 
i= I i= I 

The reverse order has been called the dominance order. It occurs in many, seemingly 
unrelated parts of mathematics [l, 2, 3], and one of the central occurrences is in the 
representation theory of the symmetric groups in characteristic zero. 

Let SK= SK 1 x · ·· x SKm be the Young subgroup of Sn (SK, is viewed as the permu­
tation subgroup of Sn permuting the letters K1+· .. +K;_ 1+1, ... ,K1+ .. ·+K;) 
corresponding to the partition Kand let Q(K) be the representation of Sn obtained by 
inducing the trivial representation of SK up to Sn- Also let [K] be the irreducible 
representation of Sn (in characteristic zero) associated to the partition K. Snapper [5] 
proved that [K] occurs in g(A.) implies K<A. (this also follows readily from Young's 
rule) and conjectured the reverse, which he proved for m = 2. Proofs of the 
conjecture were given by Liebler-Vitale [4] and Lam [3]. Liebler and Vitale proved 
more precisely that K <A. implies that Q(K) is a subrepresentation of Q(A) (which 
obviously implies the conjecture because [K] occurs in Q(K)). 

In this note we give a completely elementary direct proof of the Liebler-Vitale 
result which requires no representation theory at all (beyond the definition of the 
permutation representations Q(K)) by constructing explicit homomorphisms of 
representations. 
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2. The Snapper/Liebler-Vitale/Lam Theorem 

2.1. Description of the permutation representation e(K). Let W(K) be the set of all 
words of length n in the symbols a 1, ••• , am such that each ai occurs exactly Ki times. 
The group Sn acts in the obvious way on W(K) (a- 1(b 1 ••• bn)=ba(IJ"" ba(n)> aeSn) 
and the vector-space V(K) with the elements of W(K) as basis and the action 
extended linearly is the representation e(K). We shall denote the elements of W(K) 
and the corresponding basis elements of V(K) with the same symbols. 

2.2. Reduction to the case m = 2. It obviously suffices to prove the statement 
"K<.A.=>g(K) is a subrepresentation of g(.A)" in the case that K<.A. and K<µ<).=­
K = µ or .A=µ. In this case there exist i and), i> ), such that Ai= K; + 1, Aj = Kj-1 

and .A,= K, for r=t= i, ). 
This statement is standard and its proof is easy, but we give it for completeness 

sake. We use induction on m. For m = 2 the statement is trivial. If Am= Km then 
(A.I> ... ,Am-i)>(Kh ... ,Km-d as partitions of n-Am and we have reduced to m-1. 
If A111 >Km consider µ=(µ1' ... ,µm) =(A.I> .. .,As-I> As+ l,.As+1' ... ,Am- 1) where sis 
such that As-I =l=.A.5 =Am-I· Clearly .A>µ, .A =I=µ. It remains to prove thatµ >K and 
henceµ= K. For r:::;;s we have 

m m m 

L µ; = L Aj~ L K;. 
J=r i=r 

For r>s we have 

m m m 

1 + L µ; = E A;~ L Ki. 
z=r 1=r i=r 

But if 2.:r=rKi=l:i'!,,A;=(m-r).A.m+i+A.m, then .A.,_ 1 2:K,_ 1 ~K,>A, because 
Ir=r-1K;:SE!!,,_1.A.i and Km<Am hence r:Ss. So we must have I7~rKi<L'!'=r).i 
which implies that Ei"=rKi:::;; E/';,,,µ;. This proves the statement. The idea of the proof 
is that of [4] but there the details are not entirely correctly written down. 

In the case described above we define a linear map 

fJ;.,K: V(A)-+V(K) 

by the formula 

fJ;.,K(b1 ... bn) = L b'i ... b~ 

(2.3) 

(2.4) 

where the sum extends over all words b'1 • .. b'n such that b~ = b 1 for all but one t. And 
for that one t we have b1 =a; and b~ = aj. That is, the words in the sum on the right 
are obtained by replacing precisely one occurrence of ai by a1. This is obviously an 
Sn-equivariant map. 

We shall prove that fJ ;.., K is surjective if (and only if) A> K. This proves the 
theorem because the category of Sn-modules (in characteristic zero) is semisimple. 
Alternatively observe that if aK,;.: V(K)-+ V(.A.) is defined as fJ ;., K with the letters a1 
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and ai interchanged then aK,J. and fJJ.,K are adjoint to each other in the sense that 

(aK,;.v,w> = (v,/J;.,Kw), VE V(K), WE V(A.) (2.5) 

where the inner products on V(A.) and V(K) are the ones for which W(A.) and W(K) 

form orthonormal bases. This aK,J. is an Sn-equivariant injection iff PJ.,K is surjective 
and it remains to prove that PJ.,K is surjective if K<A.. 

To do this observe that as a vectorspace V(A.) is the direct sum of 

copies of V(A.j, A.;) indexed by all words in the symbols ai. ••. , iij, ... , ii;, ... , am, c 
C denotes deletion) such that ar occurs Ar times and c occurs A.;+ Aj times. Similarly 
V(K) is the direct sum of 

copies of V(Kj,K;) and the homomorphism (2.4) maps the copies of V(A.j,A;) and 
V(Kj, K;), labelled by the same word in a" ... , fJj, ... , a;, ... , am, c, into each other and 
is in fact the direct sum of these induced maps. Hence it is sufficient to prove the 
surjectivity of PJ.,K in the case m = 2. 

2.6. Proof of the surjectivity of p ;., Kin the case m = 2. Let A. = (r- 1, s + I), K = (r, s), 
r+s=n and write x for a; and y for aj. Then W(r-1,s+ 1) consists of words of 
length n in (r - 1) x' s and (s + 1) y' s and P = P ;., K changes such a word into the sum of 
all words which can be obtained from this word by chancing precisely one y into an 
x. For example, 

{J(xxxyyy) = xxxxyy + xxxyxy + xxxyyx. (2.7) 

We shall now show that f3 is surjective if r~s+ 1. (We only need the case r~s+2). 
Let W= W(r-1,s+ l)U W(r,s). For each pair w 1 =b 1 ••• bn, w 2 =b'i ··· b~ in Wwe 

define the distance d(w1> w 2) by 

(2.8) 

(This distance is called Hamming distance in coding theory). Now for w 0 = 

x .. ·xy···yE W(r,s) let 

(2.9) 

Then E 1 c W(r, s) if t is even and E 1 c W(r- 1, s + 1) if t is odd. Note that w E £ 21 iff 
there are precisely t y's among the first r letters and t x's among the seconds letters 
and similarly w E £ 21 + 1 iff there are precisely t + 1 y's among the first r letters of w 
and t x's among the lasts letters. 
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Now let 

(2.10) 

where 

C1=(-l)I('~ 1 rl· (2.11) 

We claim that p(j) =w. To see this observe that since w E W(r,s) and r=:::s+ 1 the 
maximum distance of an we Wto w 0 is 2s+ 1. Observe that if w' eE21 + 1 thenP(w') 
is a sum of elements in E21 and E21 +2 (except when t =s, then only elements of Eis 
can occur by the maximum distance observation). 

Now let w" = b1 ••• bn E E21 (t=::: I) then the coefficient of w" E p(j) is equal to 

r- 1c1(#{ie {l, ... ,r} I b;=x}) 

+ ,- 1c1_ 1(#{i e {r+ I, ... , r+s} I b; =x}) 

=r- 1c1(r- t) + r- 1c1_ 1t. (2.12) 

(The first contribution comes from the elements in E21 + 1 whose ith element was y 
and is transformed to x to decrease the distance to w 0 ; the second contribution 
comes from elements of E 21 _ 1 whose ith element was y and is transformed to x to 
increase the distance). By definition of c1 the right-hand side of (2.12) is zero. 

The coefficient of w0 e p(j) is equal to 

r- 1co(#{ie {l, ... ,r} I b; =x} =,-i. 1·r=1. (2.13) 

This proves that w0 = {J(j) e Imp and hence we Imp for all we W(r, s) because P is 
Sn·equivariant and Sn acts transitively on W(r,s). This concludes the proof. 
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