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ABSTRACT 

Several examples of the application of Lie 
algebraic techniques to nonlinear estimation problems 
are presented. The method relates the computation of 
the (unnormalized) conditional density and the 
computation of statistics with finite dimensional 
estimators to the structure of .a certain Lie algebra 
L(E). The general method is explained; for a 
particular example, the structures of the Lie 
algebras associated with the unnormalized conditional 
density equation and the finite dimensionally 
computable conditional moment equations are analyzed 
in detail. Two general classes of examples are also 
discussed, and the implications of their Lie 
algebraic structures are explored. 

I. INTRODUCTION 

This paper is motivated by the problem of 
recursively filtering the state xt of a nonlinear 
stochastic system, given the past observations 
zt= {zs' O~s~t}. The systems we consider satisfy 
the Ito stochastic differential equations 

dxt = f(xt)dt + G(xt)dwt 

dzt = h(xt)dt+R~dvt 
( r) 

where w and v are independent unit variance vector 
Wiener processes, f and h are vector-valued functions, 
G is a matrix-valued function, and R > 0. The optimal 
(minimum-variance) estimate of xt is of course the 
conditional mean xt ~ E[xtjzt] (also de~oted xtit or 
Et[xt]); xt satisfies the (Ito) stochastic 
differential equation [1]-[3] 
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where ~ denotes conditional expectation given zt and 
h denotes h(xt). Also, the conditional probability 
density p{t,x) of xt given zt {we will assume that 
p(t,x) exists) satisfies the stochastic partial 
differential equation [3],[4] 

dp(t,x) = 

Lp(t,x)dt + (h(x)-h{x)) T R-1(t)(dzt-h(x)dt)p(t,x) {2) 

where 

n a(•f.) 1 n n 02(·(GGT)ij) 
L(·)=-l --1 +-I I -- - - (3) 

i=l axi 2 i=l j=l ax;axj 

is the forward diffusion operator. 
Notice that the differential eauation (1) is not 

recursive, and indeed appears to involve an infinite 
dimensional computation in general. Aside from the 
linear-Gaussian case in which the Kalman filter is 
optimal, there are very few known cases in which the 
optimal estimator is finite dimensional (a number of 
these are summarized in (5J). In [6]-[8] it is showrr 
that, for certain classes of nonlinear stochastic 
systems, the conditional mean (and all conditional 
moments) of xt given zt can be computed with 
recursive filters of finite dimension. 

Brockett [9],[10] and Mitter [11] have recently 
shown that Lie algebras play an important role in 
nonlinear estimation theory; the perspective of 
Brockett [9] is the following (we assume for 
simplicity that z is a scalar). Instead of studying 
the equation (2) for the conditional density, we 
consider the Zakai equation for an unnormalized 
conditional density p(t,x) [12]: 

dp(t,x) = LP(t,x)dt + h(x)p(t,x)dzt (4) 

where p(t,x) is related to p(t,x) by the. normalization 

p(t,x) = p(t,x)•{fp(t,x)dx)-l (5) 

The Zakai equation (4) is much simpler than (2); 
indeed, (4) is a bilinear differential equation [13] 
in p, with z considered as the input. This is the 
first clue that the Lie algebraic and differential 
geometric techniques developed for finite dimensional 
systems of this type may be brought to bear here. 
Suppose that some statistic of the conditional 
distribution of xt given zt can be calculated with a 
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finite dimensional recursive estimator of the form 

dnt = a(nt)dt + b(nt)dzt 

E[c(xt)izt] = y(nt) 

( 6) 

(7) 

where n evolves on a finite dimensional manifold, and 
a, b and y are analytic. Of course, this statistic 
can also be obtained from p(t,x) by 

E[c(xt)izt] = Jc(x)p(t,x)dx(fp(t,x)dx)-l (8) 

For the rest of the development, it is more 
convenient to write (4) and (6) in Fisk-Stratonovich 
form (so that they obey the ordinary rules of 
calculus and so that Lie-algebraic calculations 
involving differential operators can be performed as 
usual): 

dnt = a(nt)dt+ b(nt)dzt (9) 

dp(t,x) = [L- th2(x)]p(t,x)dt+ h(x)p(t,x)dzt (10) 

where the ith component 
.J ab. 

ai(n) = ai(n) - i j bj(n) an; (n). 

The two systems (9),(7) and (10),(8) are thus 
two representations of the same mapping from "input" 
functions z to "outputs" E [c(xt) Jzt]: ( 10) ,(8) via 
a bilinear infinite dimensional state equation, and 
(9),(7) via a nonlinear finite dimensional state 
equation. Generalizing the results of [14),{15] to 
infinite dimensional state equations, the major 
result of [9] is that, under appropriate hypotheses, 
the Lie algebra F generated by a and b (under the 
commutator [a,b] = ~~ a- ~~ b) is a homomorphic image 
(quotient) of the Lie algebra L(E) generated by 
A0 = L-!h2(x) and B0 =h(x) (under the corrmutator 
[A0,B0J = A0B0-B 0A0). Conversely, any homomorphism 
of L(E) onto a Lie algebra generated by two complete 
vector fields on a finite dimensional manifold allows 
the computation of some information about the 
conditional density with a finite dimensional 
estimator of the form (9). It is not known in what 
generality such results are valid, especially for 
cases in which L(E) is infinite dimensional, and much 
work remains to be done. However, it is clear that 
there is a strong relationship between-C(r) and the 
existence of finite dimensional filters. In this 
paper, we discuss the properties of L(r) for some 
interesting classes of examples. These Lie algebraic 
calculations give some new insights into certain 
nonlinear estimation problems and some guidance in 
the search for finite dimensional estimators; however, 
to actually construct the finite dimensional filters, 
one must usually use other, more direct, methods 
(see, e.g., [6]-[8],[16]). 

In (9], this approach is explicitly carried out 
and analyzed for the problem in which f, G and h are 
all linear. In that case, the Lie algebra L(E) of 
the Zakai equation is finite dimensional and the 
unnormalized conditional density can in fact be 
computed with a finite dimensional estimator, the 
Kalman filter. In this paper, we first carry out a 

similar analysis for the simplest example of the 
class considered in [6]-(8]. For this example, all 
conditional moments of the state can be computed wit 
finite dimensional filters; the Lie algebra L(E) is 
infinite dimensional but has many finite dimensional 
quotients (the Lie algebras of the finite dimensiona 
filters). In the remainder of the paper, a summary 
of results for other classes of systems is presented 

II. AN EXAMPLE WITH FINITE DIMENSIONALLY COMPUTABLE 
CONDITIONAL MOMENTS 

Consider the system with state equations 

dxt = dwt 
2 dyt = xtdt 

and observations 

( 11 

(12 

where v and w are unit variance Wiener processes, 
{x0,y0,v,w} are independent, and x0 is Gaussian. Th 
computation of xt is of course straightforward by 
means of the Kalman filter, but the computation of y 
requires a nonlinear estimator. 

For the system (11)-(12), the Zakai equation (1 
in Fisk-Stratonovich form is 

2 a 1 a2 1 2 dp(t,x) = (-x a+ 2-2 -2x )p(t,x)dt+xp(t,x)dzt 
Y ax 

( 13 
so the Lie algebra L(E) is generated by 

2 a 1 a2 1 2 A = -x - +- - - -x and B = x. o ay 2 ax2 2 o 
The following theorem is straightforward to prove. 
Theorem 1: 
(i) The Lie algebra L(E) generated by A0 and B0 has 

a . . 
as basis the elements A0 and B; = x(a1/ay1 ), 

c i ~ a/ ax ( a i I ay i ) , o i ~ a i I ay i , ; =O, 1, 2, .•.. 

(ii) The commutation relations are given by 

[A0,B;] = Ci' V i 

[A0,c1 l = Bi+ 2Bi+l' V i 

[A0,Dj] [Bi,Dj] = [Ci,Dj] [B;,Bj] [Ci,Cj] = 0 

v i ,j 

[B;,Cj] = -Di+j' V i,j 

(iii) The center of L(E) is {Di' i=0,1,2, .•. }. 
(iv) Every ideal of L(E) has finite codimension, 
i.e., for any ideal I, the quotient L(E)/I is finite 
dimensiona 1 • 
(v) Let Ij be the ideal generated by Bj' with basis 
{Bi'Ci,Di; i:::_j}. Then Io=>I1=> .•. and ~Ij={O}, s 
that the canonical map rr: L(E) +~ L(E)/Ij is 
injective. J" 
(vi) L(E) is the semidirect sum of A0 and the 
nilpotent ideal I0; hence L(E) is solvable. 

In light of the remarks in the previous section 
it should be expected that many statistics of the 
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conditional distribution can be computed with finite 
dimensional estimators, since there are an infinite 
number of finite dimensional quotients (homomorphic 
images) L(E). By Ado's theorem, these can be 
realized by bilinear systems. However, we will 
present a slightly different realization of the 
sequence of quotients in (v) above: L(E)/I 1 is 

realized by the Kalman filter for xt (L(E)/I 1 is the 

oscillator algebra [9]-[11]), and L(E)/I. (j > 2) is 
J -

realized by the estimator which computes xt and 

y~ = E[y~lzt] (i=l,2, ...• j-1). Of course, the 

dimension of L(E)/Ij increases with j, so we will 

only present the estimator equations for j=4. Other 
sequences of quotients possessing the property (v) 
can also be realized (e.g .• those generated by the 
{Cj}), but those realizations do not have as natural 

an interpretation in terms of conditional moments. 
The properties (iv) and (v) of the structure 

theorem are useful for an "estimation algebra" to 
possess, in the following sense: they basically say 
that L(E) has enough finite dimensional quotients 
that it is determined by their direct sum. 
Translating this into an estimation context via the 
reasoning of the previous section, if we can realize 
all the quotients with finite dimensionally 
computable statistics, then these properties give us 
hope of being able to approximate the conditional 
density (or conditional characteristic function) with 
a convergent series of functions of these statistics, 
even if the conditional density cannot be computed 
exactly by a finite dimensional estimator. 

The method of [6] for computing the finite 
dimensional estimator for Yt systematically uses the 

estimation equation (1) and the fact that the 
conditional density of x given z is Gaussian to 
express higher order moments in terms of lower. 
This procedure can also be applied to obtain 
equations for higher order conditional moments of y 
for the estimation problem (11)-(12). The first 
three conditional moments of Yt' together with xt 

~nd the necessary auxiliary filter states are 
computed recursively by the finite dimensional 
estimator (in Fisk-Stratonovich form, with explicit 
time-dependent notation omitted): 

x r-xP 

~ A ) A -1 x(l-P 12 - c;:P 

x2 -2x~P+P-PP12 A 

y 

e x(P12-P13) + gP(l-P12) - eP-1 

? ..... 2A ..... A/'>. _,..,,AA AA 

2x y + 2yP + 8xi;;P + 4PP 12 - 4x~yP - 8xeP 

d 
A ~2 2 

-2yPP12 -4c;: P -4PP13 
A A A A -1 
x(P~Pl~ c;:P(P12-P13) + e(P-PP12l - q,P 

3x2i + 3y2p + 24x~.YP + 4SxeP + 24~2P 2 + 12.YPP 12 
~ AA 2 ~ 

+ 24PP13 - 3y PP12 - 48c;:eP - 12yPP13 ,,.,-..... 
- 12€2.YP2 - 24PP 14 - 6x€iP - 24xeyP - 48x$P 

$ 
./)-y 

t 1 

where we write the right-hand side of (14) more 
compactly as a0dt + b0dz. The nonrandom conditional 

covariance equations are 

p = 1 - p2 

• ( -1) p 12 = p - P+P p 12 

• 2 -1 ( ) 
p13 = 2PP12- ppl2 - (P+P )P13 15 

• 2 ( -1) P14 = 2PP 13 + PP12 - 2PP12P13 - P+P P14 

P(O) = cov(x0) "f O; P12(0) = P13(0) = P14(o) = 0 

The estimator (14) is obtained by first 
augmenting the state x with auxiliary states c;:, 8, 
and q,; then the Kalman filter for the linear system 
with states [x,1;;,e,q,] and observations z computes 

[x,€,8,$J. In addition, [P,P12 ,P13 ,P141 is the first 

row of the Kalman filter error covariance matrix; 
(15) is obtained by selecting the corresponding 
components of the Riccati equation. Then 

y, ~and ;J'are seen, after tedious calculations, 
to be computed by the given equations. The filter 
state is augmented with t in order to make (14) 
time-invariant, thus facilitating the use of Lie 
algebraic techniques. The filter (14) can be viewed 

as a cascade of linear filters [18]: [x.~,6.$,tJ 
satisfies a linear equation; some of these states 
then feed forward and can be viewed as parameters in 
a linear equation for y; the states x.~.e.y,t then 
feed forward as parameters into a linear equation for 

~ etc. This structure is typical of the class of 
finite dimensional estimators derived in [6]-[8}. 

In order to study the structure of the 
estimation problem as discussed in Section I, 
we must analyze the Lie algebra F generated by a0 
and b0 in (14). The structure of the class of 

problems of [6] is analyzed from a different point 
of view in [22]. 

rp A l E[x01 
:a I 

pl2 c;:o 0 

2~P 
A 

I 
E[Yol Yo 

pl3 60 0 

4€,YP + 8eP ./2'-
Yo E[y0J 

dt + dz; ( 14) 

pl4 $0 0 
,/,0 

6g/p + 24SyP + 48$P -§6 E[y0J 

0 ta lo 
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Theorem 2: 
(i) F has as basis the elements a0; bi,ci' i=0,1,2,3; [a0,dj] = [bi,dj] = [ci,dj] = 0, V i,j 

(iii) Let I4 be the ideal in L(E) with basis Bi~ ci' 
Di, i 2. 4 and D0• Then F is isomorphic to L(I:)/I 4; 
hence, F is also solvable. 

di, i=l,2,3, where a0 and b0 are given in (14) and 

c = 0 

b = 2 

c = 3 

0 

0 

0 

' bl 
0 

0 

0 

0 

0 

0 

0 

1 

Bx 

pl2 

24x.9 + 4sgp 

0 

0 

0 

0 

0 

0 

p-1 

0 

0 

0 

1 

2x 

p12 

4xy + B€P 

P13 

6x.Y2'+ 24~p + 4seP 

0 

0 

0 

0 

0 

0 

p-1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

3y 
0 

0 

0 

0 

0 

0 

1 

4sx 

0 

(ii) The commutation relations are given by 

[a0,bi] = ci, i=0,1,2,3 

(a0,ci] = bi - bi+l' i=0,1,2 

[ao,c3J b3 

{

-2di+j, 

-8di+j' 

-48di+j, 

O, 

i+j=l 

i+j=2 

i+j=3 

otherwise 

0 1 
p-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

(iv) The isomorphism cj> between L(I:)/I4 and F is 
given by: 

cj>(AO) = aO; cj>(Bi) = (-~) i bi' 

q,(C;) = (-~)ici' i=0,1,2,3; cj>(Di) = (-l)i(i !)di,i=l,2,3; 

cp(E) = O, E E:I4 • 

(v) F is the semidirect sum of a0 and the nilpotent 
ideal generated by b0. 

Remarks: 
(i) The estimator (14) is not quite a realization of 
L(I:)/I4, since D0 is also in the kernel of the 
homomorphism (i.e., the ideal 14). However, a finite 

dimensional estimator realizing L(I:)/I4 (or L(I:)/Ij' 
for any j) is easily obtained by augmenting (14) with 
the equation for the normalization factor at for 
p(t,x) (the denominator of (5)) which satisfies (in 
Fisk-Stratonovich form) 

1 A2 ) A 
dc:tt = - z ( Xt + Pt Ctt dt + Xtc:ttdt 

If (16) is augmented at the end of (14), the Lie 
algebra generated by a0 and b0 has the same 

( 16) 

commutation relations as in (ii) above, except that 
(b0,c0J = [O, ... ,O,aJ' ~ d0, and d0 commutes with all 
the other elements. Thus, a realization of L(I:)/I 4 
is an easy modification of (14). 
(ii) The property (v) is typical of a cascade of 
linear systems. 
(iii) One of the conditions in [9] for the existence 
of a Lie algebra homomorphism from L to the Lie 
algebra of a finite dimensional estimator is that the 
estimator be a "minimal" realization in a certain 
sense. If we consider the output of (14) to be 
~and consider this realization of the input-output 
map from z to ~ then it can be verified by the 
methods of [15] that the realization is locally 
weakly controllable and locally weakly observable. 
This implies that there is no other realization with 
lower dimension; it is in this sense that the 
statistics g, 8, ~ are necessary for the computation 
~ of y . 

(iv) An even more detailed analysis of the Lie 
algebraic structure of this example is carried out in 
[17], and we have also done a similar analysis for 
systems of the form (11), with xi replaced by a 
general monomial x~; for p > 2, a similar but more 
complex Lie algebraic structure is exhibited. 

III. PRO-FINITE DIMENSIONAL FILTERED LIE ALGEBRAS 

A Lie algebra L is defined to be a pro-finite 
dimensional filtered Lie algebra if Lhasa decreasing 
sequence of ideals L=L_1:::iL0 :::iL1 ... such that 
(a)nL.=O 

1 
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(b) L/Li is a finite dimensional Lie algebra for 
all i. 

The terminology is analogous to that of 
pro-finite groups [19], and this property is 
possessed by L(E) for the example of the previous 
section. For a more general estimation problem with 
L(E) having this property, if each of the quotients 
can be realized with a recursively filterable 
statistic, then the injectivity of the map makes it 
reasonable to conjecture that these statistics 
represent some type of power series expansion of the 
conditional density. Of course, many other difficult 
technical questions such as moment determinacy will 
be relevant to this problem, but the structure of the 
Lie algebra should provide some guidance as to 
possible successful approaches to the problem. 

The class of estimation problems considered in 
[6]-[8] has the property that L(E) is a pro-finite 
dimensional filtered Lie algebra, as illustrated by 
the previous example. In fact, the sequence of 
finite dimensional filters for the conditional 
moments realize the finite dimensional quotients. 
Another class of examples is the following. 
Exam le 1 de ree increasin o erators and bilinear 
s stems : Consider a system o the form E , and 
suppose that f, G, and hare analytic with f(O) =O 
and G(O) = 0, and that the power series expansions of 
f and G around ~ero are of the form 

f(x) = l f (x)xa., G(x) = l G (x)xa., 
la.l~l a. la.l~l a. 

where a. ranges over the multiindices a.=(a.p···•a.n) 
and la.I = a.1 + ••• +a.n. An example of such systems is 
the class of bilinear systems 

k . 
dxt = Axt + .l Bixtdw~ 

, i=l 

Another example is 

-xt 
dxt = xtdt+ (e -1 + xt)dwt 

dzt = h(xt)dt+dvt 

with h analytic; in general, a wide variety of 
examples can be found. 

Let M = lR [[x1, ••• ,xn]] be the module of all 

( 17) 

{18) 

(formal) power series in x1, ... ,xn' and define the 
submodules 

M. = {la.xa.la =O for la.I <l}. , a. 

It is easy to see that, for this class of examples, 
1 2 

(L- 2h (x)) MicMi 

and 

h(x) Mi c Mi 

and thus L(E)MicMi. It can be shown that L(E) is a 
pro-finite dimensional filtered Lie algebra, with 
filtration given by 

/:,. 
Li= {Xe:L(E)IXMcMi}. 

IV. THE WEYL ALGEBRAS wn 

The Weyl algebra Wn [20] is the algebra of al-1 
polynomial differential operators; i.e., 

Wn = lR< xl' ••. ,xn; a~l , .. ., a~n >. A basis forWn 

consists of all monomial expressions 

a 13 
a.n a 1 a n 

•·• xn -a-··· -S-
ax 1 ax n 

1 n 

( 19) 

where a,S range over all multiindices a.={a.1, ... ,a.n}, 
a= (Sl' ••• ,Sn), a.,S e:~ U {0} (the non-negative 
integers). The center of Wn (i.e., the ideal of all 
elements Ze:Wn such that [X,Z] =O for all Xe:Wn) is 
the one-dimensional space lR ·1 with basis {1}. 

Theorem 3: The Lie algebra W/lR• 1 is simple -- i.e., 
it has no ideals other than {0} and the whole Lie 
algebra. Equivalently, W has no ideals other than 
{O}, R•l, and Wn. n 

Let Vn be the Lie algebra of vector fields 

,... t, m a . 
V = { l f.(x 1 , ... ,x) -.,-}with (formal) power 
m i=l 1 m oXi 

series coefficients fie: lR [[xl' .•. ,xm]], and let V(M) 
be the Lie algebra of C00-vector fields on a 
C00-manifold M. The following results can be proved 
[21]. 

Theorem 4: Fix n -f O. Then there are no non-zero 
homomorphisms from Wn to Vm or from W/lR· 1 to Vm 
for any m. 
Theorem 5: Fix n -f 0. Then there are no non-zero 
homomorphisms from Wn to V(M) or W/lR· 1 to V(M) for 
any finite dimensional C00-manifold M. 

These results suggest (assuming the appropriate 
analog of the results of [9]) that if a system E has 
estimation algebra L(E) =Wn for some n, then neither 
the conditional density of xt given zt nor any 
statistic of the conditional density can be computed 
with a finite dimensional filter of the form (9) with 
a and b C00 or analytic. Typical examples of such 
systems are given below. 
Example 2 (the cubic sensor problem [22]): Consider 
the system 

dx = dw 

dz = x3dt + dv 
(20) 

. 1 a2 1 6 3 L(E) 1s generated by 2-2 - 2 x and x ; 
ax that L(E) = w1. 

it is shown 
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Example 3 (mixed linear-bilinear type): Consider the 
system 

dx = ydt + ydw1 

dy dw 2 (21) 

dz xdt + dv 

a 1 2 a2 1 a2 1 2 L(L:) is generated by -y - + - y - + - - - - x 
ax 2 ax2 2 ay2 2 

and x; it is shown that L(L:) = W2. 

Example 4: Consider the system with state equations 
(11) and observations 

dzlt = xtdt + dv 1t 

dz2t = ytdt+dv2t. 

1 a2 
L(L:) is generated by -- -

2 ax2 
2 a 1 2 1 2 

x ay - 2 x - 2 Y , x, 

and y; it is easily shown that L(L:) =W2. This is 
precisely the example of Section II, but the addition 
of the observation z2 transforms L(L:) into w2. 

We note that a number of the calculations in 
this section are similar to those of [24] for Lie 
algebras of polynomials under the Poisson bracket. 
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