
INT.J.CONTROL, 1981,VOL. 33,N0.4, 713-726 

On families of systems: pointwise-local-global isomorphism 
problemst 

MICHIEL HAZEWINKEL:j: and ANNA-MARIA PERDON§ 

Let :E and I:' be two families of linear dynamical systems, or, almost equivalently, 
let I: and I:' be two systems over a ring. This paper addresses itself to the question, 
what, if anything, can be said about the relations between I: and I:' if it is known that 
:E and :E' are pointwise isomorphic for all or almost all of the parameter values. 

1. Introduction 
(and motivational remarks for studying families rather than single systems) 

A linear dynamical system is a system of differential or difference equations 

x = Fx + Gu, x(t + 1) = Fx(t) + Gu(t)} 
y=Hx, y(t) =Hx(t) 

(1) 

xefRn, uefRm, yefRP, i.e. we have state space dimension n, m inputs and p outpu.ts. 
The theory of linear dynamical systems deals with various properties of and 
constructions pertaining to such sets of equations, with the coefficients, i.e. 
the entries of the matrices F, G, H, assumed known. Yet in many circum
stances these coefficients are imperfectly known at best and it becomes impor
tant to examine what happens to various notions and constructions as the 
coefficients vary (slightly). 

To make things more precise let Q be a topological space. Roughly a 
family of linear dynamical systems over Q consist of a collection of such 
equations (1), one for each qeQ, such that the matrices F, G, H depend con
tinuously on the parameter q. More generally (and also more properly), a 
family over Q consists of a vector bundle E over Q (of dimension n), a vector 
bundle endomorphism F: E-E and two vector bundle homomorphisms 
G: Q x fRm-E, H: E-Q x fRP. The two definitions agree locally (i.e. over 
small enough open subsets of Q) and for the purposes of this paper the first 
definition mostly suffices. 

In the discrete time case (i.e. the difference equation case) one can consider 
systems of equations 

x(t + 1) = Fx(t) + Gu(t), y(t) = Hx(t) (2) 
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where now the matrices F, G, H can have their coefficients in any ring R (and 
t= 0, 1, ~ •... ,say). For each prime ideal JI of R let R(jl) be the quotient field 
of the integral domain Rf JI. This gives us a family of systems 

x(t + 1) = F(ji)x(t) + G(f)u(t), y(t) = H(f )x(t) (3) 

which is the local algebraic-geometric analogue of the topological concept of a 
family introduced above. The main goal of the theory of families of systems 
is now to develop techniques and prove theorems which do for families all the 
nice things one can do for a single linear dynamical system, for example: 

(i) Realization theory for a family of input/output maps (cf. also Byrnes 
1977 a, 1978, Hazewinkel 1979 b). 

(ii) Pole placement and stabilization by feedback ( cf. also Byrnes 1978, 
Hazewinkel 1979 b, Tannenbaum 1978, Wyman 1978). 

(iii) Decomposition (e.g. construction of the ' canonical ' completely reach
able subsystem (cf. Hazewinkel 1979 b, 1980 a). 

(iv) Controllability subspaces and their applications. 
(v) Disturbance decoupling. 

The general philosophy of, and motivation for, the study of families of (linear) 
dynamical systems rather than single ones is discussed more extensively in 
(Hazewinkel 1980 a, 1979 b, Kamen 1978). Results pertaining to different 
aspects than those of the present paper are in Hazewinkel {1980 b, c). 

In view of the reinterpretation (sketched above) of a system (2) over a ring 
Ras an algebraic-geometric family of systems over Spec(R), the general project 
encompasses trying to do all the things listed above for systems over rings, 
and this constitutes an important bit of motivation for studying families of 
systems. 

A related, and important, bit of motivation comes from linear delay 
differential dynamical systems, for example: 

a\(t) =x1(t) +x2(t- l) +u(t-1)! 

:i:2(t) =X1{t- l) +u(t) 

y(t) = x1(t) + X2(t - 2) 

(4) 

Introducing the delay operator a, ax(t) =x(t-1), we can write (4) formally as 
a linear system over the ring R[ a], viz : 

x(t) = F(~)x(t) + G(a)u(t)} 

y(t) = H(a)x(t) 
(5) 

where F(a), G(a), H(a) are the following matrices with coefficients in the ring 
of polynomials IR[a] 

F(a){ :l G(a)-[: l H(a)-[1, a'] 
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As it turns out this rather formal-looking procedure is most useful (Kamen 
1975). For instance in a very nice paper Kamen (1978) has worked out some 
of the relationships between the spectral properties of (4) and the commutative 
algebra which goes into the study of (5). And using this, and the re-inter
pretation of (5) as a family of systems, Byrnes (1977 b) has been able to do 
things about the feedback stabilization theory of (4). 

Other bits of motivation for studying families come, for example, from 
identification theory (Hazewinkel 1979 a) and the study of high-gain feedback 
systems (Kar-Keung et al. 1977). In both these cases it is important to know 
in what ways a family of systems can suddenly degenerate, which is the subject 
matter of Hazewinkel (1980 c) and also of the present paper (Theorems 3 and 4). 

Ideally one would like to write down explicit local (uni)versal deformations 
for each system as Arnol'd (1971) did for matrices. On general principles one 
expects that this is possible and for pairs of matrices (F, G), i.e.' input systems' 
or 'control systems' this has recently been done by Tannenbaum (1980). 

To extend these constructions a la Arnol'd of versal deformations to the case 
of triples of matrices may involve non-trivial difficulties. A reason for thinking 
this is that the stabilizer subgroup (see § 3 for a definition) of a system which is 
completely observable (CO) or completely reachable (CR) is trivial. Yet there 
is no (fine) moduli space for families of CO or OR systems as examples (8) and 
(9) show. That is, the stabilizer subgroup, which is at the heart of Arnold's 
constructions may be an insufficient guide in the setting of triples of matrices. 
For completely reachable or completely observable systems universal deforma
tions result from the fine moduli space of Hazewinkel (1977 a, b). And in 
fact the original starting point for this paper was the far too optimistic idea that 
these moduli spaces might quite well be extendable to some extent. Thus the 
main problem considered in this paper became: given two families of linear 
dynamical systems ~. ~' over a manifold Q. Suppose that pointwise the 
systems ~q• ~'q are isomorphic for all or almost all qeQ. What can be said about 
the relation between ~ and ~' as families and what can be said about the 
relations between ~q and ~'q at the remaining points of Q. 

The first question is of course entirely analogous to the one studied by 
Wasow (1962) and later in an algebraic setting by Ohm and Schneider (1964), 
with respect to similarity of families of matrices which depend (holomorphically) 
on a parameter. 

2. Almost everywhere isomorphic faiµilies of systems 
We use the abbreviations CR for completely reachable and CO for completely 

observable. Recall that the system (1) is OR if and only if the matrix 

R(F, G) = [G FG ... FnG] (6) 

is of full rank n, and that (1) is CO if and only if the matrix Q(F, H) is of full 
rank n. Here Q(F, H) is defined as 

(7) 

where the symbol T means 'transpose'. 

2c2 
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Let L be the space of all linear dynamiool systems ( 1) of state space 
m,n,p 

dimension n and with m inputs and p outputs. That is, Lm,n,p is the space of 
all triples of matrices (F, G, H) over IR of dimensions n x n, n x m, p x n 
respectively. We give Lrn,n,p the corresponding topology, i.e. the topology of 
IRn<n+m+Pl. For the purposes of this paper a family of systems over a topo
logical space Q is simply a continuous map Q__,.Lm,n,w A more general (and 
better) definition of family of systems is given in Hazewinkel (1980 a, 1979 b) 
and there the reader will also find a discussion of the reasons why the present 
definition is inadequate in some contexts. The theorems of the present paper 
extend with no trouble to this more general setting. This is automatic for the 
local Theorems 5 and 6, because locally (i.e. over a small enough open neigh
bourhood) the naive definition and the proper one agree. For the global 
versions of Theorems 1-4 it suffices to appeal to the same rigidity phenomenon 
( =uniqueness of (iso )morphisms if they exists at all) which is the basis of the 
corresponding local results. 

If 2: = (F, G, H) is a family of linear dynamical systems over a topological 
space Q we denote by l:(q) the system (F(q), G(q), H(q)). Completely analogously 
if 2: = (F, G, H) is a (discrete time) system over a ring R then 

l:(f) = (F(jz), G(f), H(ji)) 

is the induced system over R(jt), the quotient field of R/jz. 

Theorem 1 

Let 2:: and 2: 1 be two families over a topological space Q. Let 

U1 = {qi=Q: .l:(q) and l:'(q) are both CR} 
and 

U2 ={qi=Q: 2::(q) and l:'(q) are both CO} 

Suppose that U1UU 2 =Q and suppose that .l:(q) and .l:'(q) are pointwise iso
morphic for a dense set Z of points q in Q. Then 2: and 'l:' are isomorphic as 
families over Q, (which, by definition, means that there is a continuous map 
Q__,.GLn( IR), qHS(q), such that F' (q) = S(q)F(q)S(q)-1, G' (q) = S(q) G(q), H' (q) = 
H(q)8(q)-1 for all qi=Q). 

It follows in particular that l:(q) and l:'(q) are also isomorphic in all the 
remaining points, i.e. the points of Q\Z. The (local) algebraic geometric 
version of this theorem is 

Theorem 2 

Let 2: and 2:' be two systems over a ring R. Let U1 = {fi=Spec(R) I 'l:(jl) 
and l:'(f) are both CR}, U2 = {fi=Spec(R) I l:(fl) and 'l:'(ji) are both CO}. 
Suppose that U1uV2 =Spec(R) and that there is a dense subset ZcSpec(R) 
such that l:(f) and 2::'(f) are isomorphic for all fEZ. Then '2: and '2:' are 
isomorphic as systems over R. 

This means in particular that if R is an integral domain and '2: = (F, G, H), 
2:' = (F', G', H') are two n-dimensional systems over R which are isomorphic 
over K, the quotient field of R, and if moreover for all maximal ideals m c R 
we have that the rank of both R(F, G), R(F', G') or of both Q(F, H), Q(F', H') 
stays n mod wi then 2: and 2:' are also isomorphic as systems over R. 
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Both Theorems 1 and 2 are almost trivial consequences of the existence of 
fine moduli spaces for CR families and for CO families. These exist both in the 
topological case ( cf. Hazewinkel 1977 a) and the algebraic-geometric case. This 
last fact is proved in Byrnes and Hurt (1979), Byrnes (1977 b), Hazewinkel 
(1977 b) for families of systems over an (algebraically closed) field k. For the 
proof of Theorem 2 one needs the stronger statement that the moduli space 
exists and has the fine moduli property as a scheme over Z, which is proved 
in Hazewinkel 1980 a. 

The proofs of Theorems 1 and 2 now go as follows. (We write out the 
details in the topological case only.) Recall that the fine moduli space MOR 

is the quotient space LORm,n,p/GLn(fR.). Now let ~ : s-L0 Rm,n,p be a family 
of CR systems. Assign to L the composed map s-LORm,n,p-MOR, which 
assign to SES the point of MOR corresponding to L(s) (=the orbit of ~(s)). 
Then part of the fine moduli property of MOR says that two systems over S 
are isomorphic (as systems) if and only if they give rise to the same map 
S-+M0 R. (This part of the fine moduli theorem is in fact almost trivial.) 
Thus under the hypothesis of Theorem 1 the families~ and~' give rise to the 
same continuous map 

U1nz-M0 R 

and because U 1 nZ is dense in U 1 these two maps agree on all of U 1 which (by 
the fine moduli property) means that L and L' are isomorphic over U v i.e. 
there exists a continuous map 

such that for all qEU1 

:E' (q) = L(q)91<<ll 

where :E8 is short for (SFS-1, SG, HS-1) if~= (F, G, H), SEGLn(IR}, the group 
of invertible n x n matrices. 

Similarly there exists a fine moduli space for families of CO systems M 00 

which similarly permits us to conclude that :E and L' are isomorphic over U 2, 

so that there is a continuous map 

cp2 : U2-+GLn(IR) 

such that 
~'(q) =:E(q)92Cql, qeU2 

Now systems which are CR or CO enjoy the following rigidity property: 
if they are isomorphic the isomorphism is unique. Indeed if (F, G, H), 
(F', G', H')eLm,n,p are isomorphic via SeGLn(IR) then S satisfies 

SR(F, G)=R(F', G') and Q(F, H)S-1 =Q(F', H') 

and if (F, G, H) and (F', G', H') are both CR or if both are CO then these 
relations determine S uniquely. 

It follows that in the setting above c/>1(q)=c/>2(q) for all qeU1nU2. That is, 
</>1 and cf>2 agree on U1nU2 proving that Land~' are isomorphic over all of Q. 

The proof of Theorem 2, the algebraic-geometric version is completely 
analogous : it suffices essentially to replace the words ' continuous map' 
with ' morphism of algebraic varieties ' everywhere in the above. 
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The trouble with Theorems 1 and 2 is that, unless one demands something 
like pointwise isomorphism everywhere, or CR everywhere, or CO everywhere, 
the condition U1uU2 =Q cannot be stated in terms of the separate families 
}:; and }:;'. So one is led to ask whether or not a condition like everywhere 
CO or CR would be sufficient. It is not ; as is more or less predictable from 
the well known fact that as a rule it is perfectly possible for two non-isomorphic 
systems }:; and }:;' over an integral domain R to become isomorphic over the 
quotient field (Sontag 1976). The simplest such example is undoubtedly the 
following one-dimensional one over IR[ a]. 

G=a, H=l} 
H'=a 

(8) 
}:;': F'=l, G'=I, 

Considered as families over Q = IR, parametrized by a, we have that L is CO 
everywhere and CR everywhere except in 0, while L' is CR everywhere and CO 
everywhere except in 0. Thus U1 = U2 = IR\{O}. Also L(q) and }:;'(q) are iso
morphic for all q -:f. 0. But of course L and L' are not isomorphic as families 
nor as systems over the ring IR [a]. 

Another example, which is slightly more illustrative of what goes on is 
given by the families 

E~([:J [: :J [!,OJ) 

E'~([: l [: :J [I, OJ) 

(9) 

which have essentially the same properties as the families (8). And here we 
note that though }:;(O) and L'(O) are of course not isomorphic, they are also not 
totally unrelated. In fact they agree on the completely reachable subsystem 
of }:;(O). (For a more precise description of what this means, see below.) 
Note also that these examples largely destroy all hope about extending the 
fine moduli spaces MCRm,n,p and MC0 m,n,p a bit. 

Morphisms 
Let }:; and }:;' be two families over Q. A morphism L-L' over Q then 

consists of a continuous map if;: Q-+Mnxn the space of n x n matrices such that 
for all qeQ, i/;(q)G(q) = G'(q), F'(q)if;(q) = if;(q)F(q), H'(q)if;(q) = H(q). 

Completely analogously a morphism L-L' between two systems over a 
ring R is an nxn matrix Tsuch that TG=G', F'T=TF, H'T=H. 

Using this notion one can now state the two following (dual) 'mildness 
of degeneracy ' results. 

Theorem 3 

Let}:; and}:;' be two families over Q. Suppose that :E(q) is CR for all qEQ. 
Suppose moreover that L'(q) and }:;(q) are isomorphic for all q in a dense subset 
Z of Q. Then there is a morphism T : L-+L' over Q such that T(q) : L(q)
}:;'(q) is an isomorphism for all qeZ and such that T(q) : L(q)-L'(q) maps the 
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state space of 2:(q) onto the completely reachable subspace of the state space of 
2:'(q) for all qEQ. 

Theorem 4 

Let 2: and 2:' be two families over Q. Suppose that 2:(q) is CO for all 
qEQ. Suppose moreover that 2:'(q) and 2:(q) are isomorphic for all q in a dense 
subset Z of Q. Then there is a morphism T: :2:'-+:2: over Q such that 
T(q) : 2:(q)-+2:'(q) is an isomorphism for all qEZ and such that for all qEQ\Z 
two states x, x' in state space of :2:'(q) are indistinguishable (by means of 
observations) if and only if their difference x - x' is in ker ( T (q)). 

There are of course the obvious analogous results for systems over rings. 
In this case Theorem 3 says, among other things, that the system over a ring 
R which is CR everywhere is maximal in the lattice of all realizations of minimal 
rank over R which realize the same input/output behaviour; similarly 
Theorem 4 says that the everywhere CO realization is the minimal element of 
this lattice. See Sontag (1977) for a discussion of the lattice of realizations 
of a linear response map over a ring. 

Proof of Theorem 3 
Let qEQ. Because 2: is CR in q there exists a nice selection (Kalman 1971, 

Hazewinkel and Kalman 1976, Hazewinkel 1977 a, 1979 b) and an open 
subset Uc Q containing q such that R(F(q'), G(q'))a. is invertible for all q'EU. 
Now let z1, z2 , ... ,be a sequence of points of ZnU converging to q. 

Define the matrix T(q) as the limit 

T(q) = lim R(F'(zi), G'(zi))"(R(F(zi), G(zi))a.-1 

i-?CO 

It is not difficult to check that T(q) does not depend on the choice of e< or on 
the choice of the sequence z1, z2, .•.• 

Now for all i we have ziEZ so that 2:'(zi) and 2:(zi) are isomorphic, say by 
SiEGLn( IR). Then Si satisfies 

SiR(F(zi), G(zi)) = R(F'(zi), G'(zi)) 

so that 

Writing out that Si is an isomorphism we find 

SiF(zi) = F'(zi)Si, SiG(zi) = G' (zi), H'(zJSi = H(zi) 

and taking the limit for i-+ oo we find the relations 

T(q)F(q) = F'(q)T(q), T(q)G(q)= G'(q), H'(q)T(q) =H(q) 

so that T(q) is a morphism 2:(q)-+L'(q). It is easy to check that T(q) depends 
continuously on q so that the T(q) combine to define a morphism T : ~-+::2:'. 
If qEZ then T(q) is of course the unique isomorphism :2:(q)-+2:'(q). The relations 
written out above which are satisfied by T(q) imply 

T(q)R(F(q), G(q)) = R(F'(q), G'(q)) 
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and, using that (F(q), G(q)) is compl~tely_ reachable, it ~olloiws that the com
pletely reachable subspace of (F'(q), G (q)) is equal to the image of T(q) (because 

the c~mpletely reachable subspace of a system (F, G, H) is the image of the 

map R(F, CJ): fR(n+1)m-+fRn). 

The Proof of Theorem 4 

This is similar to the proof of Theorem 3 (or we may appeal to duality). 

Example 
Let Land I:' be two families over Q, which are pointwise isomorphic over a 

dense subset Z of Q. Then, without any further assumptions, we know of 

course that for all qEQ, L(q) and I:'(q) are related in the sense that their CR 
and CO subquotients are isomorphic. This follows from the continuity of the 

Laplace transform. Beyond this there seems little one can say (without making 

some sort of stableness hypothesis as in Theorems 3 and 4), as the following 
example shows. 

L~([: J [ :J [u,1]) 

I:'=([ a], [l-aa a
2
a ], [O, a]) 

1 -a aa+2 

(10) 

These families are pointwise isomorphic for all a¥- 0. But for a= 0 there is not 

even a morphism L(O)-+L'(O), in fact there is not a morphism between the input 
parts of the completely reachable subsystems of 1:(0) and I:'(O). 

3. Everywhere pointwise isomorphic families of systems 

Now let I: and l:' be families of systems over Q (resp. Spec(R)) which are 
pointwise isomorphic everywhere. Then it does not necessarily follow that 

I: and I:' are isomorphic as families over Q (resp. are isomorphic as systems over 
R), as the following example shows. 

Example 

Consider the two families over IR (or the two systems over IR[a ]) defined by 

;hese ~WO fami_lies are _pointwise isomorphic for all a (resp. the systems 

~(jt), L (~) are isomorphic for all prime ideals jic fR[a]) but they are not 

1somorp~1c as fa~il~es over IR (resp. as systems over IR[a ]) ; indeed I: and I:' 

are ~ot ~somorphw m any neighbourhood of 0 (resp. not isomorphic over any 
locahzat10n IR[a]1 of IR[a] for which /(0)#0). 
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So we shall need some sort of extra condition to ensure that pointwise 
isomorphism implies isomorphism as families. 

Stabilizer subgroups 
Let :Ebe a family over Q. Then for each qr:=Q we define 

N(q) = {Sr:=GLn(fR) : SF(q) = F(q)S, SG(q) = G(q), H(q)S =H(q)} 

This is the stabilizer subgroup in GLn(IR) of the system :E(q). The Lie algebra 
of N(q) is 

L(q) = {Tr:=Mnxn: T F(q) = F(q)T, TG(q) = 0, H(q)T = O} 

We use r(q) to denote the dimension of N(q) which is of course equal to the 
dimension of L(q). Completely analogously one defines in the case of a system 
1:= (F, G, H) over a ring R the subgroup N(fi) of GLn(R(f)) consisting of all 
invertible matrices S over the field R(f) (=quotient field of R/jl), such that 
SF(f)=F(jz)S, SG(jt)=G(f'), H(jt,)S=H(jt) and L(f) as the Lie algebra of all 
n x n matrices T with coefficients in R(jt) such that T F(jt) = F(jt)T, TG(j;) =0, 
H(fi)T = 0. 

Differentiable families of systems 
Topologically the space of all n dimensional systems with m inputs and p 

outputs is homeomorphic with fRn<n+m+P), cf. § 2. We now give Lm,n,p also the 
differentiable structure of fRn(n+m+P). Now let Q be a differentiable manifold. 
Then a family of systems :E : Q-->Lrn,n,JJ is a differentiable family of systems if 
the map :E is differentiable. Two differentiable families of systems :E and :E' 
are isomorphic as differentiable families if there is a differentiable map 
cp: Q..:...GLn(IR) such that :E(q)9(q) = :E'(q) for all qr:=Q. Here, of course, GLn(IR) 
is given the differentiable structure of an open subset of IRn'. The space of 
orbits _.11,fCR of completely reachable systems has a natural differentiable 
structure and with this structure it is a fine moduli space for the appropriate 
notion (based on vector bundles) of differentiable families of CR systems (in 
the differentiable category), (Hazewinkel 1977 a, 1980 a). 

Theorem 5 

Let :E and :E' be two differentiable families over the differentiable manifold 
Q. Suppose that :E and :E' are pointwise isomorphic everywhere. Suppose 
moreover that r(q)=dim N(q) (=dimL(q)) is constant in some neighbourhood 
U of q0EQ. Then there is a (possibly smaller) neighbourhood V of q0 such that 
:E and :E' are isomorphic as differentiable families over V. 

Proof 
The proof is not difficult (and more or less standard). Consider the map 

</>: GLn(IR) x Q-->Lm,n,r' x Q given by (S, q)-->(~(q)8 , q). It follows from the 
assumption of constancy of the dimension of N(q) that dcp is of constant rank, 
so that cp is a submersion onto its image. In particular cp locally admits 
sections ; i.e. if (.:E 0 , %)Elm <P then there is an open neighbourhood U of 
(:E0 , q0 ) and a differentiable maps: U-->GLn(IR) xQ such that cp 0 s=id. Now 
consider lfi: Q-->Lrn,n,JJ x Q given by l/J(q) = (::E'(q), q) ; this is simply the graph 



722 JYI. Hazewinkel and A-111. Perdon 

of 2:'. By assumption for each q we know that ijf(q)Elm cp(GLnOR) x {q}) and 
the fibre of </> over {1(q) is precisely <I>(q) x {q} where <I>(q) is set of all possible 
isomorphisms :E(q)-):E'(q). (Of course <I>(q) is a left coset of N(q).) Now lets 
be a local section of </>defined in some neighbourhood of (2:'(%), q0 ). Restrict
ing s to the graph of 2:' (i.e. the image of</>) gives us a map U0-+GLn(rR) x U0 

of the form q11-+(S(q'), q') (because sis a section). The map q11-+S(q') is then 
the desired isomorphism 2:-):E' (over U0 ). For this proof at least, some sort of 
differentiability restriction is necessary. There are analogous theorems for 
holomorphic families and real analytic families. The corresponding theorem 
for systems over rings is 

Theorern 6 

Let 2: and 2:' be two systems over a ring R. Suppose that ~(/i) and I:'(f) 
are isomorphic for all prime ideals jt contained in some open subset U of Spec(R) 
Suppose moreover that r(f) ==dim N(f) is constant for some neighbourhood 
U' of f 0EU. Then there exists an open neighbourhood V == Spec(R1), /ER, 
of fo such that :E and L:' are isomorphic as systems over R1 (or, equivalently, as 
families over V). 

For both Theorems 5 and 6 it is in general not true that 2: and 2:' are 
necessarily isomorphic over all of Q (resp. isomorphic as systems over R) as the 
following example shows. 

Example 
Consider the following two systems, either as families over IR or as systems 

over the ring IR[a] 

a+2], 
a2 

[•'-I,-•]) 

[•'-I, -a-2]) 

These two families are pointwise isomorphic everywhere ; the dimension of the 
stabilizer subgroups is 1 everywhere; in addition one has rank R(F(a), O(a)) 
and rank Q(F(a), H(a)) are also equal to 1 everywhere. As families the two 
systems are isomorphic over IR\{ -1} and also over IR\{l}. As systems over 
rings they are isomorphic over IR[a Jo--l and IR[a Jo-+i> but not, as is easily checked, 
as systems over IR[a] itself. The systems L: and L:' are not even isomorphic as 
differentiable (or topological) families. Indeed such an isomorphism must 
necessarily be of the form 

because the isomorphism matrices must take [~]==d(a) into [~]=G'(a). 
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Here c12(a), c22(a) are continuous functions of a such that c22(a) is nowhere 
zero on IR. From 

one then sees that the sole remaining condition on the c12(a), c22(a) is that 

This means that 3c22{ 1) = 1 and c22( - 1) = - 1. But there is no real continuous 
function assuming these values in 1 and -1 and which is non-zero everywhere. 

And of course the matrix 

defines an isomorphism over the ring fR[a] if and only if c22(a) is a non-zero 
constant which is also incompatible with (t). 

The main ingredient of the proof of Theorem 6 is the following generalization 
of the central lemma of Ohm and Schneider (1964). 

Lemma 

Let R be a ring without nilpotents, let A be an m x n matrix with coefficients 
in Rand let aERm. Consider the equation Ax=a. Suppose that the equation 
A(ji)y=a(jt) over the field R(jt) can be solved for all prime ideals ft· Suppose 
moreover that r(jt) =rank A (jt) is constant (as a function off). Then Ax =a 
is solvable over R. Moreover if ni is a maximal ideal of R and y(m) is any 
pre-given solution of A(m)y=a{<m), then there is a solution x of Ax=a over 
R such that x = y(vi) mod m. Finally if ft is a prime ideal and y(jz) is any 
given solution of A(f)y=a(jt) then there is an fER\fi and a solution of Ax=a 
over R1 such that x =.y(ji) mod jtR1. 

Proof 

Let P=lm (A), and let Q=Rm/Im (A). Let ft be a prime ideal of R 
and consider the localized morphism of modules 

A,.: R;.n-+R;.m 

A;. takes jtR ;.n into jiR ,.m. Let A(ji) be the induced quotient map 

where R(/z) = R ;.//zR,. is the quotient field of R/ji. By premultiplying and 
postmultiplying A(/z) with invertible matrices S, T we can see to it that 
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A (f) is of the form 
1 0 

I 

0 

0 0 

(where there are r_=r(jt) I's for the first r diagonal entries and zero's every
where else). Let S, T be any invertible matrices over R which reduce to Sand 
'l.' mod j;R ;.· Then SA /l' looks like ( *) with the l 's replaced by I+ aii' 
aiiEftR;. and the O's replaced by a;i, aiiEfiR ;.· Because the 1 + aii are invertible 
in R further pre- and post-multiplication with invertible matrices gives A;. 
the form 

1 0 
0 

0 1 
( **) 

* * 
0 

* * 
where all the (*)-elements are in fiA ;.· But the rank hypothesis says that the 
rank of the matrix ( **) considered as a matrix over the quotient field of R is 
also r. Because R has no nilpotents it follows that all the (*)-elements in 
( **) are zero. And from this it is of course immediate that Q;. = 
co-ker (A JI: R /-->R ;.m) is free of rank m-r. 

It follows that Q is a projective R-module (because Q is locally free (Bourbaki 
1961, Oh. II, § 5) and hence a direct summand of some free R-module RP 

i: Q-->RP 

Now consider the image a of a in Q=Rm(Jm (A). The solvability of 
A(jt)y = a(ji) means that a maps to zero under Q-->Q(jt) = Q ®R/ft for all prime 
ideals fz· So for all coordinates i 1 (a), ... , ip(a) of i(a) we have that i 8 (a) = 
0 mod ft for all jz, i.e. i 8 (a)Ejl all fa· Because R has no nil potents this means 
that i 8 (a) = 0, s =I, ... , p and hence a= 0 proving that Ax= a is solvable over R. 

Now let y(m) be any pre-given solution of A(m)y =a(m) where m is a 
maximal ideal of R. Consider the diagram 

o__,..c ____,.. Rn -.:i._ P ---7 o 

.j' jl • 
o~C(m)-+R(m)n-+P(m)-+0 

where 0 is the kernel of A : Rn-->Rm. The module P is also projective as the 
kernel of R-->Q. It follows that the lower sequence is also exact. Some 
diagram chasing, using the fact that j' is surjective now readily proves the 
second assertion of the lemma. 
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Indeed let x1 be any solution of Ax=a. Then x1(m) is also a solution of 
A(m)y=a(m). It follows that A(m)(x1(m)-y(m))=0 so that by the exactness 
of the lower sequence of the diagram above x1(m)-y(m)EO(m). Now let x2E0 
be such that j'(x2)=x1(m)-y{m). Because x2E0=ker (A), X=x1 -x2 is also 
a solution of Ax=a. Moreover x(m)=j(x)=j(x1)-j(x2)=x1{m)-(x1(m)
y(m)) = y(m ), so that this solution does indeed specialize to the given one mod m. 

If ft c R is prime, one argues exactly the same. The only extra difficulty 
is that j' : o~O(jt) is not necessarily surjective. However, if zeO(jt) is any 
element, then there always is an fER\ft such that z is in the image of o1~0(jt). 

Proof of Theorem 6 

Given the lemma, the proof of Theorem 6 is entirely straightforward. Indeed 
one considers the linear map A: Rk~R given by XH(XF-F'X, XG, H'X) 
where k = n2 and X is a k-vector written as an n x n matrix. Here l = n2 +nm+ np. 
Now let aeR1 be the vector (0, G', H). The constancy of dimN(fi)=dimL(fi) 
means that rank A(p)=constant. Now let fio be any prime ideal and S(jt0 ) 

an invertible matrix over R(fi) taking L{jt0 ) into ~'(jt0 ). Then S(f0 ) solves 
A(ft0 )y = a(ji0 ). So by the lemma there is a solution S over R1 for some fER\ft0 

of Ax= a which moreover agrees with S(ji0 ) mod /to· Because S{ji0 ) is invertible 
Sis invertible over Rff' for some suitable /'ER\fto· 

Examples 
It does not appear that the condition that the dimension of the stabilizer 

subgroups N(q) remains constant as q varies has much to do with conditions 
which seem system-theoretically more natural like' rank R(F(q), G(q)) being 
constant. Consider for example the family 

For this family over IR one has rank R(F(q), G(q)) = 1 =rank Q(F(u), H(u)) 
for all uEIR, but dimN(u)=l if u=l and dimN(u)=O otherwise. On the 
other hand the family 

has dimN(a)=O everywhere but rankR(F(u), G(a))=2 if a#O and =l if 
a=O (and rank Q(F(a), H(u)) =2 everywhere). 

4. Conclusions 
The main questions studied in this paper were: 

1. Given two families of systems L and L' which are pointwise isomorphic. 
Are they then also isomorphic as families 1 

2. Given two families of systems ~ and L' over Q which are pointwise 
isomorphic over Q or some dense subset Z of Q. What can be said 
about the relation between L(q) and L'(q) at the points of Q\Z. 
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Question 1 received a positive answer which specializes to a theorem of Wasow's 
(1962) for holomorphic families of matrices under similarity. It seems also 
likely that the theorem is the best possible in the sense that if ~ is a family 
such that dim N(q) is not constant then there is a family~, which is pointwise 
isomorphic to I: everywhere but not isomorphic as families in any neighbour
hood of a point q where dim N(q) suddenly increases. As to question 2, there 
are definite relations between ~(q) and l:'(q) if either~ or l:' is CR or CO in a 
neighbourhood of q. If not then a number of examples show that the ways 
in which a family of systems can degenerate do not depend only on the iso
morphism classes of the systems involved but also on the systems themselves 
(apart from the subquotients which are recoverable from the transfer functions 
(cf. also Hazewinkel 1979 a, 1980 c). Thus one has here the usual scaling and 
singular perturbation phenomena. It remains to construct local versal 
deformation of non-CR 'and non-CO systems. 
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