ECONOMETRIC INSTITUTE

ON FAMILIES OF LINEAR SYSTEMS :
DEGENERATION PHENOMENA

M. HAZEWINKEL

e Czetens

| REPRINT SERIES no. 279

This article appeared in ‘“Lectures in Applied Mathematics'’,

Vol. 18 (1980).

ERASMUS UNIVERSITY ROTTERDAM,

P.O. BOX 1738, 3000 DR. ROTTERDAM THE NETHERLANDS.



ON FAMILIES OF LINEAR SYSTEMS: DEGENERATION PHENOMENA
Michiel Hazewinkel

ABSTRACT. 1In this paper we study families of

linear dynamical systems X = Fx + Gu, y =

Hx + Ju, where the matrices F,G,H,J depend

on a parameter c. Let Vc be the associated

input/output operator. Then this paper contains
results about what operators can arise as limits
of the VC as € - o,

1. INTRODUCTION. This paper is concerned with an aspect of
the theory of families of linear dynamical systems rather than
single systems, viz. degeneration pienomena. As such it is part
of a general program (briefly discussed in [Haz 3]) which con-
sists of trying to carry through for families of systems (and
hence systems over rings) all the nice results and constructions
which one has for single systems over fields (or finding cut how
and why these results and constructions break cuwn in this more
general setting). This includes a systematic investigation of
which constructions are continuous in the system parameters;
that i§, which constructicns and calculetions are stable (Tore
or less) with respect tc small perturbations or errors in the
system parameters, a topic which obviously deserves at least
some attention in a world Tull of uncertain measurements. And,
in turn, this topic includes trying to Tind out what may happen
to systems and asscciated objects when certain parameters go to
zero (or infinity, or ...), which is the topic of this paper.

Sti11 more motivation for studying families rather than single
systems can be found in [Haz 3] and some results concerning other
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158 MICHIEL HAZEWINKEL

aspects of the theory of families (than the degeneration phenom-
ena discussed belcw) can Se found in [Haz 4] (fine moduli spaces,
cont<riuous cancnical forms) and [HP] {pointwise-local-global
isomorphism problems).

Here we discuss degeneriiion phencmena. That is, suppose
there is given a family of systems

t{c): X = Fx + Gu, y = Hy + Ju (1.1)

where the matrices F, G, H, J depend on a parameter c. What
can be said about the limit as ¢ - ». For example let VC be
the input/output operator of I({c)

t .
VC: u(t) » y(t) = ~£ He}(t'T)Gu(r)dT (1.2)

and suppose that as ¢ - = the operators VC converge (in some
suitable sense) to some operator V. What can be said about V?
E.g. can V still be viewed as the input/output operator of
some sort of processing device?

There are a nunber of reasons for being interested in such
degeneration phenomena, scme of which can be characterizad by the
key words or phrases: identification, high-gain feedback, almost
F mod G invariant subspaces (and almost disturbance deccupling),
dynamic observers (and inve~tability).

1.3. Identification. Suppose we have given some sort of
input/output device which is to be modelled "as best as possible"
by means cf a linear dynamical system {1.1) of dimension n.

Now if S € GLn(R), then a system I = (F,G,H,J) and

ZS = (SFS_],SG,HS‘],J) have the same inpuf/output operator.

Let M be the space of orbits of this action of GLn(R) on the
space L of all n-dimensional systems (with a given number of
inputs and outputs). The best we can do on the basis of input/
output data alone is to identify the orbit of I (and even that
is not true if ¢ 1is not completely observable and completely
reachable, a fact which can be expected to cause a fair amount of
extra trcuble). Thus we are trying to identify a point of M
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and we can picture identification as finding (or guessing at) a
sequence of points in M representing better and better identi-
fications as more and more data come in. From this point of view
the question naturally arises. Does a "converging" sequence of
points in M necessarily have a 1imit in M? The answer is no.
It is perfectly possible for a sequence of linear dvnamical sys-
tems (1.1) to have a limiting input/output behaviour which is not
the input/output behaviour of any system like (1.1) as the fol-
Towing examplie shows

[ el
£{c): x = X + u, y = {c“,0)x (1.4)
0 -c 1

(one 1nput/oné output, dimensinn 2). Let u be a smooth bounded

function on R with compact support in {0,=), then if Y= ch
d

a little partial integration shows that 1im yc(t) = It u(t),
C2> o
uniformly in t on bounded t intervals, and 4 cannot pos-

dt
sibly be the input/output operator of a system (1.1), (e.g.

because é% is not bounded on smooth bounded functions in [0,1]
while all the V. are bounded operators).

The presence of these "holes" is by no means the only difficulty
in identification caused by the nontrivial topology and geometry
of M. For some more remarks concerning this topic cf. [Haz. 2]
(though the point of view I took there is still a good deal too
optimistic) and also [BK].

1.5. High-gain Feedback. Consider a system with output feed-
back loop

X =Fx +Gu, y=Hx, u=Lly. (1.6)

What happens when L or certain entries of L go to infinity?
For instance in [YKU] it is shown in the case of a large scalar
gain factor L = g and under some additional hypothesic the
system (1.6) can be transformed into the standard singular per-
turbation framework

%y = Fgxg # Figxgs wip = Fopky + Fopxps u = o (L7

[

(with Fop = 0 in the case considered in [YKU], so that there is
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a separation of slow and fast modes; more precisely thera is a
fast subsystem which in the settir; of [YKU] is asymptotically
stable (if u is small enough) feuding into a slow system). Of
course setting uw =10 1in (1.7) yields little information about
(1.7) for small u and the idea is rather to study (1.7} and
(1.6) as perturbations of the limit behaviour as u goes to zero
or various coefficients of L go to infinity. In the setting
of [YXU] the limit input/output operator is the zero operator,
but in general this need not be the case, and one may hope that
on the basis of some knowledge about what 1imit operators can
arise it will prove possible to obtain some results con the lines
of [YKU] and related papers in more general situations.

For some motivation for studying (very) high-gain feedback
cf. [YKU] and some of the references therein, cf. also below in

1.8.
1.8. Almost F mod G " Invariant Subspaces and Almost Distur-

bance Decocunling. An F mod G invariant subspace for X = Fx +

Gu s a subspace V of the state space such tiat once one is
in it one can stay in it. As is well known (cf. [Won]) these
subspaces "solve"” the disturbance decoupling problem. An almost
F mod G invariant subspace is ore such that once one is in it
one can stay arbitrarily close to it, and these spaces "solve"
an almost disturbance decoupling problem, which turns out v be
important especially when the disturbances (partly) come in on
the same channels as the inputs (cf. [Wil 1, Wil 2])..

A subspace V of dimension r s almost F mod G invari-
ant if and only if there is for every € > 0 a feedback matrix
Ke such that (F-&GKE)V is within € of V (in a suitable
sense), and if V is almost F mod G invariant but not F mod G
invariant, KE will not remain finite as € - 0. Thus imple-
menting a decoupling by means of an almost F mod G invariant
subspace will give rise to a family of systems.

X = (F+-GK€)x + Gu + G'v, y = Hx (1.9)

where KE does not necessarily remain finite as ¢ - 0.
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1.10. Dynamic Observers. 1In [BM]], [BM2] Basile and Marro
consider the problem of constructing observers for the state of
a system (1.1) when the inputs are unknown. For this it is
advantageous to have differential operators (cf. loc. cit) and

these, as is suggested by the example {1.4), may be approximated
bv systems (1.1) {of comparable rank), thus giving us arbitrarily
good approximate cbservers of the form (1.1).

1.11. More General Linear Systems? As we shall see the limit

operators as ¢ -» « of the input/cutput operators VC of a
family of systems £(c) are necessarily of the form Vz + L(D),
where I is a system (1.1) {and VZ its input/output operator)
and where L(D) 1is a polynomial matrix (with constant coeffi-
cients) in the differentiation operator D = é% . l.e. the pos-
sible 1imit operators are the input/output operators of systems
of the type

x = Fx + Gu, y = Hx + J(D)u (1.12)

where J(s) 1is a matrix of polynomials, arguing that this wider
class of systems is in some ways a more natural class to study
than the class of systems (1.1), cf. also [Ros 1, Ros Z2].

2. STATEMENT OF THE THECREMS. The first thing to do is to
specify in what sense we shall understand the phrase "the family
of input/output operators LC converges to the operator L as

¢ ~c." And, in turn, this means that we must describe the

spoces of functions between which these operators act.

(gjl.r The Spaces ;;(O)ORr) g?g_‘gbfér). Tze e?ements of ‘
'7/(R') are all smooth functions z: R ->TR with support in
(0,0) and of no more thai exponential growth. Here the support
of a function =z is as usual defined as the closure of the set
of all t €R where z(t) 7 0. Thus 2 = & OVR") iff there
are an € >0, an M >0, and b >0 such that 2z(t) =0 for
t <e and

lePt2(e) <™ for a1l t (2.2
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(Both ¢ and b {and of course alsa M) may depend on the
function z.) Tnis class of functions includes the smooth func-
tions of slow growth with support in (0,») (cf. [Ze, Chapter
IV]), which space in turn contains the subspace ..’30(1Rr) of
smooth functions with compact support in (0,=).

A sequence of functions z € & 0)(R2) is said to converge to
&€ gi(o)ﬂRr) if there is a b such that

Tim sup 1e Y

2. (1-2(1))] = 0 (2.3)
C»o t

Note that (Z.3) in any case implies that the functions zc(t)
converge to z(%t) wuniformly in t on bounded t intervals.

This defines a topology on .i(o)(Rr), which is in fact the
inductive 1imit topology defined by the inductive system of nor-

mal topological vector spaces

JFéO)ORr), ab’b.:.aﬁ°)(R”) > aig?)ORr), b' > b (2.4)

where for a given b €R

JéO)GRr) -z € J(O)(Rr)lsgp "e‘btz(t)n =: ]|zl|b < w} (2.5)

with the norm [z, and where i, ., 1is defined by z(t) »
(b'-b)t b b,b
e z(t).

The space ,’i(o)(Rr) tries hard to be complete in the sense

of the following lemma.

2.6. LEMMA. Let n >0 and let z_ € OV R e 4
sequence of functions with support in [n,») for all c.
Suppcse that there is a b € R cuch that for all € > 0 there
is a < such that
t

(

7 t)—zc,(t): < ¢ for all c,c' 2 <, (2.7)

sup [ e™® A
t

. _(0) 7 .
Then the Z_ converge to a function 2z € .y'( )(IR ) with sup-

port in [n,») as ¢ » oo (where the convergence ig in the

sense of (2.3)).
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Proof. Llet z(t) be the pointwise 1imit of zc(t) as
t -» o (which clearly exists by (2.7)). Then supp z{t) « [n,=)
and zc(t) converges to z(t) uniformly on bounded t inter-
vals (again by (2.7)). It follows that z{(t) is smooth. Take
& =7 and let oh be such that t?at (2.7) holds for this ¢
with ¢ = c;. Let Zc](t) € SFé:’GRr). We can assume by 2 b.

Then, using b] > b,

-b,t -b,t
e Mz(t)lse ‘uzcl(t)n+e‘b“11zcl(t>-zc.(t>u

+e Pz (1)-2(1)]

Choosing c¢' dependingon t such that "zc.(t)—z(t)ﬂ <1 it

follows that z(t) € 37é°)ORr) c JI(O)GRP), proving the lemma.
1

Just what b € R s used in (2.3) is largely irrelevant.
Firstly, if (2.3) holds for a given b then it still holds with
b replaced by b' = b. Secondly, if (2.3) holds ana
zZE€ sié?)ﬂRr) then z_ € 37é9)ORr) for all large enough ¢
where b" = max(b,b'). The converse of this: "if
ZC(L) 6-37é?)ﬂRr) for all large enough ¢ then z(t)e.@ée)(Rr)
with b" = max(b,b')" follows as in the lemma. Thirdly, and
lastly, it does not really matter if one uses “too big a b" in
(2.3). 1Indeed, z(t) as the pointwise limit ¢f the zc(t) is
of course independent of b. What (2.2) does is to require a
certain mild uniformity about the way the limit is approached.
(It is, incidentally, perfectly possible for a sequence of func-
tions zc(t) 3 Jiéo)(Rr) ‘o converge to zero when consicered as

&

elements of dﬂb?)(Rr) for b’ > b while not converging when
considered es a sequence in EZéO)ORr); take for example zc(t)
=0 for t<c, Zc(t) = ebt -ebt for > ¢, suitably
smoothed. )

2.3. The Spaces JFORr). For the purposes below the spaces
éF(o)(Rr) are still too big to be suitable as input spaces

(essentially because we shall want differentiation to be a
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continuous operator). On the other »and fﬁo('Rr), while
eminently suitable as an input functlion space is not large
enough to accommodate output functions. As we shall need to be
abie to use the cuiputs of one dynamical system as the inpu.s of
ancther, we need ar intermediate space. A suitable one is

SR =z e &m0 ¢ w0 mny

(2.9)

for all k = 0,1,2,...}
where z(k> denotes the k-th derivative of z. We give &‘(Rr)
the tcpoloqy determined by Zg»>Z as Cow iff z((:k) - z(k)
for all k = 0,1,2,... in .i(o)(er). Thus the family z_ con-

verges to z as ¢ -» o iff there are real numbers bo’bl""
sucn that for all k

-b
1im sup e

t
K128 - Mg -0
C»o L

“When dealing with systems of dimension < n wunly, one can
also work with &M@Y = (z e A @) ¢ #0)(m),
k =0,.,...,n+1}.

2.10. Convergence of Input/Output Operators. Now let I =
(F,G,H,J) be a linear dynamical system with direct feed-tlrough
term

x=Fx+Gu, y=Hx+ Ju

m {2.11)

X E’Rn, y E]Rp, u €R
where F, G, H, J are real n:atrices of the appropriate dimen-
sions (independent of t). Then the associated input/cutput
operator is defined by

t
Vot u(e) e oy(t) = Ju(t) + j He" (7D gu(1) dr (2.12)
(o]
tet = F@®"), %= &R, , = .u;o(P.m), 2, = ﬁopr).

Then V): js a continuous linear operator 4 - % . Indeed if
u € U is such that ﬂuﬂb <o and if b' > max{ReX,0} where A
runs through the eignevalues of F then ||V)Z(u)||b+b, < o,
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Thus for every b >0 there isa b' 20, usually necessar-
ily larger than b, such that VZ maps 3,£0)(Rm) into
érg?)ORp), with b' depending on I. Thus, when dealing with
families of systems one is practically forced toc use the union
of the all the ﬁéo)(kp), ice. @ OVRPY, and if one would like
differential operators to be con*inuous one is almost obligec to
work with #(RP) and JTORm). From now on we fix the dimen-
sions m,n,p of the systems (2.11) which we are considering.
let L denote the space of all systems (2.11). 1I.e. L 1{s the
space of all real quadruples of matrices (F,G,H,J) of the
dimensions nxn, nxm, pxn, pxm respectively.

We shall use LCO, Lcr, LE%CT o denote the subspaces of
completely observable, (abbreviated co), resp. completely reach-
able (cr), resp. completely reachable and completely observable
systems.

We now define

2.13. DEFINITION. The family of systems L{c) = L converges
in input/output bensviour to an operator N Iff jor all u € U
the functions VZ(C)U converge to Yu in % as C - o, _

Let supp{u) = [n,») (such an n necessarily exists because
supp(u) « (0,) and supp(u) is clinsed by definition). Then
supp VZ(c)(U) < [n,»). It fcilows by lemma 2.6 that one can
decide whether the family (=(c)) converges without mentioning
(or knowing) the limit operator V. The family (Z(c))C con-
verges in input/output behaviour iff there are for every u € U

a sequence of numbers bo,b],bz,... such that for every e > 0,
k =0,.,2,... there is a c(e,k) such that
{ -bktWDkV u)(t) - (0% w (Lt <e
Szp e \ E(C) z(cl) I
it c,¢' = cle,k) (2.14)
where D s the differentiation cperator D = é% . Thus if

(2(c)) converges in input/output bohaviour {in the sense that
(2.14) holds) then there is a w2ll-defined limit cperator V.
(This uses of course (cf. (2.14)) that D is 2 continucts
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operator ¥ - ). \hether this Timit operator V is continu-
0Us 1s unclear at thic stage. (It is though, as will be shown
below in section 5).

72.15. Differential Operators. let < and Z be as above.

Thena (matrix) differential opeartor (in this paper) is an opera-
tor of the form

V(D): u(t) » y(t), yj(t) = ﬁi Vji(D)“i(t)
i=]

where Vji(D) is a polynomial with constant real coefficients
in D = d/dt. Every polynomial V{<) (of size pxm) thus
defines a con*inuous 1inecr operatcr U -» .

2.16. The Scalar Case If m=1=1p, i.e. if we are deal-

ing with one input and one output the main theorem of this paper
says that )

2.17. THEOREM. Let (:(c)) be a family of ome input/one
output linear dynamical sustems (2.11) of dimension < n con-
verging in input/output behaviour to the cperator V: @/ - %.
There there exist a system L and a polynomial L(s) such that
y = VZ + L(D), where moreover dim(I) + degree L(s) <n. It
Ffollows in particular that the limit vperator V is continuous.
Inversely, if V is an operator of the form V = V. + L(D)
where L(S) is a polynomial of degree < n - dim(E}, then
there exists a family (I(c)) < LEO"  cuch that z(c) con-

verges in input/output behaviour to V.

In case one wants to restrict oneself to systems (2.11) with
J = 0 the theorem remains essentially the same except that the
essential inequality dim{z) + degree (L(s)) < n gets replaced
hy dim(L) + degree (L{s)) < n-1 (where by definition
degree (0) = -1). This is stated and proved (more or less) in
[Haz 1] and the proof reaily adapts to a proof of the present
theorem. In section 5 beiow a different prcof of theorem 2.17
is given which also covers the multivariable case.

2.18. Degree of a Matrix Polynomial (Differeniial Operator).
Obviously if =(c) is a family of systems of dimension < n
which converges to the pxm matrix differential operator L(D)
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then all the entries of L(s) have degree < n (by the result
in the scalar case). One might think that inversely every such
operatlor arises as a limit of systems < n. This, however, is
not the case as the example.

D O
L(D) = [ J (2.19)
0D

shows. One shows readily by explicit calculation that the opera-
tor (2.19) cannot arisc as a limit of one-dimensional systems.
A more sensitive definition of "degree" is needed.

2.19. DEFINITION. Let L(s) be a matrix polynomial. Then
we define

deg L(s) = max (degree(M)) (2.20)
m

where M runs over all the minors of L. This agrees with the
MacMillon degree of a polynomial matrix, (lemma 4.10, or cf.

[AV], section 3.6. properties 5 and 10).

?.21. The Multivariable Case. 1In the case of more inputs

motre outputs the main thecrem now is precisely analogous to
theorem 2.17. l.e.

2.22. THEOREM. Let 1I(c) be a family of n dimensioral
systems with m intputs and p outputs. Suppose that I(c)
aonverges in input/outrut behaviour to the operator VN: % - %
8 C = o, Then there exist a system ¥ and a pPXM matrix
polynomiial L(s) such that V = Vo + L(D) (so that V is zom-
tinuous) and moreover dim(Z) + degree L(s) < n. Tnversely if
V is an operator of the form VZ + L(D) with dim(z) +
degrec L(s) < n, then there exists a family of completely
observable and completely recchable systems I(c) of dimension

< n which converges in input/output behaviour to V as € -,

The proof of the first half of the theorem uses the centinuity
(ir this case) of the Laplace transform and the upper semicon-
tinuity of the MacMillan degree (tneorem 4.16) and thus gives us
(bucides “cuwma 4.10) yet ancther characterization of the Mac-
Millan degree of a matrix of raticnal functions.
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2.23. THEQREM. Zet L{s) be a mutriz of rational functions.

Then the Maelilisme dzavee : Ty 3
@ Mactillz: deavee of L{s) 1e SN iff there exists a

gequence LC(S) of proper rational function matrices of degree
n sﬁuch that LC(S) converges to L(s) for ¢ » o pointwise in
5 Fer infinitely rany values of S. Moreover one can see to it
that the poles of LC(S) fall into two sets one equal (together
with multiplicities) to the set of poles # « of L(s) while
remaining poles of LC(S) all goto == as C .

It is not true, however, that one can always obtain L{s) as
a limit of the Lc(s) in the sense of the mappings on the Rie-
mann sphere that these matrices of rational functions define.
This in fact only happens when L{s) 1is itself proper.

To prove Theorem 2.23 without the extra requirement that the
remaining poles of Lc(s) go to ~o as ¢ goes to e is quite
easy (Proposition 4.18). The extra requirement complicates
things considerably and 1 know of no direct proof except for cer-
tain special, albeit generic, cases. (Like "the matrix of coef-
ficients of maximal powers of s in each row is of maximal

rank"). Another corrollary of the proof of the second half of
Theorem 2.22 is

2.24. COROLLARY. Iet L(s) be a polynomial matrix of size
p<m. ‘Then L(s) has degree <n if and only if it can be
obtained from the zero matrixz by means of the operations.

(i) addition of a matrix of constants
(i1) wuliiplication on the left by a nonsingular polynomial
pxp matriz of degree 1

(i11) multiplicction on the right by a nonsingular mxm

matrixz of ccnstants

where one uses at most N times an operation of type (ii).

There is of course an analogous statement with right instead
of left in (ii) and left instead of right in (i1i), and also an
analogous scatement where in both (i1) and (iii) multiplications
on both sides are allowed.
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3. ON LIMITS OF RATIONAL FUNCTIONS. The degree of a raticnal
function T(s) = q(s)"]p(s), p(s), q(s) € k[s] with no common
factors is equal to &(T) = max(8(p),8(q)) where the degree of
2 pelynomial is defined as usual. We shall need the following
intuitively obvious fact.

3.1. PROPOSITION. rLet Tc(s) be a sequence of rational

functions of degree < n. Suppose that 1im Tc(s) exists (and
Co o

is firnite) for infinitely many S. Then there exists a rational
fimetion T(s) of degree < n such that 1lim TC(S) = T(s) for

Coro

all but finitely many s (and if the Tc(s) and T(s) are
interpreted as functions U »]P](G) then TC(S) converges to
T(s) in the compact open topology).

Procf. Write

(s) DC(S) an(c)sn-fan_](c)sn']+-.” +a](c)s +a0(c)
T = = 1
c® qc{Sj bn(c)sn-+bn_](c)sn=1+ . +b](c)s Fbo(c)

(3.2)

and associate to Tc(s) the point y(c) e'P2n+](E) with the
homogeneous coordinates (an,...,ao,bn,...,bo). Note that this
is well defined because the coefficicents of pc(s) and qc(s)
are well defined up to a common scalar factor. (This map is not
cortinuous if the space of all rational functions of degree <n
is ~iven the c~mpact open topology of maps & A'P](E); but it
is continuous on the open subspace of function of degree n, end
on the subspaces of functions of fixed degree ).

tet McP™ (1) e
yn,...,yo) € P2n+](¢) such that at least one ¥; is unequal to
zero. Because P2n+]’

be tire subspace cof all points (X _,...,X

’
{0) 1is cumpact the sequence {w(c)} nas
limit points.

3.3 LEMMA. If Yim T _{s) ewists Jor infinitely many S then

C~on
all limit points cf the segquence {Y(c)} are in M.
Proof. Suppose that 1im T (s) = T(s) €T, and suppose that

Coree
. . . . 141 . .. .
{¢\7)} has a limit point in pérn )M, Let this limit point
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ba X =
(an,...,ai+],

assume that {y{c)} converges to x. For large enough ¢ we
then have ai(c) # 0 and multiplying both pc(s) and qc(s)
with ai(c)‘1 we can assume that ai(c) =1 for all c¢. Me

then have for all ¢

1,0,...,0). Taking a subsequence we can

in . . .
anf-)s + ..+ ai+](c)s1+] +5! 4+ ai_](c)s1 T, U ao(c)

= To(s)(b (c)s" + ... + by(c)) (3.4)
with

Tim b.(¢) =0, j=0,...,n

Co J

lima,(c) =0, j=0,...,i-1 (3.5)

C-»¢2

lima.(c) = a., J=1i+l,...,n
Taking the Timit as c=e in (3.4) and using the relations
(3.5) one finds because Tim Tc(s) =T(s) # =

C>wo

ansn + ... +a, s1+] + si =0 (3.6)

and there are only finitely many s for which this can hold.
Thus there can be no Timit points of {y(c)} in P2"+]\M if
1im Tc(s) exists (and is finite) for infinitely many s.

C> o

The proof of proposition now continues as follows. Let
X €M c:P2“+](ﬁ), X = (xn,...,xo,yn,...,yo). Because at least
one of the ¥; # 0 the expression
X ST+ L.+ xS Hx
1 s

_’n
Tx(s) = :
Y5t s by sty

(3.7,

is well-defined for all but finitely many s. Now let x € M
be a limit point of {p(c)}. Let 1 be the largest index such
that ¥; # 0. Multiplying all coordinates with ygl if neces-
sary, we can assume y, = 1. .Take a subsequence of {y{c)}
which converges to x. For large enough ¢ we then have
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bi(c) # 0. Multiplying both pc(s) and qc(s) with bi(c)‘]
we then obtain sequence of rational functions.

an(c)ssn + ..+ a](c)s + ao(c)
Tc(s) = . : {3.8)
bn(c)s + ...+ s + ...+ b](c)s + b (c)
0
such that as ¢ - .
aj(c) > X5 bj(c) » Y5 = 0,1,...,n (3.9)

It follows that 1im T (s) = Tx(s) for all but finitely many s,

Co
where the 1imit is a priori over the subsequence. In turn this

says that 1lim Tc(s) = Tx(s) for all but finitely many s “of

C oo
the infinitely many s for which 1lim Tc(s) was assumed to

exist.

This holds for all 1imit points of {w(c)}, hence if x' is
a second limit point of {y(c)} then Tx(s) = TX.(S) for
infinitely many s so that Tx(s) = Tx.(s) if both x,x' are
limit points of {y(c)}, ard this in turn says that lim Tc(s)=

C—co
Tx(s) for all but finitely many s, where now we are dealing

with the original sequence {TC(S)}. This concludes the proof
of the proposition (except for the last statement between
trackets which is easy because by the above the convergence
Tc(s) - Tx(s) really means that the coefficients, suitably nor-
malized, converge).

3.10. COROLLARY. (of the proof) rIet Tc(s) - 7(s) as ¢ 2w

-1

ad tet T (s} = o (s)7'p (s}, T(s) = q(s)"Tpls) with no common
nl

factors. Suppose that degree pc(s) < for ail c¢. Then
degree p(s) < n'.

This follows immediately because (using the notations of the
proof) after a suitable normalization and for ¢ 1large enough
the coefficients of pc(s) converce to the coefficients of
px(s) where px(s) is the numerator c7 (3.7), and because
q(s)Tp(s) = T(s) = Tx(s) = qx(s)_‘px(s) where qx(s) is the

)
denominator of (3.7). So degree px(s) < Zearee pc(s) for 211
(

larage enough c. (Of course px(s) and qy(s} nay have commo.
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factors so that degree p(s) may be smaller than
lhn inf(degree(pc(s)))).
[ 2o

4. ON THE DZIGRES OF RATIONAL MATRICES. Recall that the
MacMillan degree §&{(T) of a matrix of rational functions T(s)
can ve defined in a variety of ways ([Ka], [AV, section 3.6],
[Ros, section 3.4]). First let T(s) be proper, i.e.
lim T{s) exists, then &(T) = vw(T), which is by definition the

S

minimal dimension of a rea'ization (F,G,H,d) of T(s). If
T(s) s not proper write

2 r
( =
T{s) =T (s) + Tys + Tps™ + ... + T s, (1)

V(s) = T.s ' + ...+ Trs'r
where T (s) s the proper part of T(s). Then V(s) 1is also
proger {in fact strictly proper, meaning that lim VY(s) = 0) and

. S—» oo
we define

3(T) = v(T) + v(v) . (4.2)

This definition shows that if T(s) = T_(s) + T,(s), where
T (s) s proper and T,(s) is polynomial then

&(T) = 8(7,) + 8(T)) . (4.3)

(It docs not matter how the "constant part” of T(s) is split
up between T_ and T,). '

Another way to obtain &(T) goes as follows (cf. [Kall).
Let T(s) bea pxm matrix of rational functions. For each
mxp matrix bf constants K write

det(I_ + Ki(s)) = by(s) a,(s) (4.4)

where I~ is the mxm identity matrix and aK(s), bK(s) are
polynomials without common factors. Let

éK(T) = degree(aK(s)) (4.5)

Then one has the proposition (cf. [Xal])
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8(T) = max 8, (T) (4.6)
K

We shall need a few elementary properties of &(T). If A
and B are matrices of ccnstants such that AT(s)B 1is defined
then (cf. [AV, (3.6.6)]

8(ATB) < &(T) (4.7)

(which is also immediately obvious from definition 4.2).
Now let T'(s) be obtained from T(s) by augmenting T(s)
with some rows and columns of constants. Then

8(T') = &(T) (4.8)

This is seen as follows. Let T(s) and V(s) be as in (3.1)
and let T'(s) and V'(s) be the analogous matrices for T'(s).
Then if (F,G,H,J) realizes T (s) a realization for T'(s) s
obtained by adding some zero columns to G, scme zero rows to
H and by augmenting J with the same rows and columns of con-
stants as were used to obtain T'(s) from T(s). Similarly a
realization (F],G],H],J]) for V(s) can be changed in a reali-
zation of the same dimension [or V'(s) by augmenting G] with
zero columns, H] with zero rows and J] vith both zero rows
and zero columns. This shows that &(T') < 6(T). The opposite
inequality follows from (4.7) because T(s) 1is a submatrix of
T'(s).

A third result we nead is: Let T(s) be squire such that
det(T(s)) # 0. Then (cf. e.g. [Rose, theorem 7.2, p. 125)]

§(171) = o(T) - (4.9)
As an application of (4.8) and (4.9) we show (using a few
tricks which will also be useful further on).
4.10 LEMMA. Let T(s) be a matrix of polynomials. Then

8(T) = max {degree(det(H(s))? {(4.71)
M(s)

where M(s) runs through all square submatrices of T(s).
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Proof. Define &'(T) as being equal to the right hand side
of (4.11). Then we have to prove that &(T) = 8'(T). Then the
analogues cf (4.7) end (4.8) also hold for &', i.e.

3'(ATB) < &'{T), &'(T') = &'(T) (4.12)

To sec this recall tnaf a minor of & product of matrices is a sum
of products of minors {of the same size) of the factors (cf. e.q.
[Ros1], Thm. 1.3, p. 5) and that a minor of a matrix T' ob-
taired by adding a row of constants or column of constants to T
is either a miror of T or a sum of minors (of one size smaller)
of T with constant coefficients. This proves (4.12).

It follows that if A and B are invertible then &' (ATB) =
8'(T). So by taking A and B to be suitable permutation
matrices we can assume that T 1is ~f the form

with deg(det(T,)) = 6'(T). Let the dimensions of Tyys Tyys
Toys Typ be respectively rxr, rx(m-r), (p-r)xr,
(p-r) x{(m-r). Llet T'(s) be the matrix

Typ i O
1] =
T'ls) T21 T22 I
0 I' 0

where I is the {p-r)x{p-r) unit matrix and I' the
(m-r) x (m-r) unit matrix. Then by (4.12)

8 (T') = 6'(T) (4.13)
Also det(T') = det(T]]) so that degree det(T') = degree(M)

for all minors M of T'. It follows that T'(s)'1 is proper
so that

ST (T = w(T'(s)™H (4.14)
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At this stage we need one more property of the degree function
which is essentially proved in [Ros1], cf. Thm. 4.3 on p. 115,
cf. also [MH, section 2]. Viz.

4.15. LEMMA. Let T(s) be @ pxm proper matriz of
rational functions. Then there are polynomial matrices N(s),
D(s), of sizes pxm, mxm such that

(i) T(s) = N(s)D(s)™]

(i1) N(s) and D(s) are right coprime, which means that
there are polynomial matrices X(s), Y(s) suck that
X(s)N(s) + Y(s)D(s) = I

Moreover N(s) and D(s) are wiique up to a common wnimodu-
lar right factor and v(T(s)) = deg(det D(s)).

(The last statement of the lemma is more usually stated for
strictly proper T(s), i.e., matrices of rational functions
T(s) such that 1im T(s) = 0; the slight extension is immedi-

ate; indeed if T?;;O is proper and T(s) = J + T(s), with T(s)
strictly proper, T(s) = N(S)D(S)—]. Then T(s) = N(s)D(s)']
with N(s) = JD(s) + d(s), D(s) = D(s), and if X(s)N(s) + .
“Y(s)B(s) = Im’ then X(s)N(s) + Y(s)D(s) = Im’ with X(s) =
X(s), Y(s) = ¥(s) - %(s)J.)

Continuing with the proof of lemma 4.10. Applying lemma 4.15

to T'(s) we find
W(T'12)71) = denree(det(T'5))) (4.16)
So combining (4.8), (4.9), (4.12)-(4.14), (4.15) we have

[

(1) = s((T)7H) = v
degree(det(T')) = degree(det(T11))
= §'(T)

8(7)

which concludes the proof of lemma 4.10.
4.17. THEOREM. (upper continuity of &(T)). ILet Tc(s)
be a sequence of matrices of rational furnctions of s. Suprose

that the sequéwce converges to matrixz of ratiomal funetions
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T(s) as ¢ » o od suppose that 6(TC(S)) <n  for all large
enctich ¢, Then 8(T) = n.

Here a senuence of matrices of rational functions is said to
converge iff the sequences of entries converge in the sense of
section 3 above; i.e. Tc(s) converges as c -« iff 1im Tc(s)

Csoo

exists for infinitely many s and then the limit is necessarily

3 atrix of rational functions T(s) and 1im T_(s) = T(s) for
C=>o ¢
a1l but finitely many <.

The proof of the theorem is easy. We have for each mxn

matrix of constants K that
llZLdEt(I"’+ KTc(s)) = det(In]+ KT(s))

‘ience using proposition 3.1 (which among other things contains
the scalar case cof theorem (4.16)), or rather using corollary
3.10, and using the second definition of the degree of a rational
matrix discussed above (cf. (4.4)-(4.6), we have for large enough
¢ (which may depend on K)

GK(T) = degree(aK(s)) < degfee(aK’c(s)) = ﬁK(TC) <n

whare
a,(s) ( ay C(S)
B—K—(a‘ = det\Im+KT(S)), B—;{-—Cm = det(Im+KTc(S))

(without common factors). It follows that &(T) = max{GK(T)} <n.
K
It is now not difficult to prove Theorem 2.23 without the

extra requirement that the poles of Lc(s) unequal to the finite
poles of L(s) go to -= as ¢ - . Indeed the upper semicon-
tinuity property of theorem 4.17 takes care of the "if" part. So
let L(s) be of degree n. Write L(s) = A(s) + T(s), where
T(s) is proper and A(s) is polynomial. Then &(L) = §(T) +

6(A). So if A(s) = 1im T_(s), with T (s) proper and
oo I n
G(Tn(s)) < §(A(s)) we will be done.
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4.18. PROPOSITION. 1Iet A(s) be a polynomial matrix of
degree &. Then there exist a sequence of proper rational

matrices Tn(s) of degree < & such that lim Tn(s) = A(s).
N—oc
Proof. By multiplying A(s) on the left and on the right

with suitable invertible matrices we can assume that A 1is of
the form

with deg(det(A]])) = §. As above let

Ay A 9
A=Ay Ay
o I o0

Then & = 6¢(A') = degree det(A'). Now let

T (s) = nA'(n1+A')"]
(Note that (nI-PA'(s))—] exists if we assume, as we can, that

& > 0). Then clearly for a fixed s, lim Ta(s) = A'(s). We
N0
claim that T%(s) is proper for all but finitely many n.

Indeed for a fixed n
T = Al AT = At (AT (e T e )T
- I B .19
= ((A") 1, n ]I) 1 ) (4.19)
=1 .
Now because &{A') = deg(det(A’')) we know that (A') is
proper. let J = lim (A')—1. Then if -~V is not an eigen-

[
value of J it follows from (4.19) that 1lim Tﬁ(s) exists,

S>>
proving that Té(s) is proper for all but finitely many n.
“inally, by lemma (4.1%), if Th(s) is proper,
v(T,(s)) < deg(det(nI +A*'))} {4.20)

Nov det(nI+A') is a polynomieal in s whose coefficients arz



178 MICHIEL HAZEWINKE

sumc of minors of A'. Hence degldet(ni+A')) < max deg(M) =
8{A') = & where M runs through the minors of A'.

Now let Tn{s) be obtai.ed from Té(s) by removing the appro-
priate columns and rows. ‘nen Tlim Tn(s) = A(s), Tn(s) is

N->co

orcper if Té(s) is proper and 5(Tn) < 5(T6) proving proposi-
ticn 4.18.

5. PROOF QF THE MAIN THEOREM.
5.1. First Half of the Proof of Theorem 2.22. Let z(c) =t

be a family of systems of dimension n and suppose they converge

in input/output behavicur. This means (cf. 2.10) that for every
u € U the <equence of functions

(v )u)«: y (5.2)

z(c

converges. In turnm this means (as in the proof of lemma 2.6)
that there is a b such that for all sufficiently large ¢

Vy(e)u € Jré")(np) (5.3)
If z¢ ;?éo)(Rp), then sgpﬂe'btz(t)ﬂ < e s0 that

f ?Ie-(b+"t2(t)§|dt< o

o}
which implies (cf. [Doe] or [Zem]) that z(t) is Lanlace irans-
formable and that (£z)(s) 1is defined for Rels) > b+1.

Applying this to the Vz’c)u we see that their Laplace trans-
AN
forms are well defined for s > b+1. This gives us a sequence
of functions
YC(s) = Tc(s)U(s) (5.4)

where Yc(s) is the Laplace transform of VZ(c)u’ Tc(s) is the
transfer function of I(c) and U(s) is the Laplace transform
of u(t).

The Laplace transform £ s continuous when considered as an
operator on the normed space 375+1(Rp) consisting of all
Tocally integrable functions such that
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fwife'(bﬂ)tz(t)ﬂdt < o (5.5)
0
equipped with the norm defined by the integral (5.5), cf. [Doe,
Kap. III, §8]. As 3Fé°)(Rp) c 3‘b+](Rp) is a continuous embed-
ding it follows that the sequence (5.4) converges for Re(s) =
b+1 as ¢ -» «. Choosing various u € U judiciously this im-
plies that the family of rational matrix functions Tc(s) con-
verges for infintiely many values of s. According to section 4
above this means that there is a rational matrix function T(s)
such that
1im T (s) = T(s) (5.6)
e ©
and moreover &(T) < n by the upper semicontinuity theorem 4.17.
Write
T(s) = T'(s) +1's) {5.7)

where T'(s) is proper and where L(s) is polynomial. Llet =
be & co and cr realization of T'(s). Consider the operator

V= VZ + L(D) (5.8)

Applying this operator to a u € U and taking the Laplace trans-
form of the result (which can be done because Yu € @ and all
functions in - are Laplace transformable) we find (for Re(s)
>b'+1, for so.ue b' = b)

(£vu)(s) = T'(s)U(s) + L(s)U(s) = iim TC(S)U(S)
C+oco
= lim Yc(s) = (£(im yc))(s)

Cr C-oo

where Yo © VT(C)u, and where we have again used the same con-
tinuity property of the Laplace transform. The Laplace transform
begin injective on the ,pace cf functions under considerztion it
follows that
= o / f
Vu = 1im \Z(cf

Croo
for all u € U. Thus the limit operator is indeed of the form
V= VZ + L(d) with dim{z) + degree L(s} = ¢{(T)< n, which
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finishes the proof of the first half of theorem 2.22.
To prove the second half we need some lemmas. If A is any

matrix we use the fclliowing notation for its variocus mirors:
il""’ir

Spaeeesd

A
r

denotes the determinant of the submatrix of A obtained by re-
moving all rows except those with the indices i],...,ir and ali
columns except tnose with the indices j]""’jr' Recall that

the minors cf a product matrix are given by

(ag) VT o A
o

5.10. LEMMA. Let L(s) be a polynomial matriz of size
pxm. JSwrose that for a certain 1 £ r < min(p,m)
| S VAR %
deg L(s) > deg L(s) s, d=r+l,...,p (5.71)
1,...,r T,...,7
Then there eoxists an invertible pxp matrix of constants A
suchk thet

],...,Y‘ 2:--~3r9.j
deg (AL(s)) > deg (AL(s)) L, i=r+l,..,p

Tsere,r 1,007
(5.12)

Proof. Let Ej(c) =E, j€{r+1,...,p} be the matrix with
1's on the diagonal, a ¢ in spot (j,1) and zero's elsewhere.
Then as is easily checked

. . . N - A
Tyeeust ={1 i {1,001 = (0,00
r

E

i],...,i i} ¢ cherwise

and for k # j, k€ {r+1,...,p}

2,...,1r,5k {1 if {i],...,ir} = {2,...,r,k}

0 otherwise
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r . . Sa
(-1)'¢ if (i1 = {0, ur)

E s 1 i (3,00} = {2,...,n,8)
0 otherwise

It now follows from the minor product rule (5.6) that

C 1,...,r
L if k=1
' 1,...,r
2y...,r,k 25...,r,k
(EL) =4L if ke {r+1,. .. ,pN\{j}

Teeiayr Tyea,r

2,...,1,] r T,...,r

L + (-1)'¢c L if k=3
L 1,...,r 1,...,r

It follows that (5.12) holds if we take for A a suitable pro-
duct of matrices Ej(c).

5.13. LEMMA. L2t L(s) bBe a poiynomial pxm matrix with-
out constant terms of degree n. Suppose that for a certain r

all minors of size < r huve degree < n and that

T,...,r 2,...,1,]
deg(L ) = n > deg(L Yo d=r+l,0.,p (5.14)
1,...,r 1,...,r
Vet d(s) be the diagonal matrix with diagonal entries
(s,0,....1) wnd Zet L'(s) = d(s)7'L(s). Then L'(s) <s poly-
nomial (because the first row of L(s) has no constant terms)
and deg(L'(s)) = n-1.

Proof. Because deg{d(s)) =1 and deg L(s) < deg(d(s)) +
deg(L'(s)) we must have deg(L'(s)) = n-1. It remains to show
that deg(L'(s)) < n-1. Let [(s) be the square matrix
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where

where l.” is the top-left rxr submatrix of L, and where
the I's are the appropriate unit matrices. Then

deg(L) = deg(L) = deg(det(L”) = deq(det(L)) = n (5.15)

which implies that T !

-1

is proper. We claim that the first
column of L consists of strictly proper rational functicns.

Indeed the entries ¢f the first column are the functions

det(f)']f}, j=1,....mtp-r (5.16)

Now, if §=1,...,r, ' s the determinant of a  (r-1) x (r-1)
submatrix of Ly, and_?])enCe deg(fé) < n by hypothesis. If
J=r+l,...,m then Lj =0 and finally if j =m + k,
k=1,...,p-r then
2,...,r,r+k
L. =1L s j=m+k
J Tye..,r

which by hypothesis is of degree < n = deg(det(i_)'1. This
proves the claim.

Mow let d'(s) be the (m+p-r) x (m+p-r) diagonal matrix
with entries (s,1,...,1), and let L' = d'(s)-lf. Then L' s
the pxm top la2ft submatrix of L' and hence

degree(L') < degree(L') (5.17)

On the other hand (f’):l = (f)dd'(s) is still proper because
the first column of T_“] consists of strictly proper rational
functions. Hence {cf. lemma 4.15)

deg((T')™ ") < deg(det(T"))
deg(det(d' (s))~Tdet(D)) (5.18)
deg(s']det(!_”)) =n-1

"

deg(L")

"



DEGENERATION PHENOMENA 183

because Ly, has no constants. Combining {5.18) and (5.17) we
see that indeed deg{L')} < n-1, proving the lemma. (NB it is
not true as a rule that (L')”" is proper.)

Note that lemma 5.13 and 5.10 combine tc give a proof of
corollary 2.24.

5.19. PROPOSITION. <Let L(s) be a polynomial matriz of
degree nN. Then there exists a family of n-dimensional systeme
£(c) such that t(c) comverges in input/ovtput behaviowr to
L(D) : % » @& as ¢ - and such that moreover tke pcles of
(the transfer functions of) the I(c) all go tc ~= as C =,

Proof. This is proved by induction, the case n = 0 being
trivial because L(s) bhas degree zero iff it is a matrix of con-
stants. The first thing to do next is to obtain the scalar oper-
ator D: #R) » FM) as a limit of input/output operators of
one dimensional systems. To this end let :fc), ¢ =1,2,... (or
c €R) be the family of systems

~ v -
Z(C) (rC’GC,HC,JC), v C,

(5.20)

Fc = -c, Hc = C, GC = -C

The associated input/output operator of £(c) is Vc: FMR) -
F(R)

t
Vo ult) by (1) = cult) *]0 2ot e (5213

By partial integration (twice) we see that

t

y (1) = u M (1) f e (1), (2) 1y ge (5.22)

¢ 0
Let b be such that u(2)€ JFEO)(R) (i.e. sup e'btlu(z)(t)[ <e).
t

Then if M= ﬂu(z)ﬂb, we have
lfte’c(t’T)u(z)(T)dﬂ < fte‘C(t“?)ebTM < (brc) Tmebt
o]

© (5.23)
and it follows that the yc(t) converge to u(])(t) in #R).
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More precicely if b is such u(l), u(Z) are both in aﬁéo)(R)
then yc(t) € a?éo)ﬂi) and to.e yc(t) converge to u(1)(t) in
Ao m).

Now suppose with induction that the propcsition has been
proved for all polynomial matrices of degree < n-1.

Ltet L(s) be a polynomial matrix of degree n. First note
that if P,Q are invertible matrices cf constants then L(D) is
the 1imit of a family as in the statement of the theorem if and
only if PL(D)Q is. Also adding a matrix of constants makes no
difference. Removing the constants and multiplying L(s) on the
left and on the right with suitable invertible matrices of con-
stants we can therefore assume that for a certain minimal r €N
the top left rxr minor of L(s) 1is of degyree n. lUsing
lemma 5.70 and lemma 5.13 we see that after a further multiplica-
ticn on the left L, an invertible matrix of constants L(s) fac-

torizes as
S 0

Uy = Lo v
CIE

with L'(s) polynomial of degree n-1. By induction we have
that there exists a family of (n-1)-dimensional systems £I'(c) =
(Fé,Gé,Hé,Jé) such that the poles of I'(c) go to - as
c»e (if n-1>0, if n=1,L'(s) 1s constant and one takes
£'(c) = (0,0,0,L')) and such that VZ'(c) converges in input/
output behaviour to L'(s).

Mow let Z(c) be the composed system

e _+_[Z'(c) L, (5.24)

where £'(c) is the m input/m output one dimensicnal system
given by the matrices
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FC = -C, Gg = (-C309'--50)s

c c 0 ... 0

" 1. :
HC - E > JC= . 0
0 0 " 0 1

I.e. if z'(c) = (Fc’Gc’Hc’Jc) tnen z(c) 1is given by the
FRoo0 6

GCHC Fc ché
(5.25)
e = (Jch Hc) e T e

(if n>1; ifn=1, Fc = -C, GC = (-c,0,...,0), Hc =
L'H;, Jc = L‘HE). Then the £(c) converge in input/output
behaviour to L(D). Moreover (as follows from {5.25)) the poles
of 7(c) goto —= as c-oe if n>1. This proves the
propositicn.

We can be somewhat more precise about how well the ={c) con-
verge in input/output beh>'riour to L(D). indeed one has

5.26. COROLLARY. rLet L(D) and (z(c))C be as cbove in *he
proof of proposition 5.19. ILet b 2 0 be suchn that

1 (n+1) (0) oM , . : i}
u,ut '/, ... ,uU € Fy (R"). Then there is a constant M such

that

1, bt

“Vx(c)“ - L{D)ull < ¢ "Me (5.27)

In particular if u € % 1is of compact suvport or, more gerer-
ally #f U,u ]),...,u(n+]) are all bounded, we can take b =0

and for such input functions u, V
t to L(D)u.

u converges wiifermly ir
z(c) qes ! Y

This follows readily by induction from the proof of proposi-

tion 5.19 above, (5.22), and the estimate (5.23), becauce L'(D)u

. . . 1 n-1
is a veclor of linear corbinetion cf the v,u( ),...,u( ).
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5.28. Proof of the Second Half of Theorem 2.22. Now let
Y :q/ - be an operator of the form V = L(D} + VZ with
dim(z) + deg(L(s)) < n. Let z{c) be a sequence of deg{L(s))-

dimersional systems converging to L(0) in input/output behav-

jour as in proposition 5.19. Then if Zz'(c) 1is the sum system
of Ii{z) and £, the family I'(c) converges in input/output
behaviour to V. More precisely if I = (F,G,H,3), £(c) =
(FC,GC,HC,JC) then £'{c) 1is given by the matrices

r 0 fc)
Fi = » G = s Ho=(H H), 90 =3+
0 F 6.

8ecause the co and cr systems are open and dense in L we can
perturb each £'(c) slightly toa £"(c) which is co,cr such
that £"(c) still converges to V n input/output behaviour as
¢ » o, and such that the behaviour of the poles of the I"“(c)
as ¢ - o is Tike that of the £'(c) as ¢ = . This finishes

the proof of theorem 2.22.

5.29. REMARK. One has of course in the setting of 5.28 above
also an estimate like (5.27) for HVZ.(C)U - Vul.

5.30. REMARK. If z(c) 1is e.g. the family of (5.20) above,
the Harkov parameters of the family JC,HCGC,HCFCGC,HCFieC,...
definitely do not converge as ¢ —- <.

One can, of course, examine what the possible limits are of
families of systems £(c) of dimension n which converge in
input/output operaters and such that moreover the Markov param-
eters converge as well (or more generally such that the Markov
parameters remain bounded) as ¢ - . The answer is simple: the
1imit operator is then necessarily of the form VZ where I s
a possibly Tower dimensional system. Inversely every Vz with
dim(f) < n can arise a limit of input/output cperators of co
and cr systems of dimension n, cf. [Haz 2].

5.31. Approximation by systems with J = 0. Llet T(s) be a
matrix of rational functions. Write

T(s) = T_(s) + L(s) (5.32)
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with T_(s) strictly proper and L{s) polynomial. Define

nr(T) = dim of the R-vectorspace spanned by
the rows of L(s)

n.(T) = dim of the R-vectorspace sparned by (5.33)
the columns of L(s)

q(T) = min {n (1), n (1)} .

E.g. if T(s)

s s 53
L(s) = [] ] ], then nr(T) =2, niT) =3

s c
2 &2
and if T(s) = L(s) = , nr(T) =2, n(T)=1. let I
s s ¢

realize T (s). Then the operator Vot L(D) is the limit in
input/cutput behaviour of a family of (deg(T(s)) + q(T(s)) -
dimensional systems.

This can be seen as follows. Because T _(s) 1is strictly
proper it suffices to see that L{D) can be obtained as the
limit of the input/output operators of a family of deg(L(s)) +
q{L(s)) dimensional systems. Assume for definitiveness that
g(T) = nc(T). Then we can factorize L(s) as

L(s) = (L'{s) 0)Q

where Q 1is a square invertible matrix of constants and L'(s;
has q(T) columns. It now clearly suffices to obtain L'(D) as
a limit of deg(L) + q(L) dimensional systems. To this end let
7(c) be a family of systems converging to L{D) of dimension
deg(L) and let t£'(c) be a q = q(L)-dimensional family of sys-
tems with JC =0 for all ¢ with 1imit input/output operator
equal to I, the qxq ddentity matrix. Such a femily is e.g.
given by the matrices

-¢c 0 1 0 c 0

-
1]
-
[}
0]
-
ho o4
"
v
<
t
o

0 -c¢ \.0 1 0 C

Let Té(s) be the trancfer function matrix of Z'{c) and Tc(s)
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that of £(c). Then the (q+deg(L))-dimensional system £"(c)
obtained by applying first :'(c) and then =£(c) has transfer
function matrix Tc(s)Té(s), which is strictly proper, and the
£"(c) converge in input/output behaviour to L'(s).

This result is optimal if p=1 or m=1, but, though
definitely generically best possible (meaning that for almost all
T(s) with given q(t) = q, deg(T) + q is the best one can do),
it is not best possible for every particrlar T(s). E.g. the
factorization

(s $3 s 0)(1 0)s §2

L(s) =
{s s o 1juir o Yylo o

shows that this L{s} can be obtained as the input/output limit
of a family of fcur dimensional systems with J = 0, although
deg{L) = 3 and q(L) = 2.
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