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ON FAMILIES OF LINEAR SYSTEMS: DEGENERATION PHENOMENA 

Michiel Hazewinkel 

ABSTRACT. In this paper we study families of 
linear dynamical systems x = Fx +Gu, y = 
Hx +Ju, where the matrices F,G,H,J depend 
on a parameter c. Let Ve be the associated 
input/output operator. Then this paper contains 
results about what operators can arise as limits 
of the Ve as c ~ oo, 

1. INTRODUCTION. This paper is concerned with an aspect of 
the theory of far.n'. Zies of 1 i near dynami ea l sys terns rather than 
single systems, viz. degeneiation p;1t=nomena. As such it is part 
of a general program (briefly discu~~ed in [Haz 3]) which con
sists of trying to carry throu9h for families of systems (and 
hence systems o~er rings) all the nice results and constructions 
which one has for single systems over fields (or findir.g out how 
and why these results and constructions break Guwn in this more 
general setting). This in~ludes a systematic investigation of 
which constructions are continuous in the system parameters; 
th~t is, which constructions and calculations are stable (~ore 
or less) with respect to s~all perturbations or errors in the 
system parameters, a tcpic which obviously deserves at least 
some atter;tior. in a world foll of uncertair. measurements. And, 
in turn, this topic includes try~ng to find out what may happen 
to systems dnd associated objec~s whe~ cert!in parameters go to 
zero (or infinity, or ... ), which is the topic of this paper. 

Still more motivation for studying famil~es rather than single 
systems can be found i ri [Ha2 3] and <;01H: rest.11 ts concerning other 

e. Arr.erican i\~.>.:hcrnai::".'al Societr 1980 
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aspects of th~ theory of families (than the degeneration phenom
ena ~iscussed belcw) can be found in [Haz 4] (fine moduli spaces, 

cont';1uous cancnical forrris) and [HP] (pointwise-local-global 
isomorphism problems). 

Here we discuss degenen. don phenc.mena. That is, suppose 
there is given a family of systems 

E{c): x = Fx +Gu, y =HY+ Ju ( l.1) 

where the matrices F, G, H, J depend on a parameter c. What 
can be Sdid about the limit as c ~ °'· For example let Ve be 
the input/output operator of E(c) 

V : u(t) .... y(t) = Jt H/,t--r)Gu(T)dT (l.2) 
c 0 

and svppose that as c ~"" the operators Ve converge (in some 
suitable sense) to some operator V. Hhat can be said about V? 
E.g. can V still be viewed as the input/output operator of 
some sort of pro~~ssing device? 

There are a nu.nber of reasons for being interested in such 
degeneration phenomena, some of which can be characterized by the 
key words or phrases: identification, high-gain feedback, almost 
F mod G invariant subspaces {and almost disturbance decoupling), 
dynamic observers {and inve~~ability). 

1.3. Identification. Suppose we have given some sort of 
input/output device which is to be modelled "as best as possible" 
by means cf a linear dynamical system (l.l) of dimension n. 
Now if S € GL (R), then a system i = {F,G,H,J) and 
S -1 n -1 · E = (SFS ,SG,HS ,J) have the same input/output operator. 

Let M be the space of orbits of this action of GL {R) on the 
n 

space L of all n-dimensional systems (with a given number of 
inputs and outputs). The best we can do on the basis of input/ 
output data alone is to identify the orbit of E (and even that 
is not true if E is not completely observable and completely 
reachable, a fact which can be expected to cause a fair amount of 
extra trouble). Thus we are trying to identify a point of M 
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and we can picture identification as finding (or guessing at) a 
sequence of points in M representing better and better identi
fications as more and more data come in. From this poi~t of view 
the question naturally arises. Does a "converging" sequence of 
points in M necessarily have a limit in M? The answer is no. 
It is perfectly possible for a sequence of linear d~1namical sys
tems {1.1) to have a limiting input/output behaviour which is not 
the input/output behaviour of any system like (l.l) as the fol

lowing example shows 

r(c): x = [-: ~:Jx + [~Ju. y = (c2,o)x (1.4) 

(one input/one output, dimensi0n 2). Let u be a smooth bounded 
function on lR with compact support in (0,oo), then if ye= Vcu 
a little partial integration shows that lim yc(t) = Jt u(t), 

C-+co d 
uniformly in t on bounded t intervals, and dt cannot pos-
sibly be the input/output operator of a sy~tem (1.1), (e.g. 
because ddt is not bounded on smooth bour1ded functions in [O, l] 
while all the VE are bounded operators). 

The presence of these "holes" is by no means the only difficulty 
in identification caused by the nontrivial topology and geometry 
of M. For some more remarks concerning this topic cf. [Haz. 2] 
(though the point of view I took there is still a good deal too 
optimistic) and also [BK]. 

1.5. High-gain Feedback. Consider a system with output feed

back loop 
x Fx +Gu, y = Hx, u·= Ly (1.6) 

What happens when L or certain entries of L go to infinity? 
For instance ~n [YKU] it is shown in the case of a large scalar 
gain factor L = g and under some additional hypothesi~ the 
syst.e~ (1.6) can be transformed into the standard singu1ar per

turbation framev1ork 

(with F -· 0 21 -

-1 
µ = g ( l. 7) 

in the casE considered in [YKU], so that there is 
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a separatio,1 of slo· .. 1 and fast modes; more precisely ther2 is a 

fast subsystem which in the setti"; of [YKU] is asymptotically 

stable (if µ is small en0ugh) fe...:ding into a slow system). Of 

course setting µ = 0 in (1:1) yields little information about 

(1.7) for small µ and the idea is rather to study (1.7) and 

(1.6) as perturbations of the limit behaviour as µ goes to zero 

or various coefficients of L go to infinity. In the setting 

of [YKU] the limit input/output operator is the zero operator, 

but in general this need not be the case, and one may hope that 

on the basis of some knowledge about what limit operators can 

arise it will prove possible to obtain some results on the lines 

of [YKU] and related paoers in more general situations. 

For some motivation for studying (very) high-gain feedback 

cf. [YKU] and som~ of the references there;n, cf. also below in 

1.8. 

1.8. Almost F mod G ·_invariant S:.iJ2i..P.ac~and Almo2__!:_ Distu_i:

bance Deccuol~g_. An F mod G invariant subspace for x = Fx + 

Gu is a subspace V of the state space such t;,at once one is 

in it one can stay in it. As is well known (cf. [Won]) these 

subspaces "solve" the disturbance decoupling problem. An almost 

F mod G invariant subspace is or.e such that once one is in it 

one can stay arbitrarily close to it, and these spaces "solve" 

ar. almost disturbance decoupling problem, which turns out cJ be 

important especially when the disturbances (partly) come in on 

the same channels as the inputs (cf. [Wil 1, Wil 2]). 

A subspilce V of dimension r is almost F mod G invari-

ant if and only if there is for every 

K suchthat (F+GK)V isv1ithin E 
E £ 

sense), and if V is almost F mod G 

E > 0 a feedback matrix 

of V (in a suitable 

invariant but not F mod G 

invariant, K will not remain finite as E ... 0. Thus imple
£ 

menting a deroupling by means of an almost F mod G invariant 

subspace will give rise to a f3mily of systems. 

x = ( F + GK ) x + Gu + G' v, y = Hx 
£ 

where Kc: does not necessarily remain finite as £ ... 0. 

( l. 9) 
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1.10. Dynamic Observers. In [BMl], [BM2] Basile and Marro 
consider the problem of constructing observers for the state of 
a system (l.l) when the inputs are unknown. For this it is 
advantageous to have different·ial operators (cf. loc. cit) and 
these, as is suggested by the example (1.4), may be approximated 
~Y systems (1.1) (of comparable rank), thus giving us arbitrarily 
good approximate observers of the form {l.l). 

1.11. _!iore General Linear Systems? As 1ve shall see the limit 
operators as c ~ oo of the input/output operators Ve of a 
family of systems I(c) are necessarily of the form VE + L(D), 
where r is a system {l.l) {and VE its input/output operator) 
and where L(D) is a polynomial matrix {with constant coeffi
cients) in the differentiation operator D = d~ . I.e. the pos
sible limit operators are the input/outo~t operators of systems 
of the type 

x = Fx + Gu, y = Hx + J{D)u (1.12) 

where J{s) is a matrix of polynomials, arguing that this ~dder 
class of systems is in some ways a more naturol class to stl.idy 
th:~ the class of systems (1.1), cf. also [Ros 1, Ros 2]. 

2. STATEMENT OF THE THEOREMS. The first thing to do is to 
specify in what sense we shall understand the phrase "the family 
of input/output operators Le converges to the op8rator L as 
c.~." And, in turn, tnis means that we must describe the 
sp~~es of func~ions between which these operators act. 

2.1. The Spa~es Jr(o)(lRr) ?nq_ ,F0 (1{). The elements of 
§(o)(I!{) are all smooth funct~ons z: I< -.1Rr with support in 
(0,=) and of no more thar, exponential growth. Here the support 
of a function z is os usual defined as the closure of the set 
of all t € R ~1here z(t) r 0. Thus 1 :: .F(o)(lRr) iff there 
are an E > 0, an M > o. and b ~ 0 ~~eh that z(t) = 0 for 
t s e: and 

lle-btz(t)[\sM for all t (2.2j 
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(Both E and b (and of course also M) may depend on the 

function z.) This class of functions includes the smooth func

tions of slow growth with support in (O,m) (cf. [Ze, Chapter 

IV]), ,.;hich space in turn contains the subspace ;¥ (lRr) of 
0 

smooth functions with compact support in (0,c:o). 

A sequence of functions z E Jr'(o)(R2) is said to oonve2°ge to 
(o' c z c. $. / (lRr) if thi:::re is a b such that 

lirn sup h-bt(zc(t~-z(t))~ = 0 
C-+"" t 

(2. 3) 

Note that (2.3) in ar.; case implies that thP. functions zc(t) 

converge to z(t) unifomly in t on bounded t intervals. 

This defines a topology on .;;:-(o)(Rr), which is in fact the 

inductive limit top0logy defined by the inductive system of nor

mal topological vector spaces 

__ (o)(lRr' . =(o)(...,r) -(o)(lRr) b' >_ b 
.jlrb ) ' 1b,b': ,Stob L'"\ -+ ~b' ' {2.4) 

where for a given b E 'R 

with the norm II db' and where ib,b' is defined by z{t)-+ 
e(b'-b)tz(t). 

The space ,,.-(o) (Rr) tries hard to be complete in the sense 

of the follo~ing lerrma. 

2.6. LEMMA. LGt n > 0 and let zc E ~(o)(lRr) be a 

sequo?.nce of functions mth sup;JO"f't in [n ,«>) for all c. 

Suppcse tr.at thel'e is a b E lR cuoh that for an e: > 0 thel'e 

is .i c0 such that 

sup II e-bt(z (t}-z , (t) ~ < e: for all c,c' ~ c0 (2.7) 
t c c 

f . E _(o) mr) . h Then the z aonvei•ae to a un':lt-ion z .11> \"' unt sup-c ~ 

po"f't in [n ,ex>) as c -+ "" (where the oonvei•genoe is in the 

ai;nse of (2.3)J. 
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Proof. Let z(t) be the pointwise 1imit of zc(t) as 

t -~ = (which clearly exists by (2. 7)). Then supp z{t) c [n,oo) 

and zc(t) converges to z(t) uniformly on bounded t inter

vals (again by (2.7)). It follows that z(t) is smooth. Take 

c; = ~ and let c 1 be such that that (2.7) holds for this £ 

with c0 = c1• Let zc (t) E :;;;o)(Jf{). We can assume b1 ~b. 
l 1 

Then, using b1 ~ b, 

-b t -b t 
e 1 II z(t) Ii s; e 1 II z (t) ii+ e-b~I z (t)-z , (t) II c1 c1 c 

+ e-b~l zc,(t)-z(tlll 

Choosing c' dependinq on t such that '.'. zc' (t)-z(t) II < l it 

follows that z(t) E Sii';o) ORr) c @"(o) (JR1' 1 , proving the lemma. 
l 

Just what b Em is used in (2.3) is largely irrelevant. 

Firstly, if (2.3) holds for a given b then it still holds v1ith 

b replaced by b' ~b. Secondly, if (2.3) holds ana 

z E g;;?)Cf{) then zc E .'it~~)(f{) for all large enough c 

where b" = max(b,b'). The converse of this: "if 
(o) r ( ) _(o)( r) zc(l) E· #b' (J< ) for all large enough c then z t E ,;!<b" lR 

with b'' "'max(b,b')" follows as in the le1ma. Thirdly, and 

lastly, it does not really matter if one uses "too big a b" in 

(2.3). Indeed, z(t) as the pointw~se limit Gf the z (t) is 
c 

of course indeptndent of b. What (2.3) doE>s is to require a 

certain mild uniformity about the 1vay the limit is approci.ched. 

(It is, incidentally, perfectly possible for a sequence of func

tions zc(t) E .:J.t~o)(I!{) '.o converge to zei-o v1hen consicen;d as 

l t f _( 0 ) (T> r) f b I b h 0 l ' h e emen s o · .~ b, '" or > w i e not converg1 ng "'· t:n 

considered cS a sequence in $~o)(lf{); take for example zc(t) 

= 0 for t ~ c, zc(t) = ebt - ebc for t ~ c, suitably 

smoothed.) 

2 .8. The Spaces ¥(1!{}. For the purposes below the spaces 

¥(o)(1Rr) are still too big to he suitable as input spaces 

(essentially because we shall want differentiation to be a 
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continuous operator). On the other "3.nd /Jf0 ff{), while 

emi~ently suitable as an input funct:on space is not large 

enough to accor.1modate output functions. As we sha 11 need to be 

able to use the outputs of one dynamical system as the inpu~s of 

anotre:r, we need an intermediate space. A suitable one is 

{2.9) 

for all k = 0,1,2, ... } 

where z(I() denotes the k-th derivative of z. We give ~(Rr) 
the topology determined by Zc -+ z as c -+co iff z~k) -+ z(k) 

for all k = 0,1,2, ... in .:itl 0 )(lf{). Thus the family zc con

verges to z as c -+co i ff there are real numbers b0 ,b1, ... 

Suen that for all k 

-b t ( 
~~':, s~p e k 11 z/> (t) 

When dealing with systems of dimension s n 0nly, one can 
also work with ~(n)(JRr) = {z € *(o)(IR)jz(k) E ~(o)(lR), 
k = 0,. , ... ,n+l}. 

2. 10. ConvelJl_ence of Input/Output Ooera tors. Now 1 et l: "' 

(F,G,H,J) be a linear dynamical system with direct feed-tbrough 

tenn 

x = Fx + Gu, y = Hx + Ju 

x € 'Rn, y E lRP, u E "Rm 
(2.11) 

where F, G, H, J are real m~trices of the appropriate dimen·· 

sions (independent of t). Then the associated input/output 

operator is defined by 

VE : u{t) .-+ y{t) ( 2. 12) 

Let crt= .J;(lRm), 'f/J = sr{lRP). O//o = ·~o('P.m), Pl'o = §o(RP). 

Tnen VE is a continuous linear operator <W -+ f!I . Indeed if 

u E U is such that~ u~b < °" and if b' > max{ReA,0} where A 

runs through the eignevalues of F then ~ Vl:{u)~b+b' < m. 
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Thus for every b ~ 0 there is a b' ~ 0, usually necessar
ily larger than b, such that VE maps .<¥~0 )(Rm) into 
~~~)(RP), with b' depending on L Thus, when dealing with 
families of systems one is practically forced to use the unior. 
of the all the ~~o)('RP), i.e. ~(o)(IRP), and if one 1t1ould like 

differential operators to be con•~nuous one is almost obliged to 
work with .cw(RP) and Jt"\IRm). From now on we fix the dimen
sions m,n,p of the systems (2.11) which we are considering. 
Let L denote the space of a 11 systems (2. 11). I.e. L is the 
space of all real quadruples of matrices (F,G,H,J) of the 
d·imensions nxn, nxm. pxn, pxm respectively. 

We shall use Leo, Lcr, Lco,cr to denote the subspaces of 

completely observable, (abbreviated co), resp. completely reach
able (er), resp. completely rP.achable and completely observable 
systems. 

We now define 

2.13. DEFINITIOiL The ;mnily of systems L:(c) c L cor;ve1•ges 

in input/output beii:Lviour to an opeY'ato:r> V iff foY' aZZ u E: U 

the functions V L: ( c) u converge to Vu in {!; as c -> cc, 

Let supp(u) c [n,oo) (such an n necessarily exists because 
supp(u) c (O,oo) and supp(u) is clnsed by definition). Then 
supp VE(c)(u) c [n,co). It fc.~lows by lemma 2.6 that one can 
decide whether the family (!(c)) converges without mentioning 
(or knowing) the limit operator V. The family (L:(c))c con
verges in input/output behaviour iff there are for every u e: ll 

a sequence of numbers b 0 ,b1 , b2 ,. . . suer. that for every e: > 0, 

k = 0,.,2, ... there is a c(e:,k) s~ch that 

-b t k 
s~p{e k jj(okvL:(c) u)(t) - (D ·vi:(c' )u)(t)u} < e: 

if c, c' ~ c (c, k) 

d where D is the differentiati~n operator D = dt Thus 
(E( c)) converges in input./c1utput behaviour (in the sense 
(2.14) holds) then there is a w?l1-d~fined limit operator 
(This uses of course (cf. (2.14)) that ~ is a continuo~s 

(2.14) 

if 

that 
v. 
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opera tor 'W """ ·'ll). Whether this T imtt o;:iera tor V is cont i nu

ou s is unclear at thi:; stage. (It is though, as will be shown 
below in section 5). 

I'. i5. Differe11tial Operators. Let uf.t and :;y be 

Then a (matrix) differential opeartor (in this paper) 
tor of the form 

V(D): u(t) n y(t), 
m 

yj(t) = :E vji(D)ui(t) 
i=l 

as above. 

is an opera-

where v j i ( D) 

in D = d/dt. 
is a polynomial with constant real coefficients 

Every polynomial V( ~) (of size p x m) thus 

defines a con~inuous linc:r operate~ O/f -• -:y. 

2.16. The Scalar Casf. If m = l = p, i.e. if we are deal

ing with one input and one output the main theorem of this paper 

says that 

2. 17. THEOREM. Let <r(c)) be a family of one input/one 

o~dput linem' dynamical sustems (?. 11) of dir.:ension :$ n co>i

uer{Jing in inpz<t/output behaviour to the oper>ator V: 6(/ ~ f!/. 

There there exist a system E and a polynomial L(s) such that 

V = VE + L(D), where r.;or>eover dirn(l:) + degree L(s) :> n. It 

f'o/.louJS in ptu'tiaid,ai• that the Zimit upei'ator> V is continuou.s. 

Jnve!'Sdy, if v is an ope1°ator> of the for'!11 v = vf, + L(D) 

1Jhurc, L(s) is a poZynomiaZ of degree ~ n - dim(L), then 

there e.r~sts a fa!'liZy (E(c)) c L co,cr such that l:(c) con

Vr:!rges in foput/output behaviouio to V. 

In case one wants to restrict oneself to systems (2. l l) with 

J = O the theorem remains essentially the same except that the 

essential inequality dim{/.) +degree (L(s)) s n gets replaced 

by dim(E) + degree (L(s)) s n-1 (where by definition 

degree (0) = -1). This is stated and proved (more or less) in 

[Haz l ] and the proof rear' i ly adapts to a proof of the present 

theorem. In section 5 be1ow a different proof of theorem 2.17 

is given which also covers the multivariable case. 

2.18. Degree of a Matrix Polynomial (Differen~ia1 Operator). 

Obviously if E(c) is a family of systems of dimension s n 

which converges to the p x m matrix differential operator L(D) 
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then all the entries of L(s) have degi-ee ~ n {by the result 
in the scalar case). One might think that inverse1y every such 
opera'".Jr arises as a limit of systems 5 n. This, however. is 
not the case as the example. 

l( D) = [: :J (2.19) 

shows. One shows readily by explicit calculation that the opera

tor (2.19) cannot arise as a limit of one-dimensional systems. 
A more sensitive definition of "degree" is needed. 

2.19. DEFINITION. Let L(s) be a matrix poZ.ynomfol. 'J'}:en 

we define 

deg l{s) = max (degree(M)) 
m 

(2.20) 

whePe M runs over all the minors of L. This agrees ir~th the 

MacM1'.Z.Zan degne of a polynomial mati'ix, (lemma 4.10, or cf. 

[AV], section 3.6. p;'operties 5 arid 10). 

?.21. The Multivariahle Case. In the case of rnore inputs 
mOI c: outpi.;+s the main thecrem now is precisely analogous to 
theorem 2.17. I .e. 

2.22. THEOREM. Let I(c) be a family of n dimensional 

systems iJith m intputs o:nd p outpids. Suppose that Z(c) 

'!onve1'ges in input/outrut beh.wiour to the operator V: ·W -> '&' 

·,s c _,. ""· Then the1'e e;.,--iDt a system I and a p x m matL'i.x 

polynomial L(s) such that V = VE + L(D) (so that V is ::on

tinuous) and mor>eove1' dim(I) + 0c:gree L(s) ~ ri. Tnversely i..f 

V is an O['eratol' of the fcrm Vi: + L(D) with dim(l:) + 

degree. L( s) ::; n, then the;'e exists a fcmily of car:pleteZy 

observable and completely reachable systems I(c) of dimension 

~ n which ccm:Jerges ·in input/output behaviour to V as c -> ""'· 

The proof of the first half of the theorem uses the continuity 
(in this case) of the Laplace transform and the upper semi~on

tinuity of the MacMillan degree (tneorem 4.16) ar,d thus gives us 

(t.JL' ides "'- m1a 4.10) yr.t another characterization of the Mac

Millan degree of a matrix of ratic~al functions. 
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2.23. THEOREM. !,et L(s) be a rr.~trix of rational fwicti.ons. 

L(s) ijf -;;.hare e:.cists a 

serI'.1.ence Le ( s) o/ prcTer l'ational function matr1'.ces af degree 

n such that Le ( s) converges to L ( s) for c .... co pointwise in 

s ~fer infir:-!.teZy r:any values of s. l1o:reover one can see to it 

that the poles of L~(s) fall into two sets one equaZ (together 

1.Jith rnuZtipiicities)~to the set of poles 1 =of L(s) ~hile 
remaining poles of lc(s) alZ go to -oo as c ->co. 

It is not true, however, that one can always obtain l(s) as 

a limit of the L (s) in the sense of the mappings on the Rie
c 

m~nn sphere that these matrices of rational functions define. 

This in fact only happens when l(s) is itself proper. 

To prove Theorem 2.23 without the extra requirement thdt the 

re"!aining poles of L (s) go to -= as c goes to co is quite 
c 

e~;y (Prop0sition 4.18). The extra requirement complicates 

things considerably and I know of no direct proof except for cer

t.a in special, albeit generic, cases. (Like "the matrix of coef

ficients of maximctl powers of s in each row is of maximal 

rJnk"). Another corrollary of the proof of the second half of 

Theorem 2.22 is 

2.24. COROLLf,RY. Let L(s) be a polynomial matrix of S?'.ze 

p '-< m. ·Then L(s) has degree S n i.f and only if it can be 

oVtai;:.Jd from the zero mat2'ix by means of the operations. 

( i) addition of a .'71atrix of constants 

(ii) 1i;u3cii1Zication on the left by a nonsinguZar polynomial 

p x p matrix of degree 

(iii) multiplicction on the l'ight by a nonsingutar m x m 

matrix of constants 

uJhere one uses at most n times an operation of type (ii). 

There is of course an analogous statement 1-1ith right instead 

of left in (ii) and left instead of right in (iii), and also an 

anulogous statement where in both (ii) and (iii) mu1tiplications 

on both sides are allowed. 
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3. ON LIMITS OF RATIONAL FUNCTIONS. The degree of a raticnal 

function T(s) = q(s)- 1p(s), p(s), q(s) E k[s] with no common 

factors is equal to 6(T) = max~(p),6(q)) where the degree of 

~ pc:ynomial is defined as usual. We shall need th~ following 

intuitively obvious fact. 

3.1. PROPOSITION. Let Tc(s) be a sequence of rational 

functions of degree :Sn. Suppose that lim \(s) exists (rrr.d 
C-+CO 

is fir.ite) foi' infinitely rr:a:n.y s. Then thei'e exists a r>ational 

fwwhon T(s) of degree ::; n such that lim Tc(s) = T(s) for 
C-+= 

all. but finitely many s (a:nd if the T (s) and T(s} al"e 
1 c 

iilterpr>etcd as functions It -+ 1? ( (t) trzen Tc ( s) converges to 

T(s) in the compact open topoloqy). 

Prod. Write 

T ( s) 
c 

p (s) a (c)sn+a 1(c)sn-l+ ... +a 1(c)s+a (c) 
c _ n n- o 

CC\ST - ---(·-n-· ( ) n=l ( ) 
c b c) s + b l c s + •.. + bl ( c h ~ b c n n- o 

(3.2) 

and associate to Tc(s) the point ~(c) E v2"+1(a:) with the 

homogeneous coordi1~ates (an, ... ,a0 ,bn, ... ,b0 ). Note that this 

is well defined because the coefficients of pc(s) and qc(s) 

are we 11 defined up to a common sea 1 ar factor. (This mao is not 

cor~iiiuous if the space of all rational functions of degree ::; n 

is ~iven the c~~pact open topology of mnps a ~lP 1 (1t); but it 

is corninuous on the open subspc:ce of function of degree 

on the subspaces of functions of fixed degree i). 

n, rnd 

Let Mc: i:i 2n-rl (U:) be t11e subspoce of all points 
) 2n + l ( ) , 

I ,xn, ... ,xo' 

y ,. .. ,y E "P [ such that ac l~ast one y. 
n o 2n+ 1 . l 

zero. Because 1P · ~ [) is cGmp2ct tre sEquence 

is unequal to 

{ 1Ji ( c) } i1a s 

limit points. 

3. :l LEMMA. 

c.Zl Umit poh~ts cf· the scq:,ence {~1( c)} aN i;i M. 

Proof. Suppose t~at lim Tc(s) = ~(s) c f, and sup~~se th~t 

. . . .. c~cr. h1l , 
{(,.·)} has a 11m;t POlnc in lP (ll) \M. LE~t this limit r,oint 
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be x = (an, ... ,ai+l'1,0, ... ,0). Taking a subsequence we can 

assume that {~{c)} converges to x. For large enough c we 

then have a.(c) I 0 and multiplying both p (s) and a (s) 
l c ·c 

1·1ith il;(c)-1 we can assume that ai(c) = l for all c .. We 
then have for all c 

a ''")s" + n, -

with 

= Tc(s)(b (c)s0 + ... + b (c)) 
n o 

lim b.(c) = 0, j = O, ... ,n 
C->oo J 

lim a.(c) = 0, j = 0, ... ,i-1 
C·>G? J 

lim a.(c) = a3., j = i+l, ... ,n 
C"'7co J 

Taking the limit as C->«> in (3.4) and using the relations 

(3.5) one finds because Jim T (s) = T(s) ! «> 

C-+CO c 

(3.4) 

( 3. 5) 

{3.6) 

and there are only finitely many s for which this can hold. 

Thus there can be no limit points of {iµ(c)} in 1P2n+\M if 

lim Tc(s) exists (and is finite) for infinitely many s. 
C-+oo 

The proof uf proposition now continues as follows. let 

x E MclP2n+l(tt), x = (x , ... ,x ,y , .•. ,y ). Because at least 
n o n o 

one of the yi I 0 the expression 

X Sn + + Xl S + x0 
T ( s) = -'"~-----'---=-
x y,sn+ +yls+yo 

is well-defined for all but finitely many s. Now let x € M 

be a limit point of {;p(c) }. Let i be the lar')est index such 

that y. I 0. Multiplying all coordinates with yi1 if neces-
. 1 

sary, we can assume y i = l. . Take a subsequence of { ijJ( c)} 

which converges to x. For large enough c we then have 
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bi(c) I 0. Multiplying both pc(s) and qc(s) with bi(c)-1 

we then obtain sequence of rational functions. 

111 

an(c)ssn + ... + a1(c)s + a0 (c) 

bn(c)sn + ... + si + ..• + b1(c)s + b0 (c) 
{3.8) 

such that as c -+ co. 

It follows that lirn T (s) = T (s) 
C-+cx> C X 

for all but finitely ma~y s, 

where the limit is a priori over the subsequence. In turn this 
says that lim Tc(s) = Tx(s) for all but finitely many s of 

C-+co 

the infinitely many s for which lim Tc(s) was assumed to 
exist. 

This holds for all limit points of fw(c)}, hence if x' is 
a second limit point of {~(c)} then ;x(s) = Tx,(s) for 
infinitely many s so that Tx(s) = Tx,(s) if both x,x' are 
limit points of {tiJ(c)}, arid this in turn sa\'S that 1im Tc(s) = 

C-+co 

Tx(s) for all but finitely many s, where now we arc dealing 
with the original sequence {Tc(S)}. This concludr~ the proof 
of tne proposition (except for the last statement between 
~rackets which is easy because by the above the convergence 
T (s) -+ T (s) really means that the coefficients, suitably nor-

c x 
m~lized, converge). 

3.10. COROLLARY. (of the proof) I.et \(s) ... i(s) as c -+oo 

and Zet Tc(sj = qc(s)-lpc(s), T(s) = q(s)-1p(s) i,:ith no ao'11'71on 

facto~s. Suppose that dqgree pc(s) s n' for aZl c. Then 

degi•ee p( s) s n'. 

This follows iwmediatPly because (~sing the notations of the 
proof) after a suitable normalization and for c large enough 
the coeff~cients of p (s) conv<?r:;e to the coefficient3 of c 
p (s) where p (s) is the nur.1erator r~ (3.7), and beca 1Jse 
q~s)-lp(s) = T(~) = Tx(s) = qx(s)-1px(s; wher@ qx(s) is the 
deno:ninator of (3.7). So deqr.::e f>x(sJ::. desnee pc(s) for ?.11 
larqe enough c. (Of course p (s) and q (s) niay have corr,-:-:, .. )( x 
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f!~tors so that degree p(s) may be smaller than 
lim inf(degree(p {s)))). 
C->co C 

4. CN THE CE:GREE: OF RATIGNAL MATRICES. Recall that the 
MacMillan degree o(T) of a matrix of rational functions T(s) 
can ue defined in a variety of ways ([Ka], [AV, section 3.6], 
[Ros, section 3.4]). First let T(s) be proper, i.e. 
lim T(s) exists, then o(T) = v(T), which is by defin"ition the 
S-+co 

minimal dimension of a rea 1 ~zation (F,G,H,J) of T(s). If 

T(s) is not proper write 

T(s) = T_(s) + T1s + r 2s2 + ... + Trsr, 
( 4. l) 

( ) -1 ..:r V s = T1s + ... + Trs 

1·ihe7'e T_(s) is the proper part of T(s). Then V(s) is also 
;:iroi-°'er {in fact strictly proper, meaning that lim V(s) = 0) and 
1-:e define S-+co 

6(T) = v(T_) + v(V) 

This definition shows that if T(s) = T_(s) + T+(s), where 
T (s) is proper and T+(s) is polynomial then 

( 4. 2) 

a(T) = a(T+l + a(T_) (4.3) 

(It docs not matter how the "constant part" of T(s) is split 
up between T_ and T+). 

Another way to obtain o(T) goes as follows (cf. [Kal]). 
Let T(s) be a p xm ~atrix of rational functions. For each 
mxp 1r.atrix bf constants K write 

(4.4) 

where Im is the rn xm identity matrix and aK{:;), bK(-s) are 
polynomials without common factors. Let 

(4.5) 

Then one has the propo::.ition (cf. [Kal]) 
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o(T) = max oK(T) 
K 

173 

(4.6) 

We shall nPed a few elementary properties of o(T). If A 
and B are matrices of ccnstants such that AT(s)B is defined 
then (cf. [AV, (3.6.6)] 

o(ATB) $ o(T) (4.7) 

(which is also iITTllediately obvious from definition 4.2). 
Now let T' (s) be obtained from T(s) by augmenting T(s) 

with some rO\~s and columns of constants. Then 

o(T' l = o(T) (4.8) 

This is seen as follows. Let T(s) and V(s) be as in (3.1) 
and let T~(s) and V'(s) betheanalogousmatricesfor T'(s). 
Then if (F,G,H,J) realizes T (s) a realization for T~(s) is 
obtained by adding some zero columns to G, some zero rows to 
H and by augmenting J 1-1ith the same rows and columns of con
stants as were used to obtain T'(s) from T{s). Similarly a 
realization (F1 ,G 1,H 1 ,J 1) for V(s) can be chan9ed in a reali
zation of the same dimension ;Jr V'(3) by augmenting G1 with 
zero columns, H1 with zero rows and J 1 with both zero rows 
and zero columns. This shows that o(T') s 6(T). The opposite 
inequality follows from (4.7) because T(s) is a subrnatrix of 
T' ( s). 

A third result we need is: Let T(s) be sqi..:.::.re such that 
det(T(s)) t. 0. Then (cf. P.g. [Rose, theorem 7.2, p. 1:)5)] 

( 4. 9) 

As an application of (4.8) and (4.9) we show (using a few 
tricks which will also be useful further on). 

4.10 !EM~A. Let T(s) be a matr>fa of polynomials. Then 

o(T) " max {degree(det(M( s))} 
M(s) 

where M(s) runs through all square subrnatrices of T(s). 

(4.11) 
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Proof. Gefins C' (T) c>.s beiny equal to the right hand side 

of (4.11). Ti~e;;;;2 h;;ve to prove that 6(T) = 6'(T). Then the 

ar,alogues cf (~.7) and (4.8) also hold fol' 6', i.e. 

c'(ATB) s: 6'(T), 0'(T') = 6'(T) (4.12) 

To se,· U,is recall that a minor of a product of matrices is a sum 

of products of ffiinors (of the same size) of the factors {cf. e.g. 

[Rosl], Thill. 1.3, p. 5) ar.d that a minor of a matrix T' ob

tained by addins a row of constants or column of constants to T 

is either a miror of T or a sum of minors (of one size smaller) 

of T with constant coefficients. This proves (4. 12). 

It follows that if A and B are invertible then 6'(ATB) 

o'{T). So by taking A an<:! B to be suitable permutation 

matrices 1:1e can assume that T is ~f the form 

T 

·;1ith deg{det(T 11 ) = 6'{T). Let the dimensions of T11 , T12 • 

r 21 , T22 be r:=spectively r x r, r x (m-r), {p-r) x r, 

{p-r) x {m-r). Let T'{s) be the matrix 

Tll T12 O 

T' ( s) T 21 T 22 

0 I' 0 

where I is the (p-r) x (p-r) unit matrix and I' the 

{m-r) x {m-r) unit matrix. Then by (4.12) 

o'(T') "'6'(T) (4.13) 

Also det(T') = det{T 11 ) so that degree det(T') ~ degree(M) 

for all minors M of T'. It follows that T' (s)-l is proper 

so that 
(4.14) 
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At this stage we need one more property of the degree function 
whic~ is essentially proved in [Rosl], cf. Thm. 4.3 on p. 115, 

cf. also [MH, section 2]. Viz. 

4.15. LEMMA. Let '.(s) be a p xm pPoper mat1'7'.x of 

7'rttionaZ func>tions. Then the7'e ar>e polynomial matrices N(s), 
D( s), of sizes p x m, m x m such that 

(i) T(s) = N(s)D(s)-l 
(ii) N(s) and D(s) ape 7'ight coprime, which means that 

thel'e are po Zynorrz-ia Z matrices X ( s) , Y ( s) such tf>.at 

X(s)N(s) + Y(s)D(s) = Im. 

Moreover N(s) and D(s) are unique up to a common unimodu
lar ri9ht facto!' and v(T(s)) = deg(det D(s)). 

(The last statement of the lemma is.more usually stated for 
strictly proper T(s), i.e., matrices of rational functions 
T(s) such that lirn T(s) = O; the slight extension is immedi-

s-+= 
ate; indeed if T(s) is proper and T(s) = J + T(s), v1ith f(s) 
strictly proper, T(s) = A(s)D(s)- 1. Then T(s) = N(s)D(s)-l 
with N(s) = JD(s) + ~(s), D(s) = D(s), and if X(s)A(s) + 

Y(s)O(s) = Im' then X(s)N(s) + Y(s)D(s) = Im' with X(s) 
X(s), Y(s) = Y(s) - X(s)J.) 

Continuing with the proof of lemma 4. 10. Applying lemr.ia 4.15 
to T' (s) we find 

v(T'~::.)- 1 ) = dc::;ree(det(T'~.;))) (4.16) 

So combining (4.8), (4.9), (4.12)-(4.14), (4. 15) we have 

o(T) o(T') = cS((T')-l) = v{(T')-l) 

degree(det(T')) = degree(det(T 11 )) 

6' (T) 

which concludes the proof of len@a 4.10. 
4.17. THEOREM. (upper continuity of S(T)). Let T (s) c 

be a 2P.1ucnce of natrices of rational f~nctions of s. Sup~ose 

tlzat r;hc sequP-v:ce cm•v<'rees to matrLe: of rati ·:nw l fw:-::t~· an2 
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T(s) as C-> 00 <:z>'doupposethat c'i(Tc(s))sn foralllarge 
ow;~;h c. '.then 6(T) ~ n. 

Here J se~uence of matrices of rational functions is said to 
converge iff the sequences of entries converge in the sense of 
~ection3above;i.e. Tc(s) converges as C->"-' iff lim\(s) 

C-HQ 

exists for infi11itely rr.any s and tllen the limit is necessarily 
a .1trix of rational functions T(s) and lim Tc(s) = T(s) for 

C->OO 
all but finitely many s. 

Tl1e proof of the theorem is easy. We have for each m x n 
matrix of constants K that 

1im ".let(Im+KTc(s)) = det(Im+KT(s)) 
C·-+CO 

•:ence using proposition 3.1 (1·1hich among otf~er things contains 
the scalar case of theorem (4.16)), or rather using corollary 
3.10, and using the second definition of the degree of a rational 
n;atrix discussed above (cf. (4.4)-(4.6), we have for large enough 
c ( whi eh 'nay depend on K) 

dK(T} = degree(aK(s)) s degree(aK,c(s)) c'iK(Tc) Sn 

where 

aK(s) a (s) 
-c-r:::T = det(I + KT(s)), bK~ = det(I +KT (s)) uKp; m K,c1s; m c 

(without wnmon factors). It follows that cl(T) = max{c'iK(T)} Sn. 
K 

It is now not difficult to prove Theorem 2.23 without the 
extra requirement that the poles of l (s) unequal to the finite c 
poles cf L(s} go to _,, as c .... ""· Indeed the upper semi con-
tinuity property of theorem 4.17 takes care of the "if" part. So 
let L(s) be of degree n. Write l(s) = A(s) + T(s), where 
T(s) is proper and A(s) is polynomial. Then c'i(l) = o(T) + 
o(A). So if A(s) = lim T (s), 1-1ith T (s) proper and 

~00 n n 
6 ( T n ( s) ) :'> 6 (A ( s) ) we wi 11 be done. 
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4.18. PROPOSITION. Let A(s) be o. polynomial matrix of 

degY'ee 6. The>J the1'e e:rist a sequence of p1'oper mtionaZ 

matr•ices T (s) cf degr'ee s; 6 such that lim T (s) = A(s). n n 
n-+co 

Proof. By multiplying A(s) on the left and on the right 

177 

with suitable invertible matrices we can assume that A is of 

the form 

A = 

A21 A22 

with deg(det(A11 )) 6. As above let 

Then 6 6 (A I ) 

[''' 
A12 01 

A I = ~:1 A22 

0 

degree det(A'). N0\'1 let 

T' ( s) = nA' ( n I + A' ) - l 
n 

(Note that (n~ +A'(s))-l exists if vie assume, as vie can, that 

o > 0). Then clearly for a fixed s, lim T'(s) = A'(s). We n 
11--00 

claim that T~(s) is proper for all but finitely many n. 

Indeed for a fixed n 

TI "' nA I ( n I + A I r l nA' (A I ) - l ( nA I -
1 + I r l 

n 
((A' )-1 + n-lI)-1 (4. 19) 

Now because :S(l\') '- deg(det(A')) we f'now that (A'f1 is 
-1 - l proper. Let J = lim (A') . Then if -n is not an eigen-

va 1 ue of J it fol1ov1s from (4.19) that lim T' (s) exists, 
S-+oo n 

pr0ving thilt T' (s) 
n 

is proper for all but finitely many n. 

cinany, by lemn1a (4.lS), if T~(s) is proper, 

v(T' (s)) ~ ueg(det(nI +A')) 
n 

(4.20) 

Novi det(nl +A') is a polynomial ·in s whose coeffi..:ii::nts i'i'2 
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suin:: .)f m~nors ')f .~·. Hence deg(det(nI +A')) s msx deg(M) = 
. M 8(A') = 6 wh~re M runs through the minors of A'. 

~·l::w let T {s) b:.: obta:.·ed from T'(s) by removingtt:ea;::pro-n n 
ririate columns and rows. ·1nen lim T (s) = A(s), T (s) is 

n--•= n n 
~roper if T~(s) is proper and 8(Tn) s 6(T~) proving proposi-
tion 4.18. 

5. PROOF OF THE MAIN THEOREM. 
5.1. First Half of the Proof of Theorem 2.22. LPt Z(c) cl 

be a family of systems of dimension n and suppose they convers 0 

in input/output behaviour. This means (cf. 2.10) that for every 
u E U the ~eq~cnce of functions 

(5.2) 

con;erges. In turn· this means (as in the proof of lemma 2.6) 

that there is a b such that for all sufficiently large c 

then sup~e-btz(t)~ < m so that 
t 

/'"'!ie-(b+, jtz(t) :ldt < 00 

0 

( 5. 3) 

which implies (cf. [Doe] or [Z<;m]) that z(t) is La:clace trans
formable and that (iz) ( s) is defined for Re(s) ;:::: b ·~ 1. 

Applying this to the Vl:(c)u we see that their Laplace trans
forms are we 11 defined for s ;:::: b + l. This gives us a sequence 
of functions 

(5.4) 

where Yc(s) is the Laplace transform of V[(c)u' Tc(s) is the 
transfer function of r(c) and U(s) is the Laplace transform 
of u(t). 

The Laplace transfonn £ is continuous when considered as an 
operator on the normed space .:Wb+ltRP) consisting of all 
locally integrable functions such that 



DEGENERATION PHENOMENA 179 

(5.5) 

equipped with the norm defined by the integral (5.5), cf. [Doe, 
Kap. III, §8]. As .<¥~0 )(1~P) c .¥b+l(RP) is a continuous embed
ding it follows that the sequence (5.4) converges for Re(s) ~ 

b + l as c -+ =. Choosing various u E U judiciously this im
plies that the family of rational matrix functions T (s) con-e 
verges for infintiely many values of s. According to section 4 
above this means that there is a rational matrix function T(s) 
such that 

lim Tc(s) = T(s) (5.6) 
C-><:o 

and moreover o(T) :5 n by the upper semicontinuity theorem 4. n. 

Write 

T(s) = T' (s) + l ~s) (5. 7) 

where T'(s) is proper and where L(s) is polynomial. Let l: 

be a co and er realization of T'(s). Consider the operator 

V Vr. + L(D) (5.8) 

Applying this operator to a u E U and taking th 0 Laplace trans
form of the result {which can be done because Vu E fl/ and all 
functions in w· are Laplace transformabl~) we find (for Re(s) 
~ b • + 1, for so:.ie b' ;-:: b) 

{£Vu){s) T'(s)U(s) + L(s)U(s) = lim Tc{s)U{s) 
C->co 

lim \(s) 
C->oo 

(£(lim yc))(s) 
C-+= 

where y = V~( )u, and where we have again used the same con-e L, C 
tinuity property of the Laplace transform. The Lapl1ce transform 
begin injective on the ~pace of functions under consideratio~ it 
follows that 

for a 11 u ( U. 

V = Vr. + L(d) 

Vu = lim VE(c)'' 
(4C:0 I 

Thus the li~it operator is indeed of t~e form 
;-: i t h dim (;:) + degree L ( s) = I:(:) :5 n , wh i c h 
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finishes the proof of the first half of theorem 2.22. 

To prcve the s-::;ccnd half we nee•j some lc;nmas. If A is ilny 

matrix we use the f.::10.,·iing notation for its various mir.•Jrs: 

jl, ... ,jr 

denotes the determinant of the subwatrix of A obtained by re

moving all rows except those with th.: indices i 1 ,. .. ,ir 

columns except tnose with the indices j 1, .. .,jr. Recall 

the minors cf a product matrix are given by 

(AB) 
i 1 ' ••• ' i , r 

L: A 
il, ... ,ir 

8 
k1, ... ,kr 

j I' ... ,jr l:l '· · · 'kr kl, .. .,kr jl, ... ,jr 

and all 

thilt 

(5.9) 

5.10. LE1'~"iA. Let L(s) be a polynomial, ma.tr-1:x of s1:r;e 

p xm. Z:up;::Jae tl;at for a certaii1 l :::; r:::; min(p,m) 

l , ... , !" 2, .. .,r,j 
deg L(s) ~deg l(s) , j = r+l, ... ,p (5.11) 

1, .. .,r l , ... ,r 

2'he:>'l thHe e:r:ists c:n ·1:n•:e1:>tibZe p x p matrix of constants A 

such thc:.t 

l,. . .,r 2, .. .,r,j 
deg (AL(s)) >deg (AL(s)) j r + l , ... ,p 

l, ... ,r l, .. .,r 
(5.12) 

Proof. Let Ej(c) = E, j E {r + 1, .. .,p} be the matrix with 

l's on the diagonal, a c in spot (j,1) and zero's elsewhere. 

Then as is easily checked 

1 , .•• , r 

= {: 
if {il, .. .,ir} 

E 
;,, .. .,ir 1,, ~herwi se 

and for k'fj, kE{r+l,. .. ,p} 

E 2,. . .,r,k = {l 

i1' . .,ir 0 

if {i 1 ,. . .,ir} 

otherwise 

{l,. . .,r] 

{2,. .. ,r,k} 
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whi l'e r 

{

(-1) c if {ip····\} {l, ... ,r} 
2 •••• , r ,j 

E = l if {; 1 , ... ,ir} {2, ... ,r,j} 
;1,. .. ,ir 

0 otherwise 

It now follows from the minor product rule (5.S) that 

l , ... , r 
L if k = l 

1 , ..• , r 

2, ... ,r,k 2, ... ,r,k 
(EL) L if k € {r+1, ... ,p}\{j} 

l , ... , r 1 , ... , r 

2, ... ,r,j 
(-l)rc 

1 , ... , r 
L + L if k = j 

l , ... , r l , ... , r 

It follows that (5.12) :wlds if vie take for A a suitable pro
duct of matrices Ej(c). 

5.13. LEMMA. Let L(s) be a polynomial pxm matrix 1;.lilh-
out constant terws of deg1'ee n. Suppose t)iat for a cei•tain r 

an minors of size < r huve degree < n and that 

l , ... , r 
deg(L ) 

2, ... ,r,j 
= n > deg(l ), j = r+l, ... ,p (5.14) 

l , ... , r l , .. ., r 

het d(s) be the diagonal matPfr with d-ZagoYlal entries 
(s,l , ... ,l) ~nd let L'(s) = d(s)- 1L(s). T7:ei; L'(s) is poly
nomial (because the fir'st T'OZJ of L( s) has no constant terms) 
and deg ( L ' ( s) ) = n - l. 

Proof. Because deg(d(s)) = 1 and deg l(s) s deg(d(s)) + 

deg(L'(s)) we must have deg(L'(s)) ~ n-1. It remains to show 
lhat deg(L'(s)) ~ n-1. Let [(s) be the square matrix 
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where 

where L11 is the top-left rxr subrnatrixof [,and where 

the I's are the appropriate unit matrices. Then 

deg(l) =deg([) = deg(det(L 11 ) = deg(det(L)) = n (5.15) 

-- -1 which im?lies that L is proper. We claim that the first 

CQ]umn Of l-l consists of strictly prorer rational functions. 

Indeed the entries of the first column are the functions 

(- -1-1 
det L) Lj' j = 1 , ... ,m + p - r (5.16) 

-1 
~:cw, if j = 1 , ... , r, L j is 

submatrix of L11 and hence 

the determinant of a (r-1) x (r-l) 
·-1 

deg(L~) < n by hypothesis. If 
. -1 
J = r+l, ... ,m then lj = 0 

,) 

and finally if j = m + k, 
k= l, ... ,p-r then 

_1 2, ... ,r,r+k 
L. = l 
J 

= m + k 
1 , ... , r 

which by hypothesis is of degree < n = deg(det(L)-1 . This 

prcves the claim. 

Mow let d'(s) be the (m+p-r) x (m+p-r) diagonal matrix 

with entries {s,l, ... ,l), and let [• = d'(s)-l[. Then l' is 

the p x m top ~ 3ft submatri x of [' and hence 

degree(L') ::; degree([') (5.17) 

On the other liand ([')-l = (L)-1d'(s) is still proper because 
--1 the first column of L consists of strictly proper rational 

func \:ions. Hence ( cf. 1 e111T1a 4. 15) 

deg([') = deg( (L' )-l) ::; deg(det(L')) 

= deg{det(d' (s))-ldet([}) 

-== deg(s-1det(L11 )) = n -1 

(5.18) 
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because L11 has no constants. 
see that indeed deg(L') $ n-1. 
not true as a rule that (L')-1 

Combining ( 5 . 18) and ( 5. 17) we 

proving the lemma. (NB it is 

is proper.) 
Note that lerrma 5.13 and 5.10 combine to give a proof of 

corollary 2. 24. 

5.19. PROPOSITION. Let L(s) be a poZynorrrial matrix of 
degree n. Then there e~~sts a family of n-dimensionaZ systemE 
L:(c) such that l:(c) conve:r>ges in input/o·,tput behaviOUJ' to 
L(D) : CW .... 'W as c .... = and such that moreover the pcles of 
(the transfer fwictions of) the l:(c) all go tc -eo as c -> 00• 

Proof. This is proved by induction, the case n = D beiog 
trivial because L(s) has degree zero iff it is a matrix of con
stants. The first thing to do next is to obtain the scalar oper
ator D : .¥(1R) ... .¥nR) as a limit of input/output op2rators of 
one dimensional syst"11s. To this end !et L:(c), c = l ,2,... (or 
c EE) be the family of systems 

(5.20) 
F c -c, He = c, Ge = -c 

The associated input/output operator of L:(c) 
jr(R) 

is V : .¥0R) .... c 

i t 2 -dt-T) . , V : u(t) » y (t) = cu{t) .,. -cc ' Ul1)cn 
c c 0 

c~.21) 

By partial integration (twice) we see that 

y (t) = u(l)(t) - Jt e-c{t-T)u(Z){T)dT 
c 0 

(5.22) 

Let b be such that u( 2 ) E .¥~o) ("P.) (i.e. sup e-btlu(Z) (t) I<°"). 
t 

Then if M - n ( 2) 'I - 11U I b' we have 

1j\-c(t-r:)u(2)(T)d1! ::; j\-dt-·;:)eb1M $ (b+c)-1Mebt 
0 0 (5.23) 

and it follov1s that the yc(t) converge to )l)(t) in ..?'(l\). 
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~ore precisely if b is 

then yc(t) € ,,;-~o) \'<<) 
J.(o) (R). 

S'Jc 1• u(1), u(Zl are both in .._~(o)("R) 
I 1) b 

and t:.e y ( t) conver92 to u \ ( t) in 
c 

D 
Now suppose ~ith induction that the prop~sition has been 

proved for a11 polynomial matrices of degree ~ n-1. 

Li:t L(s) be a polynomial matrix of degree n. First note 

that if P,Q are invertible matrices cf constants then L(D) is 

the 1 imit of a family as in the statement of the theore111 if and 

only if PL(D)Q is. Also adding a matrix of constants makes no 

difference. R<cmoving the constants and multiplying L(s) on the 

left and on the right with suitable invertible matrices of con

stants '(ie can therefore assume that for a certain minimal r E: l'I 

the top left r x r minor of L(s) is of deyree n. Using 

le:nma 5.10 and lerrirna 5.13 1·1e see that after" furth~r multiplica

tion on the left L; an invertible matrix of constants L(s) fac-

l:orizes as 

L(s) "1 
lJ 

L' ( s) 

v1ith L' (s) polynomial of degree n - 1 • 3y induction we have 

that there exists a family of (n-1)-dimensional systems I'(c) 

(F' G' H' J') such that the poles of I' (c) go to -= as 
c'c'c'c 

c -•co (if n -1 > 0, if n = l ,L' (s) is constant and one takes 

I'(c) = (0,0,0,L')) and such that VE'(c) converges in input/ 

output behaviour to L' (s). 

Now let i:(c) be the composed system 

(5.24) 

where E"(c) is the m input/m output one dimensional system 

given by the matrices 
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F" -c. G" (-c.o, ... ,o), c c 

c c 0 0 
0 0 

H" = J" c c 
0 

0 0 0 

I.e. if l.:' ( c) (F' G' H' J') c'c'c'c tnen E(c) is given by the 

F" 0 

G" l c 

G':' 

F G c c 
G'H" F' c c c c c 

(5.25) 

H = (J 'H" H') J J 'J" c c c c c c c 

(if n > l ; if n 1 ' Fe = -c, G "' c (-c,0, ... ,0), H = c 
L 'H" J LI H"). 

c' c c Then the T, ( c) converge in input/output 
behaviour to L ( D). Moreover (as fo11ows from (5.25)) the poles 
of T.(c) go to -= as c ~"" if n > 1. 

proposition. 
This proves the 

We can be somewhat more precise about how well the ~(c) con
verge in input/output beh."'iour to L(D). Indeed one has 

5.26. COROLLARY. Let L(D) a:nd (l.:(c))c beaval>ovein"!:7ie 

proof of pr·oposition 5. 19. Det b ~ 0 be such that 

u,u(l) , ... ,uCn+l) E ~~o)(Rrn). Then there is a constmit M siwh 

that 

(5.27) 

In par>ticu.7.a:r if u E "t,: is of compact suppoY't or>, more genf:T'

ally if u,u(l) , ... ,u(n+l) are all bounded, we ca:n take b = 0 

and for such input functions u, 

t to L(D)u. 
V ... ( )u converqes unif(.rmlv I» ,, c . . v 

This follows readily by induction from 

tion 5.19 above, (5.22), and :he estimate 
is a vector of iinear :::r:rbiration of the 

t~e proof of proposi

(5.23), bece:u 0 e L'(D)u 
(1) {n-1) 

V :i.U , ••• , U .. 
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5.22. £.roo_f___Qf_the 'Second Half of Theorem 2.2?.. Now let 

V:ut.t->':!I be an operator of the fonn V = L(D) +\'i.: with 

dim(E) + deg(L(s)) ~ n. Let l:(c) be a sequence of deg(L(s))

dimensional systems converging to L(D) in input/output behav

iour as in propositfon 5.19. Then if l:' (c) is the sum system 

of i:;:) and E, the fi'n.ily l:'(c) converges in input/output 

behaviour to V. More preci~ely if I = (F,G,H,J), l:(c) = 

{Fc,Gc,Hc,.Jc) then E'(c) is given by the rnatrices 

H~ = (H J + J 
c 

Because the co and er systems are open and dense in L we can 

pertur~ each Z' (c) slightly to a l:"(c) which is co,cr such 

that l:"(c) still co:werges to V 1n input/output behaviour as 

c .... '"" und such that the behaviour of the poles of the l:" ( c) 

as C->°" isiikethatofthe I'(c) as c->oo. This finishes 

the proof of theorem 2.22. 

5.29. REMARK. One has of course in the setting of 5.28 above 

also an estimate like (5.27) for llVz:'(c)u - Vujj. 

5.30. REMARK. If I(c) is e.g. the family of (5.20) above, 

the Markov parameters of the family Jc,HcGc,HcFcGc,HcF~Gc,··· 
definitely do not converg~ as c ->«>. 

One can, of course, examine what the possible limits are of 

families of systems E(c) of dimension n which converge in 

input/output operators and such that moreover the Markov param

eters converge as well {or more generally such that the Markov 

parameters remain bounded) as c .... "'" The answer is sir.;ple: the 

limit operator is then necessarily of the form Vl: where E is 

a possibly lower dimensional system. Inversely every VE with 

dim(l:) ~ n can arise a limit of input/output operators of co 

and er systems of dimension n, cf. [Haz 2]. 

5.31. Approximation by systems with J = 0. Let T(s) be a 

matrix of rational functions. Write 

T(s) = T_(s) + L(s) (5.32) 
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with T_(s) strictly proper and L(s) polynomial. Define 

nr(T) =dim of the"R-vectorspace spanned by 
the rows of L(s) 

nc(T) =dim of thelR-vectorspace spar.ned by (5.33) 
the columns of L(s) 

q(T) = min {nr(T), nc(T)} . 

(sl2 s 3) 
E.g. if T(s) = L(s) = s ~ , then nr(T) = 2, nc(T) = 3 

and if T(s) = L(s) = [sZ s2
]. n (T) = 2, n (T) = 1. let E 

s s r c 

realize T_(s). Then the operator VE+ L(D) is the limit in 

input/output behaviou~ of a family of (deg(T(s)) + q(T(s)) -

dimensional systems. 

This can be seen as follows. Because T_(s) is strictly 

proper it suffices to sec that L(D) can be obtained as the 

limit of the input/output operators of a family of deg(L(s)) + 

q(L(s)) dimensional systems. Assume for definitiveness that 

q(T) = nc(I). Then we can factorize L(sj as 

L(s) = {L' (s) O)Q 

where Q is a square invertible matrix of constants and L'(~; 

has q(T) columns. It now clearly suffices to obtain L'(D) as 

a limit of deg(L) + q(L) dimensional systems. To this end let 

r(c) be a family of systems converging to L(O) of dimension 

dcg(L) and let E' (c) be a q = q(L)-dimensional farr.ily of sys

tems with Jc = 0 for all c with limit input/output operator 

equal to I, the q x q identity matrix. Such a fc.mily is e.g. 

given by the matrices 

Let T' {s) 
c 

be the transfer function matrix of L:'(c) o.nd T ( s) c 



188 MICHIEL HAZEWINKEL 

that of l:(c). Th~n the (q + deg(L))-dirnensional system l:"(c) 
obtained by applying first l:' (c) and the,~ L:(c) has transfer 
function matrix Tc(s)T~(s), ~1hich is strictly proper, and the 
E"(c) converge in input/output behaviour to L'(s). 

This result is optimal if p=l or m=l, but, though 
definitely generically best possible (meaning that for almost all 
T(s) with given q(t) = q, deg(T) + q is the best one can do), 
it is not best possible for every partic"lar T(s). E.g. the 
factorization 

L(s) 

shows that this L(s) can be obtained as the input/output limi~ 
of a family of fcur dimensional systems with J = 0, although 
deg{L) = 3 and q(L) = 2. 
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