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ON FAMILIES OF LINEAR SYSTEMS: DEGENERATION PHENOMENA 

by 

Michiel Hazewinkel 

I. INTRODUCTION. 

This paper is concerned with an aspect of the theory of families 

of linear dynamical systems rather than single systems, viz. degeneration 

phenomena. As such it is part of a general program (briefly discussed 

in [Raz 3]) which consists of trying to carry through for families of 

systems (and hence systems over rings) all the nice results and 

constructions which one has for single systems over fields (or finding 

out how and why these results and constructions break down in this more 

general setting). This includes a systematic investigation of which 

constructions are continuous in the system parameters; that is, which 

constructions and calculations are stable (more or less) with respect to small 

perturbations or errors in the system parameters, a topic which obviously 

deserves at least som~ attention in a world full of uncertain measurements. 

And in turn this topic includes trying to find out what may happen to 

systems and associated objects when certain parameters go to zero 

(or infinity, or •.• ),which is the topic of this paper. 

Still more motivation for studying families rather than single systems 

can be found in [Raz 3] and some results concerning other aspects of the 

theory of families (than the degeneration phenomena discussed below) can be 

found in [Raz 4] (fine moduli spaces, continuous canonical forms) and 

[HP] (pointwise-local-global isomorphism problems). 

Here we discuss degeneration phenomena. That is, suppose there is 

given a family of systems 

( 1. 1) l:(c): x Fx + Gu, y = Rx + Ju 

where the matrices F, G, H, J depend on a parameter c. What can be said 

about the limit as c + 00 • For example let V be the input/output operator c 
of l:(c) 

( 1.2) 
t 

V: u(t)t-+ y(t) = f HeF(t-T)Gu(T)dT 
c 

0 
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and suppose that as c + oo the operators V converge (in some suitable 
c 

sense) to some operator V. What can be said about V? E.g. can V still be 

viewed as the input/output operator of some sort of processing device? 

There are a number of reasons for being interested in such 

degeneration phenomena, some of which can be characterized by the key 

words or phrases: identification, high-gain feedback, almost F mod G 

invariant subspaces (and almost disturbance decoupling), dynamic 

observers(and invertability). 

I.3. Identification. Suppose we have given some sort of input/output 

device which is to be modelled "as best as possible" by means of a 

linear dynamical system (I.I) of dimension n. Now if SE GLOR), then 
S -I -1 n 

a system~= (F,G,H,J) and L = (SFS ,SG,HS ,J) have the same input/out~ut 

operator. Let M be the space of orbits of this action of GL OR) on the 
n 

space L of all n-dimensional systems (with a given number of inputs and 

outputs). The best we can do on the basis of input/output data alone 

is to identify the orbit of E (and even that is not true if E is not 

completely observable and completely reachable, a fact which can be 

expected to cause a fair amount of extra trouble). Thus we are trying 

to identify a point of M and we can picture identification as finding 

(or guessing at) a sequence of points in M representing better and better 

identifications as more and more data come in. From this point of view 

the question naturally arises. Does a "converging" sequence of points 

in M necessarily have a limit in M. The answer is no. It is perfectly 

possible for a sequence of linear dynamical systems (I.I) to have a 

limiting input/output behaviour which is not the input/output behaviour 

of any system like (1.1) as the following example shows 

(I • 4) E(c): 
-c x = ( 0 (c 2 ,O)x 

(one input/one output, dimension 2). Let Ube a smooth bounded function 

onlR with compact support in (0, 00), then if y =Vu a little partial 
d c c 

integration shows that limy (t) = ~d u(t), uniformly in ton bounded c t c-l-00 

t intervals, and ~t cannot possibly be the input/output operator of a 

system (I.I), (e.g. because ~t is not bounded on smooth bounded 

functions in [O, 1] while all the VE are bounded operators). 
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The presence of these holes is by no means the only difficulty 

in identification caused by the nontrivial topology and geometry of M. 

For some more remarks concerning this topic cf. [Raz. 2] (though the 

point of view I took there is still a good deal. too optimistic) and 

also [BK]. 

1.5. High-gain feedback. Consider a system with output feedback loop 

( l • 6) x Fx + Gu, y Hx, u = Ly 

What happens when L or certain entries of L go to infinity? For instance 

in [YKU] it is shown in the case of a large scalar gain factor L = g 

and under some additional hypothesis the system (1.6) can be transformed 

into the standard singular perturbation framework 

(I. 7) -1 
g 

(with F21 = 0 in the case considered in [YKU], so that there is a 

separation of slow and fast modes; more precisely there is a fast 

subsystem which in the setting of [YKU] is asymptotically stable 

(ifµ is small enough) feeding into a slow system). Of course setting 

µ = 0 in (1 .7) yields little information about (1.7) for smallµ and 

the idea is rather to study (1.7) and (1.6) as perturbations of the 

limit behaviour as µ goes to zero or various coefficients of 1 go to 

infinity. In the setting of [YKU] the limit input/output operator 

is the zero operator, but in general this need not be the case, and 

one may hope that on the basis of some knowledge about what limit 

operators can arise it will prove possible to obtain some results 

on the lines of [YKU] and related papers in more general situations. 

For some motivation for studying (very) high gain feedback cf. 

[YKU] and some of the references therein, cf. also below in I. 8. 

1.8. Almost F mod G invariant subspaces and almost disturbance decoupling. 

An F mod G invariant subspace for x = Fx + Gu is a subspace V of the 

state space such that one is in it one can stay in it. As is wellknown 

(cf. [ Won]) these subspaces "solve" the disturbance decoupling problem. 

An almost F mod G invariant subspace is one such that once one is in it 

one can stay arbitrarily close to it, and these spaces "solve" an 

almost disturbance decoupling problem, which turns out to be important 

especially when the disturbances (partly) come in on the same channels 
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as the inputs (cf. [Will, Wil2]). 

A subspace V of dimension r is almost F and G invariant if and 

ottly if there is for every £ > 0 a feedback matrix Ke: such that 

(F+GK) Vis within e: of V (in a suitable sense), and if Vis almost 
E 

F mod G invariant but not F mod G invariant,K8 will not remain finite 

as E + O. Thus implementing a decoupling by means of an almost F mod G 

invariant subspace will give rise to a family of systems. 

( 1.9) x = (F+GK )x + Gu + G'v, y = Rx 
E 

where K does not necessarily remain finite as e: + 0. 
£ 

1.10. Dynamic observers. In [BMI], [BM2] Basile and Marro consider 

the problem of constructing observers for the state of a system (1.1) 

when the inputs are unkown. For this it is advantagous to have 

differential operators (cf. loc. cit) and these, as is suggested 

by the example (1.4), may be approximated by systems (I.I) (of 

comparable rank), thus giving us arbitrarily good approximate 

observers of the form (I.I). 

1.11. As we shall see the limit operators as c + oo of the input/output 

operators V of a family of systems r(c) are necessarily of the form 
c 

Vr + L(D), where Lis a system (1.2) (and Vr its input/output operator) 

and where L(D) is a polynomial matrix (with constant coefficients) in 

the differentiation operator D = :t' I.e. the possible limit operators 

are the input/output operators of systems of the type 

(I. 12) x = Fx + Gu, y = Rx + J(D)u 

where J(s) is a matrix of polynomials, argueing that this wider class 

of systems is in some ways a more natural class to study then the 

class of systems (1.1), cf. also [Rosl,Ros2]. 

2. STATEMENT OF THE TiiEOREMS • 

The first thing.to do is to specify in what sense we shall understand 

the phrase "the family of input/output operators L converges to the c 
operator Las c + 0011 • And, in turn, this means that we must describe 

the spaces of functions between which these operators act. 
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2. 1. The spaces ~(o) (IRr) and <f'. (IRr). The elements of ~o) (Rr) are 
-- 0 

all smooth functions z: lR -+ lRr with support in (O,co) and of no more 

than exponential growth. Here the support of a function z is as usual 

defined as the closure of the set of all t EE where z(t) ~ O. Thus 

z E ~(o) (Rr) iff there are an e: > O, an M > O, and b > 0 such that 

z(t) = 0 for t < e: and 

(2.2) I !e-btz(t)ll < M for all t 

(Bothe: and b may depend on the function z). This class of functions 

includes the smooth functions of slow growth with support in (O,co) 

(cf. [Ze, chapter IV]), which space in turn contains the subspace 

~(IRr) of smooth functions with compact support in (0,00). 

A sequence of funtions zc E ~(o) (IRr) is said to converge to 

z E <JL<o)(IRr) if there is a b such that 

(2.3) lim sup I le-bt(zc(t)-z(t))il = 0 
c-+co t 

Note that (2.3) in any case implies that the functions zc(t) 

converge to z(t) uniformly in t on bounded t intervals. 

This defines a topology on .,<o)(IRr}, which is in fact the inductive 

limit topology defined by the inductive system of normal topological 

vector spaces 

(2.4) 

where for a given b E lR 

(2.5) 'f~0 )(1Rr) = {zE'J(o}(IR.r)! suplle-btz(t)!I =: llzllb <co} 
t 

with the norm I lzl lb' and where ib,b' is defined by z(t).,.... e(b'-b)tz(t). 

The space ~o)(Rr) tries hard to be complete in the sense of the 

following lemma. 

2.6. Lemma. Let n > 0 and let z E~(o)(IR.r) be a sequence of 
~~ c 

functions with support in [n,co) for all c. Suppose that there is a b ElR 

such that for all e: > 0 there is a c0 such that 



(2.7) sup 
t 

I -bt 
le (z (t)-z ,(t)li c c 

< E: for all c,c' > c 
- 0 
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Then the zc converge to a function z E <f(o) (IRr) with support in [n,oo) 

as c ~ 00 (where the convergence is in the sense of (2.3)). 

Proof. Let z(t) be the pointwise limit of zc(t) as t ~ oo (which clearly 

exists by (2.7). Then supp z(t) c: [n, 00) and z (t) converges to z(t) 
c 

uniformly on bounded t intervals (again by (2.7)). It follows that 

z(t) is smooth. Take£= 1 and let c 1 b .. e such that (2.7) holds for this 
er (o) r £with c0 = c 1• Let z (t) Erb (IR ) • We can assume b 1 .::_b. Then, 

c 1 1 
using b 1 .::_ b, 

Choosing c' depending on t such that I lz ,{t)-z{t)I I< 1 
c 

that z(t) E<f ~o) (tR.r) c:Of(o) (IRr), proving the lennna. 
1 

it follows 

Just what b ElR is used in (2.3) is largely irrelevant. Firstly if 

(2.3) holds for a given b then it still holds with b replaced by b' .::_b. 

Secondly if (2.3) holds and z E"/i~~)(tR.r) then zc E°F~0)(JR..r) for all 

large enough c where b" = max(b,b'). The converse of· this: 

"if zc(t) E<f&~~)(Ilf) for all large enough c then z(t) E'f.~~)(IRr) with 

b" = max(b, b')" follows as in the lennna. Thirdly and lastly i.t does not 

really matter if one uses "too big a b" in (2.3). Indeed, z(t) as the 

pointwise limit of the z (t) is of course independant of b. What (2.3) 
c 

does is to require a certain mild uniformity about the way the limit 

is approached. (It is, incidentally, perfectly possible for a sequence 

of functions z (t) E CJi(o) (IRr) to converge to zero when considered as 
c b 

elements of"JC.~~)(tR.r) for b' > b while not converging when considered 

as a sequence in 'J~o) (IRr); take for exampl ~ zc ( t) = 0 for t < c, 

bt be z (t) = e .- e for t~ c, suitably smoothed.) 
c 

2.8. The spaces '¥01{). For the purposes below the spaces~o) (IRr) 

are still too big to be suitable as input spaces (essentially because we 

shall want differentiation" to be a continuous operator). On the other 

hand <f (IRr), while eminently suitable as an input function space is not 
0 

large enough to accommodate output functions. As we shall need to be able 

to use the outputs of one dynamical system as the inputs of another, 



we need an intermediate space. A suitable one is 

(2.9) 

where z(k) denotes the k-th derivative of z. We giveCf°(IRr) the 

topology determined by z + z as c + 00 iff z(k) + z(k) for all 
c c 
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k = 0,1,2, ••• in ~(o)(IRr). Thus the family z converges to z as c + 00 
c 

iff there are real numbers b0 ,b 1, ••• such that for all k 

-bkt (k) (k) 
lim sup e 11 z ( t) - z ( t) 11 = 0 
C-+00 t C 

When dealing with systems of dimension2_ n only,one can also 

work with q;(n)(!Rr) = {z E~(o)OR.)I z(k) EfJ&(o)(IR.), k = 0,1, .•• ,n+l}. 

2.10. Convergence of input/output operators. Now let r = (F,G,H,J) 

be a linear dynamical system with direct feed through term 

(2.11) x = Fx ... Gu, y = Hx + Ju, x E lRn, y E lRP, u € lRm 

where F, G, H, J are real matrices of the appropriate dimensions 

(independent oft). Then the associated input/output operator is defined 

by 

(2. 12) 
t F(t-T) VL : u(t) 1-+ y(t) = Ju(t) + f He Gu(T)dT 
0 

Let 'U. = !f(IR.m), 11 = °F(IR.p), U = CfL (IR.m), 1J. = 'f (IR.p) • Then V" 7 0 0 0 0 ~ 
is a continuous linear operator U + 1J. Indeed if u E U is such that 

I lul lb < 00 and if b' > max{ReA,0} where A runs through the eigenvalues 

of F then I lvr(u) I lb+b' < 00 • 

Thus for every b > 0 there is a b' > O, usually necessarily larger 

than b' such that vr U:ps 'j&~o) (IR.m) into 'f ~ ~) (IR_P)' with b' depending on E. 

Thus, when dealing with families of systems one is practically forced 

to use the union of the all the 4¥~0 ) (!RP), i.e. °F(o) (!RP), and if one 

would like differential operators to be continuous one is almost obliged 

to work with Cf(IR.P) and 'f"(IRm). From now on we fix the dimensions m,n,p 

of the systems (2.11) which we are considering. Let L denote the space 

of all systems (2.11). I.e. Lis the space of all real quadruples of 

matrices (F,G,H,J) of the dimensions n x n, n x m, p x n, p x m 

respectively. 
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co er co,cr 
We shall use L , L , L to denote the subspaces of 

completely observable, (abbreviated co), resp. completely reachable 

(er), resp. completely reachable and completely observable systems. 

We now define 

2.13. Definition. The family of systems E(c)c c 1 converges in input/output 

behaviour to an operator V iff for all u E U the functions VE(c)u 

converge to Vu irr Y, as c + ro. 

Let supp(u) c [n,oo) (such an n necessarily exists because 

supp(u) c (O,oo) and supp(u) is closed by definition). Then supp VE(c)(u) 

c [n, 00). It follows by lemma 2.6 that one can decide whether the family 

(E(c)) converges without mentioning (or knowing) the limit operator V. 

The family (E(c)) converges in input/output behaviour iff there are c 
for every u EU a sequence of numbers b0 ,b 1,b2, ••• such that for every 

E > O,k = 0,1,2, •.. there is a c(g,k) such that 

(2. 14) if c,c' > c(k,E) 

where D is the differentiation operator D = ~t' Thus if (E(c)) converges 

in input/output behaviour (in the sense that (2.14) holds) then there 

is a well-defined limit operator V. (This uses of course (cf. (2.14)) 

that Dis a continuous operator U. + tL ). Whether this limit operator 

V is continuous is unclear at this stage. (It is though, as will be 

shown below in section 5). 

2.15. Differential operators. Let U. and 1f be as above. Then a (matrix) 

differential operator (in this paper) is an operator of the form 

m 
V(D): u(t)i-+ y(t), yJ.(t) = E v .. (D)u.(t) 

i=I Ji i 

where v .. (D) is a polynomial with constant 
Ji 

. • • D d real coefficients in = dt 

Every polynomial V(s) (of size p x m) thus defines a continuous linear 

operator U + 'lf. 
2.16. The scalar case. If m =I= p, i.e. if we are dealing with one input 

and one output the main theorem of this paper says that 

2.17. Theorem. Let (E(c)) be a family of one input/one output linear 

dynamical systems (2.11) of dimension< n converging in input/output 

behaviour to the operator V: U -+ lf . Then there exist a system r 
and a polynomial L(s) such that V = Vr + L(D), where moreover 
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dim(L) + degree L(s) ~ n. It follows in particular that the limit 

operator V is continuous. Inversely, if V is an operator of the form 

V = Vr + L(D) where L(s) is a polynomial of degree 2._ n - dim(r), then 

there exists a family (r(c)) c Lco,cr such that r(c) converges in 

input/output behaviour to V. 

In case one wants to restrict oneself to systems (2.11) with J = 0 

the theorem remains essentially the same except that the essential 

inequality dim(L) + degree(L(s)) ~ n gets replaced by dim(r) + 

degree(L(s)) ~ n-1 (where by definition degree(O) = -1). This is 

stated and proved (more or less) in [Raz 1] and the proof readily 

adapts to a proof of the present theorem. In section 5 below a 

different proof of theorem 2.17 is given which also cover~ the 

multivariable case. 

2.18. Degree of a matrix polynomial (differential operator). 

Obviously if r(c) is a family of systems of dimension < n 

which converges to the p x m matrix differential operator L(D) then 

all the entries of L(s) have degree 2._ n (by the result in the scalar 

case). One might think that inversely every such operator arises 

as a limit of systems < n. This ,however, is not the case as the 

example. 

(2.19) L(D) 

shows. One shows readily by explicit calcula~ion that the operator 

(2.19) cannot arise as a limit of one-dimensional systems. A more 

sensitive definition of "degree" is needed. 

2.19. Definition. Let L(s) be a matrix polynomial. Then we define 

(2.20) deg L(s) max (degree (M)) 
M 

where M runs over all the minors of L. This agrees with the MacMillan 

degree of a polynomial matrix, (lennna 4.10, or cf. [A~, section 3.6, 

properties 5 and 10). 

2.21. The multivariable case. In the case of more inputs more outputs 

the main theorem now is precisely a~alogous to theorem 2.17. I.e. 
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2.22. Theorem. Let E(c) be a family of n dimensio~al systems with m 

inputs and p outputs. Suppose that E(c) converges in input/output 

behaviour to the operator V: 1.l-+ 'If as c + oo, Then there exist 

a system r and a p x m matrix polynomial L(s) such that 

V ~ VE + L(D) (so that V is continuous) and moreover dim(E) + degree L(s) < n. 

Inversely if V is an operator of the form Vr + L(D) with 

dim(E) + degree L(s) < n, then there exists a family of completely 

observable and completely reachable systems E(c) of dimension < n 

which converges in input/output behaviour to V as c -+ oo, 

The proof of the first half of the theorem uses the continuity 

(in this case) of th~ Laplace transforms and the upper semicontinuity 

of the MacMillan degree (theorem 4.16) and thus gives us (besides 

lennna 4.10) yet another characterization of the MacMillan degree of 

a matrix of rational functions. 

2.23. Theorem. Let L(s) be a matrix of rational functions. Then the 

MacMillan degree of L(s) is < n iff there exists a sequence L (s) of 
c 

proper rational function matrices such that L (s) converges to L(s) 
c 

for c + 00 pointwise ins for infinitely many values of s. Moreover 

one can see to it th&~ the poles of L (s) fall into two sets one c 
equal (together with multiplicities) to the set of poles ~ oo of L(s) 

while the remaining poles of L (s) all go to - 00 as c -+ 00 • c 
It is not true, however, that one can always obtain L(s) as a 

limit of the L (s) in the sense of the mappings on the Riemann sphere 
c 

that these matrices of rational functions define. This in fact only 

happens when L(s) is itself proper-. 

To prove theorem 2.23 without the extra requirement that the 

remaining poles of L (s) go to - 00 as c goes to 00 is quite easy 
c 

(Proposition 4.18). Tbtextra requirement complicates things considerably 

and I know of no direct proof except for certain special, albeit 

generic, cases. (Like "the matrix of coefficients of 

maximal powers of sin each row is of maximal rank"). Another 

corollary of the proof of the second half of theorem 2.22 is 

2.24. Corollary. Let L(s) be a polynomial matrix of size p x m. Then 

L(s) has degree < n if and only if it can be obtained from the zero 

matrix by means of the operations. 
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(i) addition of a matrix of constants 

(ii) multiplication on the left by a nonsingular polynomial p x p 

matrix of degree 1 

(iii) multiplication on the right by a nonsingular m x m matrix of 

constants 
where one uses at most n times an operation of type (ii). 

There is of course an analogous statement with right instead 

of left in (ii) and left instead of right in (iii), and also an 

analogous statement where in both (ii) and (iii) multiplications 

on both sides are allowed. 

3. ON LIMITS OF RATIONAL FUNCTIONS. 

-1 The degree of a rational function T(s) = q(s) p(s), 

p(s), q(s) E k[s] with no common factors is equal to o(T) = max(o(p),o(q» 

where the degree of a polynomial is defined as usual. We shall need 

the following intuitively obvious fact. 

3.1. Proposition. Let T (s) be a sequence of rational functions of 
c 

degree < n. Suppose that lim T (s) exists (and is finitaj for 
- c 

c-+oo 
infinitely many s. Then there exists a rational function T(s) 

of degree ..:::_ n such that 

(and if the T (s) and 
c 

then T (s) converges to 
c 

Proof. Write 

(3. 2) T (s) = 
c 

lim T (s) = T(s) for all but finitely many s 
c 

cT(s) are interpreted as functions a: -+ IP 1 (IC) 

T(s) in the compact open topology). 

n n-1 a (c)s +a 1(c)s + .•• +a 1(c)s+a (c) n n- o = ~~~~~~~~~~~~~~~~~~-
b (c)sn+b 1(c)sn-l+ .•• +b 1(c)s+b (c) 

n n- o 

and associate ~o T (s) the point ~(c) EIPZn+l(IC) with the homogeneous 
c 

coordinates (a •••• ,a ,b , ••• ,b).Note that this is well defined n· o n o 
because the coefficients of p (s) and q (s) are well defined up to c c 
a common scalar factor. (This map is not continuous if the space 

of all rational functions of degree ..:::_ n is given the compact open 
l topology of maps IC +lP (IC); but it is continuous on the open subspace 

of function of degree n, and on the subspaces of functions of fixed 

degree i). 

Let M c lPZn+l (a:) b th b f 11 • t ( ) e e su space o a po1n s xn, ••• ,x0 ,yn, •.. ,y0 
2n+l . E lP (IC) such that at least one y. is unequal to zero. Because 

lPZn+l(IC) is compact the.sequence {~(~)}has limit points. 



3.3. Lemma. If lim T (s) exists for infinitely many s then all limit c c-+00 

points of the sequence {~(c)} are in M. 

Proof. Suppose that lim T (s) c c-+oo 
= T(s) E ~, and suppose that {~(c)} 

h 1 . . . . 1P2n+ I ( ) as a imit point in ~ ' M. Let this limit point be 

x = (an, ... ,ai+l'I,O, ••• ,O). Taking a subsequence we can assume that 

{~(c)} converges to x. For large enough c we then have a.(c) t 0 
-1 i 

and multiplying both pc(s) and q (s) with a.(c) we can assume that 
c i 

a.(c) = l for all c. We then have for all c 
i 

12 

(3.4) n a (c)s + 
n 

i+l i i-1 +a (c)s + s +a. 1(c)s + +a (c) = i+l i- • • • 0 

n = T (s)(b (c)s + ••• + b (c)) c n o 

with 

lim b. (c) = 0, J = 0, ... ' n 
c-+oo J 

(3.5) lim a. (c) = O, J = O, ... ' i-1 
c-+00 J 

lim a. (c) = a.' j = i+l, ... ' n 
c-+00 J J 

Taking the limit as c + 00 in (3.4) and using the relations (3.5) one 

finds because lim T (s) = T(s) # oo c 

(3.6) 

c-+oo 

n as + ••• + 
n 

i+J + Si O a. 1s = i+ 

and there are only finitely many s for which this can hold. Thus there 

can be no limit points of {w(c)} inlP2n+l(~) 'M if lim T (s) exists 
c c-+oo 

(and is finite) for infinitely many s. 

The proof of proposition now continues as follows. Let x EM clPZn+l(~) 
x = (x , .•• ,x ,y , •••• y ). Because at least one of the Yi· t 0 the n o n · o 
expression 

(3. 7) 

n 
xns + ••. + x1s+x0 

T (s) = --------x n y s + 
n 

••• + 
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is well-defined for all but finitely many s. Now let x E M be a 

limit point of {w(c)}. Let i be the largest index such that yi # O. 

Multiplying all coordinates with y: 1 if necessary, we can assume 
i 

y. = 1. Take a subsequence of {w(c)} which converges to x. For large enough 
i 

c we then have b.(c) # O. Multiplying both p (s) and q (s) with 
-I i . c c 

bi(c) we then obtain sequence of rational functions. 

(3. 8) T (s) 
c 

such that as c + oo, 

(3. 9) a.(c) + x., b.(c) + Y., j = 0,1, ... , n 
J J J J 

It follows that lim T (s) = T (s) for all but fnitely many s, where the 
c x 

c+oo 

limit is a priori over the subsequence. In turn this says that 

lim T (s) = T (s) for all but finitely many s of the infinitely 
c x 

c+oo 

many s 

to exist. 

for which lim T (s) was assumed 
c 

This holds for all limit points of {w(c)}, hence if x' is a second 

limit point of {w(c)} then T (s) = T ,(s) for infinitely many s so 
x x 

that T (s) = T ,(s) if both x,x' are limit points of {~(c)}, and this 
x x 

in turn says that lim Tc(s) = Tx(s) for all but finitely many s, where 
c+oo 

now we are dealing with the original sequence {T (s)}. This concludes 
c 

the proof of the proposition (except for the last statement between 

brackets which is easy because by the above the convergence 

T (s) + T (s) really means that the coefficients, suitably normalized, 
c x 

converge). 

3.10. Corollary. (of the proof). Let T (s) + T(s) as c + oo and let 
c 

T (s) q (s)-lp (s), T(s) = q(s)- 1p(s) with no cormnon factors. 
c c c 

Suppose that degree p (s) < n' for all c. Then degree p(s) < n'. 
c 

This follows inunediately because (using the notations of the proof) 

after a suitable normalization and for c large enough the coefficients 

of p (s) converge to the coefficients of p (s) where p (s) is the 
c -1 x x -1 

numerator of (3.7), and because q(s) p(s) = T(s) = T (s) = q (s) p (s) x x x 
where q (s) is the denominator of (3. 7). So degree p (s) < degree p (s) 

x x - c 
for all large enough c. (Of course p (s) and q (s) may have cormnon 

x x 
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factors so that degree p(s) may be smaller than lim inf(degree(pc(s)))). 
c-+00 

4. ON THE DEGREE OF RATIONAL MATRICES. 

Recall that the MacMillan degree o(T) of a matrix of rational 

functions T(s) can be defined in a variety of ways ([Ka], [AV, section 3.6], 

[Ros, section 3.4]). First let T(s) be proper, i.e. lim T(s) exists, 
S-l<>O 

then o(T) = v(T), which is by definition the minimal dimension of a 

realization (F,G,H,J) of T(s). If T(s) is not proper write 

(4. I) + ••• + 
r 

Trs, V(s) • • • + 
-r T s 

r 

where T_(s) is the proper part of T(s). Then V(s) is also proper (in fact 

strictly proper, meaning that lim V(s) = O) and we define 
s-+oo 

(4.2) o(T) = v(T_ ) + v(v) 

This definition shows that if T(s) = T_(s) + T+(s), where T_(s) is 

proper and T+(s) is polynomial then 

(4. 3) 

(It does not matter how the "constant part" of T(s) is split up 

between T_ and T+). 

Another way to o~tain o(T) goes as follows. (cf. [Kal]). Let T(s) 

be a p x m matrix of rational functions. For each m x p matrix of 

constants K write 

(4.4) 

where I is them x m identity matrix and a (s), b (s) are polynomials 
m K K 

without conunon factors. Let 

(4.5) 

(4.6) 

Then one has the proposition (cf. [ Kal] ) 

o (T) = max 
K 

o (T) 
K 
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We shall need a few elementary properties of o(T). If A and Bare 

matrices of constants such that AT(s)B is defined then (cf ,[AV,(3.6.6)] 

(4. 7) o(ATB) < o(T) 

(which is also immediately obvious from definition 4.2. 

Now let T'(s) be obtained from T(s) by augmenting T(s) with 

some rows and columns of constants. Then 

(4 .8) o(T') = o(T) 

This is seen as follows. Let T(s) and V(s) be as in (3.1) and let 

T:(s) and V'(s) be the analogous matrices for T'(s). Then if (F,G,H,J) 

realizes T_(s) a realization for T:(s) is obtained by adding some 

zero columns to G, some zero rows to H and by augmenting J with the 

same rows and co·lumns of constants as were used to obtain T' (s) 

from T(s). Similarly a realization (F 1,G1,H 1,J1) for V(s) can be 

changed in a realization of the same dimension for V'(s) by augmenting 

G1 with zero columns, H1 with zero rows and J 1 with both zero rows and 

zero columns. This shows that o(T') 2_ o(T). The opposite inequality 

follows from (4.7) because T(s) is a submatrix of T'(s). 

A third result we need is. Let T(s) be square such that 

det(T(s)) $ 0. Then (cf. e.g. [Ros1, theorem 7.2 on page 135)]. 

(4. 9) 

As an application of (4.8) and (4.9) we show (using a few tricks 

which will also be useful further on). 

4.10. Lennna. Let T(s) be a matrix of polyn?mials. Then 

(4.11) o(T) = max {degree(det(M(s))} 
M(s) 

where M(s) runs through all square submatrices of T(s). 

Proof. Define o'(T) as being equal to the right hand side of (4.11). 



Then we have to prove that o(T) = o'(T). Then the analogues of 

(4.7) and (4.8) also hold for 0 1 ' i.e. 

( 4. 12) 6' (ATB) < 6' (T), 0 1 (T') = o' (T) 

16 

To see this recall that a minor of a product of matrices is a sum 

of products of minors (of the same size) of the factors (cf. e.g. 

[Ros1, thm 1.3, page 5) and that a minor of a matrix T' obtained by adding 

a row of constants or column of constants to T is either a minor of T 

or a sum of minors (of one size smaller) of T with constant coefficients. 

This proves (4.12). 

It follows that if A and Bare invertible then o'(ATB) = o'(T). 

So by taking A and B to be suitable permutation matrices we can assume 

that T is of the form 

T 

with deg(det(T 11 )) = 01(T). Let the dimensions of T11 , T12 , T21 , T22 
be respectively r x r, r x (m-r), (p-r) x r, (p-r) x (m-r). Let 

T'(s) be the matrix 

( 
T 11 

T' (s) = T 21 

0 I' :) 
where I is the (p-r) x (p-r) unit matrix and I' the (m-r) x (m-B 

unit matrix. Then by (4.12) 

(4.13) o' CT') = o' CT) 

Also det(T') = det(T 11 ) so that degree det(T') ..:_ degree(M) for all 

minors M of T'. It follows that T'(s)-l is proper so that 

(4.14) 

At this stage we need one more property of the degree function 

which is essentially proved in[ Ros1], cf. thm 4.3 on page 115, 

cf. also [MH., section 2]. Viz. 
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4.15. Lenuna. Let T(s) be a p x m proper matrix of rational functions. 

Then there are polynomial matrices N(s), D(s), of sizes p ~ m, m x m 

such that 

(i) T(s) = N(s)D(s)-1 

(ii) N(s) and D(s) are right coprime, which means that there are 

polynomial matrices X(s), Y(s) such that X(s)N(s) + Y(s)D(s) = 
Moreover N(s) and D(s) are unique up to a conunon unimodular right 

factor and V(T(s)) = deg(det D(s)). 

(The last statement of the lemma is more usually stated for strictly 

proper T(s), i.e. matrices of rational functions T(s) such that 

lim T(s) = O; the slight extension is immed~ate; indeed if T(s) is 
s-+00 

proper and T(s) = J + T(s), with T(s) strictly proper, 

T(s) = N(s)D(s)-I. Then T(s) = N(s)D(s)- 1 with N(s) = JD(s) + N(s), 

D(s) = D(s), and if X(s)N(s) + Y(s)D(s) =I , then m 
X(s)N(s) + Y(s)D(s) ~I with X(s) = X(s), Y(s) = Y(s) - X(s)J). 

m' 

Continuing with the proof of lenuna 4.10. Applying lemma 4.15 to T'(s) 

we find 

(4.16) v(T'(s)- 1) = degree(det(T'(s))) 

So combining (4.8), 4.9), (4.12) - (4,14), (4.15) we have 

o(T) = o(T') = o((T')- 1) = v((T')- 1) 

= degree(det(T')) = degree(det(T 11 )) 

= o' (T) 

which concludes the proof of lemma 4.10. 

4.17. Theorem. (upper semicontinuity of o(T)). Let T (s) be a c 

I . 
m 

sequence of matrices of rational functions of s. Suppose that the sequence 

converges to matrix of rational functions T(s) as c + 00 and suppose 

that o(T (s)) < n for all large enough c. Then o(T) ~ n. 
c -

Here ~ sequence of matrices of rational functions is said to 

converge iff the sequences of entries converge in the sense of 

section 3 above; i.e. T (s) converges as c + 00 iff lim T (s) exists 
C C-+00 C 
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for infinitely many s and then the limit is necessarily a matrix 

of rational functions T(s) and lim T (s) = T(s) for all but finitely 
c-+00 c 

many s. 

The proof of the theorem is easy. We have for each m x n matrix 

of constants K that 

lim det(I +KT (s)) = det(I +KT(s)) 
c-+oo m c m 

Hence using proposition 3.1 (which among other things contains the 

scalar case of theorem (4.16)), or rather using corollary 3.10, and 

using the second definition of the degree of a rational matrix 

discussed above (cf. (4.4) - (4.6), we have for large enough c 

(which may depend on K) 

where 

(without common factors). It follows that o(T) = max{oK(T)} 2_ n. 
K 

It is now not difficult to prove theorem 2.23 without the extra 

requirement that the poles of L (s) unequal to the finite poles of L(s) 
c 

go to -oo as c + oo. Indeed the upper semicontinuity property of theorem 

4. 17 takes care of the "if" part. So let L(s) be of degree n. Write 

L(s) = A(s) + T(s), where T(s) is proper anG A(s) is polynomial. 

Then o(L) = o(T) + o(A). So if A(s) = lim T (s), with T (s) proper 
n-tro n n 

and o(T (s)) < o(A(s)) we will be done. 
n -

4.18. Proposition. Let A(s) be a polynomial matrix of degree o. Then 

there exist a sequence of proper rational matrices T (s) of degree < o 
n -

such that lim T (s) = A(s). 
n 

Proof. By multiplying A(s) on the left and on the right with suitable 

invertible matrices we can assume that A is ~f the form 



with 

Then 

deg(det(A 11 )) = 6. As above let 

8 

-(Al I Al 2 

:) A' - A21 A22 

0 I 

8 (A') degree det(A'). Now let 

T' (s) 
n 

-I 
nA' (nl+A') 
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(Note that (nl+A'(s))-I exists if we assume, as we can, that o > 0). 

Then claerly for a fixed s, lim'T'(s) = A'(s). We claim that T'(s) 
n n 

n-+oo 

is proper for all but finitely many n. Indeed for a fixed n 

(4.19) T' 
n 

nA' (nI+A')-I 

-1 
Now because o(A') = deg(det(A')) we know that (A') is proper. 

Let J = lim (A')- 1. Then if -n-l is not an eigenvalue of ·J it follows 
s-+oo 

from (4.19) that lim T'(s) exists, proving that T'(s) is proper for all 
n n 

s-+oo 

but finitely many n. 

Finally, by lemma (4. 15), if T'(s) is proper, 
n 

(4.20) v(T~(s)) ~ deg(det(nl+A')) 

Now det(nl+A') is a polynomial inn whose coefficients are sums 

of minors of A'. Hence deg(det(nl+A')) < max deg(M) = o(A') = o 
M 

where M runs through the minors of A' • 

Now let T (s) be obtained from T'(s) be removing the appropriate 
n n 

columns and rows. Then lim T (s) = A(s), T (s) is proper if T'(s) is 
n n n 

n-+oo 

proper and o(T ) < o(T') proving proposition 4. 18. 
n - n 



20 

5. PRfX1F OF THE MAIN THEOREM. 

5. ! . First half ~'..!. th2 proof of thenr~ 2.22. Let ) c L be a 

ly nf systems of dimension n and suppose they converge in 

input t behaviour. This means (cf. 2.l that for every u E U 

the sequence of functions 

(5. 2) u) c Y ) 

converges. In turn this means (as in the proof of lemma 2.6) that there 

is a b such that for all sufficiently large c 

(5. 3) 

If z E ~~o)(IRP), then supl e-btz(t)I I< oo so that 
t 

on 

jl je-(b+l)tz(t) I ldt < oo 

0 

which implies (cf. [Doe] or [Zem]) that z(t) is Laplace transformable 

and that (£z)(s) is defined for R~).'.:_ b+l. 

Applying this to the VL(c)u we see thaL their Laplace transforms 

are well defined for s > b+I. This gives us a sequence of functions 

(5.4) Y (s) = T (s)U(s) c c 

where Y (s) is the Laplace transform of V>( )u, T (s) is the transfer c .... c c 
function of I(c) and U(s) is the Laplace transform of u(t). 

The Laplace transform £ is continuous when considered as an 

operator on the normed space'fb+l(IRP) consi&ting of all locally 

integrable functions such that 

(5.5) 
00 

Jj le-(b+l)tz(t)j ldt < oo 

0 

equipped with the norm defined by the integral (5.5), cf [Doe, Kap.III, §8]. 
As ~(o) (lRP) c '1' (!RP) is a continuous embedding it follows that the b b+I 

sequence (5.4) converges for Re(s) ..::_ b+l as c ~ oo Choosing various 

u E U judiciously this implies that the family of rational matrix 

functions T {s) converges for infinitely many values of s. According c 
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to section 4 above this means that there is a rational matrix function 

T(s) such that 

(5.6) lim T (s) = T(s) 
c 

and moreover o(T) < n by the upper semicontinuity theorem 4.17. Write 

(5.7) T(s) = T'(s) + L(s) 

where T'(s) is proper and where L(s) is polynomial. Let Ebe a co and 

er realization of T' (s). Consider the operator 

(5. 8) V = V,. + L(D) 
"" 

Applying this operator to a u E U and taking the Laplace transform 

of the result (which can be done because Vu E 'f and all functions 

in ljare Laplace transformable) we find (for Re(s) > b'+l, for some 

b' > b) 

(£Vu)(s) = T'(s)U(s) + L(s)U(s) 

( £ (l im y ) ) ( s) 
c c-.oo 

lim Tc (s)U(s) = 
c..;.oo 

lim Y (s) = c 
C-+00 

where ye = VL(c)u, and where we have again used the same continuity property 

of the Laplace transform. The Laplace transform being injective on the 

space of functions under consideration it follows that 

for all u E U. Thus the limit operator is indeed of the form 

V = VE + L(D) with dim(E) + degree L(s) = o(T) -2_ n, which finishes 

the proof of the first half of theorem 2.22. 

To prove the second half we need some lemma's. If A is any matrix 

we use the following notation for its various minors: 

i l • ... 'ir 
A 
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denotes the determinant of the subrnatrix of A obtained by removing 

all rows except those with the indices i l' ... ' i and all columns r 
except those with the indices j l ' ... " j . Recall that the minors 

r 
of a product matrix are given by 

(5. 9) (AB) 
il, ..• ,ir 

L: A 
il' ... ,ir kl' ... ,k 

B r 
. . kl, ... ,kr k I , ... , kr jl, ... ,jr JJ, ... ,Jr 

5.10. Lennna. Let L(s) be a polynomial matrix of size p x m. Suppose 

that for a certain 1 _:: r ..::._ rnin(p,m) 

l, ... ,r 2, ... ,r,j 
(5. 11) deg L(s) ~ deg L(s) j r+ 1 , ••• , p 

I, ... , r I , ... , r 

Then there exists an invertible p x p matrix of constants A such that 

1 , ••• , r 2, •.. ,r,j 
(5 • I 2) deg (AL(s)) > deg (AL(s)) J r+ I , ... , p 

1 , ••• , r 1 , ••• , r 

Proof. Let E.(c) = E, J E {r+l, ... ,p} be the matrix with I's on the 
J 

diagonal, a c in spot (j,1) and zero's elsewhere. Then as is easily 

checked 

1 , ••• , r = {1, ... ,r} 
E 

i I' ... ' ir otherwise 

and for k :f J , k E { r+ l , •.• , p} 

2, ... ,r,k 
E 

il, .•. ,ir otherwise 

while 

if {i 1, ... ,ir} = {1, .•• ,r} 

if {i 1, ... ,ir} = {2, ... ,r,j} 

otherwise 

It now follows from the minor product rule (5.9) that 



1 ' ••• 'r 
L if k = 

1 , ••• , r 

2, ••• ,r,k 2, .•. ,r,k 
(EL) = L if k E {r+l, ••• ,p} '{j} 

1 , ••• , r 

2, ••• ,r,j 1, ••• ,r 
L + (-l)rc 1 if k = J 

1 , ••• , r l , ... , r 

It follows that (5.12) holds if we take for A a suitable product 

of matrices E.(c). 
J 
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5.13. Lemma. Let L(s) be a polynomial p x m matrix without constant 

terms of degree n. Suppose that for a certain r all minors of size 

< r have degree < n and that 

I, ... , r 2, ••• ,r,j 
(5. 14) deg(L ) = n > deg(L ), j = r+ 1 , ••• , p 

1 , ••• , r 1' •.. 'r 

Let d(s) be the diagonal matrix with diagonal entries (s,1, ••. ,1) 

and let L'(s) = d(s)- 1L(s). Then L'(s) is polynomial (because the 

first row of L(s) has no constant terms) and deg(L'(s)) = n - 1. 

Proof. Because deg(d(s)) = 1 and deg L(s) ~ deg(d(s)) + deg(L'(s)) 

we must have deg(L'(s)) ..'.::. n-1. It remains to show that deg(L'(s)) < n-1. 

Let L(s) be the square matrix 

where L = (111 

1 21 

:J 
is the top-left r x r submatrix of 1 1 

and where the I's are the appropriate unit matrices. Then 

(5. 15) deg(L) = deg(L) = deg(det(L 11) = deg(det(L)) = n 

--1 
which implies that L is proper. We claim that the first column 

of L-l consists of strictly proper rational functions. Indeed the 

entries of the first column are the functions 



(5. 16) j = l, ... , m+p-r 

Now if j = l, ... , r, E~ is the determinant of a (r-1) x (r-1) 
J 
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b t ' f 1 d h deg(-1 1.) b h h ' If l su ma rix o 11 an ence < n y ypot esis. J = r+, ••• , m 
-1 J 

then 1j = 0 and finally if j = m + k, k = I, ••• , p-r then 

-1 
1. = 1 

J 

2, ••• ,r,r+k 
j = m + k 

1 , ••• , r 

which by hypothesis is of degree< n = deg(det(1)- 1• This proves 

the claim. 

Now let d'(s) be the (m+p-r) x (m+p-r) diagonal matrix with 

entries (s, I, ... , l), and let L' = d' (s )- 11. Then 1' is the p x m 

top left submatrix of L' and hence 

(5. 17) degree (1') -2_ degree (L') 

On the other hand (L')·-l = (L)- 1d' (s) is still proper because the 
--1 

first column of 1 consists of strictly proper rational functions. 

Hence (cf. lemma 4. 15) 

(5.18) deg(L') = deg((L')- 1) -2_ deg(det(L')) 

= deg(det(d'(s))- 1det(L)) 

-I = deg(s det(1 11 )) = n - I 

because 1 11 has no constants. Combining (5.18) and (5.17) we see that 

indeed deg(1') < n-1, proving the lemma. (NB it is not true as a rule 
-1 -

that (1') is proper). 

Note that lemma 5.13 and 5.10 combine t' give a proof of corollary 

2.24. 

5.19. Proposition. Let L(s) be a polynomial matrix of degree n. Then 

there exists a family of n-dimensional systems L(c) such that the E(c) 

converge in input/output behaviour to 1(D): l.t-+ 'l.J as c -+ 00 and such 

that moreover the poles of (the transfer functions of) the E(c) all 

go to --oo as c + oo, 



Proof. This is proved by induction, the case n = 0 being trivial 

because L(s) has degree zero iff it is a matrix of constants. The 

first thing to do next is to obtain the scalar operator 

D: !f(IR) -+ 'f(IR) as a limit of input/output operators of one 

dimensional systems. To this end let L:(c), c = 1,2, .•. (or c ElR) 

be the family of systems 

(5.20) I(c) = (F ,G ,H ,J ), J = c, F = -c, H = c G = -c 
c c c c c c c ' c 

The associated input/output operator of I(c) is V : Cf(IR) -+ <f°(IR) 
c 

(5.21) 
t 

V : u(t)t-+- y (t) = cu(t) + f -c2e-c(t-T)u(T)dT 
c c 

0 

By partial integration (twice) we see that 

(5. 22) 

25 

Let b be such that u ( 2) E ~~o) (IR) 

M = 11 u ( Z) 11 b, we have 

(i.e. sup e-bt/u(Z)(t) I < oo), Then if 
t 

(5. 23) 
0 0 

and it follows that they (t) converge to u(J)(t) in (IR). More 

precisely if b is such u (T), u ( 2) are both in <¥~0 ) (IR) then 

yc(t) E°F~0 )(1R) and the yc(t) converge to u(J)(t) in"f.~0 )(IR). 

Now suppose with induction that the proposition has been proved 

for all polynomial matrices of degree ..2_ n-1. 

Let L(s) be a polynomial matrix of degr~e n. First note that if 

P,Q are invertible matrices of constants then L(D) is the limit of 

a family as in the statement of the theorem if and only if PL(D)Q is. 

Also adding a matrix of constants makes no difference. Removing 

the constants and multiplying L(s) on the left and on the right 

with suitable invertible matrices of constants we can therefore assume that 

for a certain minimal r EJN the topleft r x r minor of L(s) is of degree 

n. Using lemma 5.10 and lemma 5.13 we see that after a further 

multiplication on the left by an invertible matrix of constants L(s) 

factorizes as 
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L(s) L' (s) 

with L'(s) polynomial of degree n - 1. By induction we have that 

there exists a family of (n-1)-dimensional systems 

E' (c) = (F' G' H' J') such that the poles of E'(c) go to -oo as c' c' c' c 
c -+ 00 (if n-1 > o, if n = 1, L' (s) is constant and one takes 

E' (c) = (O,O,O,L')) and such that VE' (c) converges in input/output 

behaviour to L'(s). 

Now let E(c) be the composed system 

(5.24) 

where E"(c) is the m input/m output one dimensional system given by 

the matrices 

(!) . (c 0 
... 

~) 0 l · . . 
F" = -c, G" = (-c,O, .•• ,0), H" = J" = : '• .. ,. c c c c . . 

0 ... 0 

I.e. if E'(c) = (F' G' H' J') c' c' c' c then L:(c) is given by the matrices 

C' :J ( G") (5. 25) F 

= G:H" 
G = c H = (J'H" H') J = J'J" c c , c c c c ' c c c 

G'J" c c c c 

(if n > l; if n = 1, F = -c, G = (-c,0, .•• ,0), c c H = L'H" J = L'H"). c c' c c 
Then the E(c) converge in input/output behaviour to L(D). Moreover 

(as follows from (5.25)) the poles of E(c) go to -oo as c + oo because 

F" = -c and because the poles of L:'(c) go to -oo as c + 00 if n > 1. 
c 

This proves the proposition. 

We can be somewhat more precise about how well the E(c) converge 

in input/output behaviour to L(D). Indeed one has 

5.26. Corollary. Let L(D) and (E(c)) be as above in the proof of 
. . b 0 b heh (1) •· .• , u(n+l) Eq:-b(o) tmm). proposition 5.19. Let ..:::_ e sue tat u, u , ; l,U\. 

Then there is a constant M such that 
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(5.27) 

In particular if u EU.is of compact support or, more generally if 

u, u(I), ••• , u(n+I) are all bounded, we can take b = 0 and for 

such input functions u, VL:(c)u converges uniformly in t to L(D)u. 

This follows readily by induction from the proof of proposition 

5.19 above, (5.22), and the estimate (5.23), because L'(D)u is a 

vector of linear combination of the u,u(l), ..• , u(n-l). 

5.28. Proof of the second half of theorem 2.22. Now let 

V: U+"fbe an operator of the form V = L(D) +VE with dim(L:) + deg(L(s)) < n. 

Let L:(c) be a sequence of deg(L(s))-dimensional systems converging 

to L(D) in input/output behaviour as in proposition 5.19. Then if 

L:'(c) is the sum system of L:(c) and L:, the family L:'(c) converges in 

input/output behavio.ur to V. More precisely if L: = (F ,G,H,J), 

L:(c) = (F ,G ,H ,J) then L:'(c) is given by the matrices 
c c c c 

H' = (H H ), J' = J + J 
c c c c 

Because the co and cr systems are open and dense in L we can perturb 

each E'(c) slightly to a E"(c) which is co,cr such that L:"(c) still 

converges to V in input/output behaviour as c ~ 00 , and such that the 

behaviour of the poles of the L:" (c) as c ~ 00 is like that of the L:' (c) 

as c + oo • This finishes the proof of theorem 2.22. 

5.29. Remark. One has of course in the setting of 5.28 above also an 

estimate like (5.27) for I IVL:'(c)u - Vul I. 
5.30. Remark. If L:(c) is e.g. the family of (5.20) above, the Markov 

parameters of the fdmily J, HG, HF G, HcFc2Gc' .•• definitely do 
C CC .CCC 

not converge as c + oo. 

One can of course examine what the possible limits are of families 

of systems L:(c) of dimension n which converge in.input/output operators 

and such that moreover the Markov parameters converge as well (or more 

generally such that the Markov parameters remain bounded) as c + 00 • 

The answer is simple: the limit operator is then necessarily of the 

form VL: where L: is a possibly lower dimensional system. Inversely every 

VE with dim(l:) < n can arise a limit of input/output operators of co 

and er systems of dimension n, cf. [Haz 2]. 



5.31. ~proximation by systems with J 

rational functions. Write 

(5. 32) T(s) = T_(s) + L(s) 
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0. Let T(s) be a matrix of 

with T_(s) strictly proper and L(s) polynomial. Define 

nr(T) =dim of thelR-vectorspace spanned by the rows of L(s) 

6. 33) n (T) = dim of the lR-vectorspace spanned by the columns of L(s) c 
q (T) = minf nr (T), nc (T)} • 

2 s3 
E.g. if T(s) L(s) (s s then n (T) 2, n (T) 3 and if = = 1 ) , = = 1 s r c 

2 2 
T(s) = L(s) = (s s n (T) 2, n (T) s ) ' = = 1. s r c 

Let r realize T_(s). Then the operator Vr + L(D) is the limit in 

input/output behaviour of a family of (deg(T(s)) + q(T(s))) - dimensional 

systems. 

This can be seen as follows. Because T_(s~ is strictly proper it 

suffices to see that L(D) can be obtained as the limit of the input/ 

output operators of a family of deg(L(s)) + q(L(s)) dimensional systems. 

Assume for definitiveness that q(T) = n (T). Then we can factorize L(s) c 
as 

L(s) = (L' (s) O)Q 

where Q is a square invertible matrix of const~nts and L'(s) has q(T) 

columns. It now clearly suffices to obtain L'(D) as a limit of 

deg(L) + q(L) dimensional systems. To this end let 1(c) be a family 

of systems converging to L(D) of dimension deg(L) and let 1'(c) be a 

q = q(L)-dimensional family of systems with J = 0 for all c with limit c 
input/output operator equal to I, the q x q identity matrix. Such a 

family is e.g. given by the matrices 

F = (-c • .. 0) 
c 0 -c 

J = o. c 
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Let T~(s) be the transfer function matrix of L'(c) and Tc(s) that of 

~:(c). Then the (q+deg(L))-dimensional system L"(c) obtained by applying 

first E'(c) and then L:(c) has transfer function matrix T (s)T'(s), 
c c 

which is strictly proper, and the L:"(c) converge in input/output 

behaviour to L'(s). 

This result is optimal if p = 1 or m = 1, but, though definitely 

generically best possible (meaning that for almost all T(s) with given 

q(T) = q, deg(T) + q is the best one can do), it is not best possible 

for every particular T(s). E.g. the factorization 

shows that this L(s) can be obtained as the input/output limit of a 

family of four dimensional systems with J = O, although deg(L) = 3 

and q (L) == 2. 

1. AV 

2. BK 

3. BMl 

4. BM2 

5. Doe 

6. Hazl 

7. Haz2 
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