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INTRODUCTION TO MULTIGRID METHODS 

P.W. HEMKER 

A convenient way to give an introduction to mul tigrid methods is 

by means of the notion of "Defect Correction Process" • Defect correc­

tion processes are general iterative processes for the approximation 

of operator equations. A large number of well known iterative methods 

can be classified into this category, and among these are the multi­

grid methods. Therefore, we give an introduction to elementary defect 

correction processes (DCP} in Section 1. In Section 2 we shall elabo­

rate the idea of DCP to get the framework to fit the multigrid methods 

in. In Section 3 we give a short introduction to the discretization 

of analytic problems, with special emphasis on the discretization on 

related grids, as they are used in multigrid methods. In Section 4 we 

treat the principles of multigrid algorithms and we give the basic 

structure of convergence proofs of multigrid methods. Some examples 

of applications of multigrid methods are given in Section 5. 

1. ELEMENTARY DEFECT CORRECTION PROCESSES 

In principle, a defect correction process is an iterative process 

to solve an equation that we cannot or don't want to solve directly: 

(P} Fx = y, 

where F is a mapping from A to B. A and B are normed linear spaces. 

In general the mapping F is non-linear, F is not defined on the whole 

of A and F is neither injective nor surjective. 

We assume that there exist subsets X c A and Y c B such that F is 

defined on the whole of X, and the mapping F:X + Y is surjective. In 

addition we often require that there exists a unique x e: X such that 
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Fx = y (or: in addition the mapping F:X -+ Y is injective and hence j.. t 

is bijective). We assume that we can solve some approximations (P) 0£ 

the problem (P), i.e. for all y e: Y c Y we can solve the equation 

(P) Fx y, x € x, 

where F: X -+ Y is some "approximation" of the operator F. 

Formally we describe this as follows: 

We assume that for some subset Y c Y with y e: Y, there exists a map­

ping 

G: Y -+ X, 

which we shall call the approximate inverse of F. 

The meaning of G is that for any y e: Y an approximation to the 

solution of the equation Fx = y is given by Gy. The mapping G needs 

not to be linear and neither injective nor surjective. 

REMARK 1. If G is not surjective, then possibly x i GY, with x the 

solution of Fx y. 

REMARK 2. If G is injective, then an F: GY -+ Y exists such that 

FG = r~, where r~ is the identity operator on Y. Then F is the left-
y - Y~ 

inverse of G and F is "an approximation to F". However, we notice 
~ 

that F is only defined on GY and not on X~ 

In a Defect Correction Process the solution of the original 

problem (P) is found (or approximated) by the iterative application 

of one (or more) approximate inverse(s) G. 

In its most elementary form we have two versions of the defect 

correction process for the solution of (P) : 

the first defect correction process 

Gy, 

~ 

(I-GF)x. + Gy, 
l. 
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and the second (the dual) defect correction process 

ro 
= y, x := Gli' 

DCPB 

£.i+l (I-FG)l. + y. 
l. 

REMARK 3. DCPA is completely described by F,G,y and XO; DCPB is com-

pletely described by F,G,y and £.0 • With DCPA we use the fact that A 

is a linear space and not the fact that B is. With DCPB we use the 

fact that B is a linear space and not that A is. 

REMARK 4. If G is injective, then we can define its left-inverse F 

and the DC:tB can be shown to be equivaler.t with the iterative process 

* DCPB 

It is clear that, if x is a fixed point of the iteration DCPA 

then GFX Gy. Hence, if G is injective then x is a solution of the 

original problem (P). Also, if l is a fixed point of DCPB, then 

FGt = y and, hence, Gt is a solution to (P). 

If we consider the difference between the iterand x. (resp. l.) l. l. 

and the fixed point x (resp. l), then we notice that for linear F and 

G, 

and 

x - x 
i+l 

£.. 1 - l 
l.+ 

<I-GFJ ex. -xi, 
l. 

(I-FG) (l. -ll. 
1 

Hence we call M = I - GF the amplification operator (of the error) of 
DCPA and M = I - FG the amplification operator of DCPB. It is obvious 

that a sufficient condition for a DCP to converge to a fixed point is 
that the norm of its amplification operator is less than one. General­

izations for non-linear F and G are obtained by local linearization, 
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such as indicated in remark 5.5 below. 

In Section 4 we shall need the following relation between M and 

M, which follows immediately from the definition 

- -1 
M=FMF • 

THEOREM 1. If G is an affine mapping, then the sequences {xi} in 

DCPA and {x.} in DCPB are identical. 
l. 

PROOF. Let {l }, 1 2 and {x.}._0 1 2 be defined as in DCPB, 
i i=O, , , . . • 1 1- , , , ••• 

then: 

Gy, and 

~ 

= xi - GFxi + Gy = (I - GF)xi + Gy; 

'lhis means that the values from this sequence {x.} satisfy exactly the 
l. 

generation rules for the sequence {xi} from DCPA. Hence both sequences 

are identical. 0 

REMARK 5. It is clear from the proof of the last theorem that for a 

general mapping G both processes DCPA and DCPB yield different 

sequences {xi}. 

A slight generalization of the DCPA, which is often more con­

venient for non-linear problems is the following defect correction 

process: 

{
"KO = Gy 

DCPC 

xi+l xi + µG(y + (y-Fxi)/µ) µGy. 

In this iteration step the parameters µ and y are still free to choose. 

REMARKS. With respect to this new defect correction process we notice: 

1. Near a solution of Fx = y the operator G is applied only in the 

neighbourhood of y. 

1 
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In the general case (i.e. for anyµ and y) a solution xi of Fx y 

is a fixed point of DCPC. 

Withµ = -1 and y = y, DCPC is identical with DCPA. 

For arbitrary µ and y, with G affine DCPC is identical with DCPA 

(and hence also with DCPB). 

The amplification factor of DCPC is given by 

llx -xii 
i+l ~* * 

:;; llr-G'F'li + llG'•llllp*ll + nG'*nllF•ll + llG llllF II, 
llx.-xll 

l. 

~* ere G' and G are defined by 

"' ,,..., .....,* 
G(y+o)-G(y) G'o + G o, 

~* 
th G' linear and G such that 

o <II oil l as o -+ o, 

* ,a F' and F defined analogously. 

We conclude this section with some examples of defect correction 

.·ocesses. 

:AMPLE 1. Iterative methods for the solution of linear systems. 

Many of the well-known iterative methods for the solution of 

.near systems can easily be recognized as a defect correction process. 

>r all these methods G is linear and, hence, the three variants are 

[Uivalent. Here we shall identify as a DCP a number of these methods 

'r the solution of the square linear system Ax= b . 

. 1. The Jacobi method 

The Jacobi-method: 

diag (A) xi+l 

an be written as 

b + (diag(A) - A)x,, 
l. 

(I-GA)x. + Gb, 
l. 
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with 

-1 
G = [diag(A)] • 
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1.2. 'lhe Gauss-Seidel method 

Let A be decomposed as A = L + U, where U is strictly upper­

triangular and L is lower triangular; then the Gauss-Seidel process 

reads 

i.e. a DCP with G 
-1 

L 

1.3. 'lhe relaxation methods JOR, SOR, RF and GRF 

All "stationary fully consistent iterative methods of degree one" 

for the solution of Ax = b can be written as 

x . - P (Ax. -b) , 
J. l. 

where P is a non-singular matrix (cf. YOUNG [1971]). With P = pI, p 

a scalar and I the identity matrix it is a stationary Richardson 

method (RF); with Pa non-singular diagonal matrix it is a Generalized 

stationary Richardson method (GRF); with P = wG, G as under 1.1 it is 
~ 

a Jacobi relaxation method (JOR) and with P = wG, G as under 1.2 it is 

a SOR method. 

EXAMPLE 2. Modified Newton iteration. 

In this case the problem (P) is the solution of a non-linear 

equation 

Fx y, 

with a Frechet-differentiable operator F. '!'he Frechet-derivative F' (x) 

is approximated by a non-singular linear operator E. The relation 
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F' (x.) (x-x.) + 0 cnx-x.11) I 
l. l. l. 

77 

or equivalently, 

-1 (F' (x,)) (y-Fx.+o(llx-x.11)), 
l. l. l. 

suggests the modified Newton iteration: 

-1 
- x. + E (y-Fx.). 

l. l. 

Clearly, this is a DCPA with G 
-1 

E 

We notice that in a proper Newton process (not the modified 
Newton iteration) the approximate Frechet-derivative E is updated 
during the iteration process. This kind of generalization of the ele­
mentary DCP will be treated in Section 2. 

EXAMPLE 3. An analytic example. 

We consider the two-point boundary-value problem (cf. STETTER 

[1978]) 

(*) {

x" _ex 

x(-1) x(+l) 0. 

0 on (-1,+l) 

This defines the problem 

Fx 0, 

where 

2 F: c0 [-l,+1]-+ C(-1,+1). 

We construct an approximate problem, replacing ex by 0.99 + 0.81x 
(i.e. a reasonable approximation if -0.4 ~ x ~ 0.0). Thus we get the 
approximate problem Fx = y, viz. 
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{ 
x" - 0.81x - 0.99 = y 

x(-1) = x(+l) = 0. 

on (-1,1) 

Hence, we can write the solution of Fx y as 

x(t) r K(t,z) (y(z) + 0.99) 

-1 

dz, 

for some suitable kernel-function K(t,z). This integral operator de­

fines an approximate inverse G for the problem (*). With this G we can 

construct a DCP to find the solution of (*). 

2. EXTENSION OF THE DCP PRINCIPLE 

In this section we shall extend the idea of the defect correc-

tion process in several ways: we allow different approximate inverses 

to serve in one iteration process and we consider a sequence of prob­

lems that converges to a final problem of which the solution is want­

ed. We also consider the process obtained when a fixed combination of 

approximate inverses is used all over in a defect correction process. 

2.1. Non-stationary defect correction processes 

In order to find a solution to the problem (P) it is not neces­

sary to use one fixed approximate inverse in an iteration process as 

described in the preceeding section. As we anticipated in the example 

with Newton's method, it is possible to use another approximate in­

verse in each iteration step. Then the iteration steps in DCPA and 

DCPB read respectively 

and 

A similar modification for DCPC can be given. 

Various methods are known to find a proper sequence of {G.}. 
l. 
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EXAMPLE 1 . G. 
l. 
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The approximate inverse depends on the last iterand computed. 

This is the case e.g. in Newton's method for the solution of non-
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~ -1 
linear equations, where G(x) = (F' (x}) ; F' (x) is the Frechet deri-

vative of the operator in the problem (P} • 

EXAMPLE 2. G. = G(W,). 
l. l. 

The approximate inverse depends on a. single real parameter. This 

is the case e.g. in non-stationary relaxation processes for the solu­

tion of linear systems. 

In each iteration step the approximate inverse is chosen out of 

a set of two (or more) fixed approximate inverses. This is the case 

e.g. in Brakhage's and Atkinson's methods for the solution of Fred­

holm integral equations of the 2nd kind. (See ATKINSON [1976] and 

BRAKHAGE [ 1960 ] . ) 

2.2. A fixed combination of approximate inverses 

We consider two iteration steps in the non-stationary DCPA in 

which, in turn, one or the other of two approximate inverses is used. 

In the linear case, the iteration steps 

(I-GF (xi + Gy 

xi+l (I-GF(xi+~ + Gy 

combine into a single iteration step of the form 

"" Rl "" (I-GF) (I-GF) X, + (G-GFG+G)y. 
l. 

This is easily recognized as a new iteration step of the type DCPA, 

now with the approximate inverse 
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... s:::s P:S -
G = G - GFG + G. 

We conclude that a fixed combination of DCPA-steps can be considered 

as a new DCPA-step with a more complex approximate inverse. The am­

plification operator of the new DCPA process is the product of the 

amplification operators of the elementary processes. 

REMARK. Generally the above observation with respect to DCPA does not 

directly hold for,DCPB processes. 

2.3. a applications of the same approximate inverse 

In order not to make the notation unnecessarily intricate, from 

now on we shall only consider linear problems, unless explicitly 

stated otherwise. 

We can describe the DCPA in matrix notation by 

( I-GF 

\. 11:1 

cr times an application of the same iteration step yields 

(I-GFJ 0 

Thus, one iteration step which consists of cr applications of DCPA­

steps results in a DCPA with the amplification operator 

- a M = (I-GF) 

and the approximate inverse 

o-1 
G = l - m t'V rw a -1 

(I-GF) G = [I - (I-GF) ]F • 
m=O 
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2.4. Iterative application of DCP 

It is possible not only to change the approximate inverse G during 

the iteration process, often it makes sense also to substitute dif­

ferent operators Fi for F during iteration. In general, the operators 

{F.} will be simple to evaluate in the beginning of the iteration and 
i 

they will converge to F, the operator in the original problem, as the 

iteration proceeds. 

One example of such a process is the IUDeC (Iteratively Updated 

Defect Correction) process described by STETTER [1978]. Here {F.} are 
i 

discrete approximations of higher and higher order to an analytic 

operator F. The approximate inverse G F~ 1 is kept constant during 

the process. An analysis of this kind of process is given in Section 

3.3, when we have introduced discretizations. 

Another example is the Full Multigrid method [BRANDT, 1979] in 

which {F.} are discretizations on finer and finer nets of an analytic 
i 

operator F. 

2.5. Recursive application of DCP 

Generally, the evaluation of the approximate inverse operator Gi 

implies the solution of an equation which is (essentially) of a simpler 

type than the original equation. However, also this simpler equation 

may be of a kind that we want to solve by means of a DCP. For this 

we need an even simpler equation to solve, etc .. Thus, the execution 

of a single iteration step may imply the activation of a new (simpler 

to solve) DCP.In this way we can construct a recursive construction of 

DCPs in which only on the lowest level of recursion a very simple 

equation is to be solved. 

Independently, this is probably not a real meaningful construc­

tion, but in combination with non-stationary processes, where also 

other (non-recursive) approximate inverses are available, it describes 

the essentials of the multigrid algorithm. 

Such a combination of a non-stationary process with some recur­

sive approximate inverses can be described by the following sequence 

of DCPs. 
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DCP 
n 

x: 

x: 

x: 
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x - :l (F 1x-f1) 

X - G2 ,i(F2x-f2) 

x - G . (F x-f ) 
n,1 n n 

G. 
J 

fixed, j=l,2, ••. ,n I 

j=2,3, •.. ,n. 

A full use of the sequence of DCPs is made by combining also the iter­

ative application: first DCP 1 is solved and its solution is used as 

a starting value for DCP2 etc •• In a multigrid context 

DCP 1 ,DCP 2 , •.. ,DCP n' 

are processes to solve operator equations, discretized on finer and 

finer grids. The complete iterative process is called: Full Multigrid 

Algorithm [BRANDT, 1979]. 

3. DISC~TIZATION ON RELATED GRIDS, RELATED DISCRETIZATIONS 

In this section we give definitions for related discretizations 

of spaces and problems and we define relative order of approximation, 

consistency and convergence between related discretizations. In Sec­

tion 3.3 we give an approximation theorem for successive approxima­

tions in the iterative application of a DCP. 

3.1. Discretization of spaces and operators 

Let's be given a problem Fx y, where F:X + Y and y € Y are 

given and where X and Y are (infinite dimensional) vector spaces. The 

problem is discretized by associating it with a problem Fh ~ = yh, 

where F h: ~ + Yh and y h e: Yh are given and ~ and Yh are finite di­

mensional vector spaces. By selecting h e: H (Han index-set) different 

discretizations of the same problem are possible. 

A relation between the problem and its discretization is obtain­

ed by introducing surjections l\i: X + ~ and i\i: Y + Yh. (Notice that 

dim(X) ~ dim(~), dim(Y) ~ dim(Yh) and, in most cases, ~ and Yh are 

selected such that dim(~) = dim(Yh) . l 
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In order to interpret the solution of the discretized problem as 

an approximation to the solution of the original problem, we have to 

define an injection Ph: ~ + x. 
The mappings Ph are called prolongations, the mappings 1b and E\i 

are restrictions. The relation between the different spaces and map­

pings is summarized in the following diagram 

F 
x y 

1 
h E H 

DEFINITION. Given the discretization of the spaces X and Y by~, Yh' 

Ph, 1\i and i\i• h E H, we can associate with the problem Fx = y its 

Galerkin discretization Fh ~ = yh by defining Fh = ~ F Ph and 

yh = 1\iY· 

DEFINITION. Given to discretizations of the spaces X and Y by 

(~,Yh,Ph'E\i'i\il and (XH,YH,PH'l\i:'~), h,H EH, these are called re­

lated discretizations if surjective mappings ~ and ~ and an in­

jection PhH exist such that 

It should be clear that dim(XH) $ dim(~) and dim(YH) ~ dim(Yh) . 

We see also that, if two discretizations (with h,H E H) of the spaces 

X and Y are related, then the coarse discretization (with H E H) can 

be considered as a discretization of the fine discretization (with 

h E HJ of the finite dimensional spaces~ and Yh. 

From the definitions it follows immediately that, if the coarse 

discretization FH XH = YH and the fine discretization Fh ~ = yh are 

both Galerkin discretizations of the same problem Fx = y, we have 

and 
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Because Ph is an injection, it has a left-invers~ ~ such that 

1\ Ph is the identity operator on ~ i because 1\ and 1\ are surjective, 

right-inverses Ph and i\; exist such that 1\ Ph : ~ -+ ~ and 

1\i Pfi : Yh-+ Yh are identity operators. From these definitions of !\• 
Ph and Pfi follows: 

- - -
~ = ~ ph' 

phB = 1\ PH • 

The relation between the different spaces is summarized in the fol­

lowing diagram. 

X ____ F ___ •• y 

It is important to notice that, in general, different norms can 

be used to (trans-) form the above mentioned vector spaces into normed 

vector spaces or Banach spaces. Indeed, each of the above vector 

spaces, say Z, can be formed into a scale of normed vector spaces 

{Za}, a e lR, with za = z and norms U 0 8 such that with u e z we have 
a 

D uD a ::; U uU a if a s a. 

DEFINITIONS. An operator F 

KFI a a ::; c 
X -+Y 

and a-stable if 

X + Y is called bounded if 

uniformly in a, 
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uniformly in a, 

In the following we shall assume that all restrictions and pro­

longations and their right-resp. left-inverses are bounded, uniform­

ly in h e H. The conditions on Ube inverses imply for the prolongations 

Ph that 

UPhvll 
inf --irvr- > c > 0 , 
~o 

and for the restrictions 

C independent of h e H, 

inf 
we~ 

su:rr 
{vl~v==w} 

~that 

D~vn 
lvr- > c > O, c independent of h e H. 

w-ro 

To each discretization, characterized by h e H, a mesh-size 

m(h) > 0 is associated. Discretizations ~ and x8 of X with 

dim(Xh) ~ dim(XH) generally have mesh-sizes related by m(h) < m(H). 

If no confusion is possible we denote m(h) simply by h. Often we con­

sider infinite sequences {~} with h > 0 and lill\i-+-Q dim (Xh) = ~ 

3.2. Relative consistency and convergence 

DEFINITIONS. A sequence of discretizations of X characterized by 

(Xh,Ph,~)h>O is called convergent if 

lim II-PR I = O; 
h-+-0 h h 

the order of approximation is p if 

DEFINITION. A sequence of discretizations of a problem Fx 

sistent if 

lim U F R -R FB = 0; 
h-+-0 h h -h 

its order of consistency is p if 

y is con-
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DEFINITION. A sequence of discretizations of a problem Fx = y is cr-
-1 a a-cr 

stable if Fh : Yh + ~ is bounded uniformly in h and a. It is called 

stable if it is a-stable. 

DEFINITION. A sequence of discretizations of a problem Fx 

vergent if 

its order of convergence is p if 

y is con-

Analogously, for related discretizations characterized by 

H > h > 0, we can define the corresponding relative properties (with­

out reference to the original problem), i.e. 

the relative order of approximation p: 

the relative order of consistency p 

the relative order of convergence p: 

THEOREM. If two related discretizations of the same problem are con­

sistent of order p 1 and p 2 respectively, then they are relatively con­

sistent of the order min (p 1 , p 2 ) . 

PROOF. The simple proof is left to the reader. 
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NOTE 1. The following identity is useful if we consider DCPs with re­

lated discretizations 

NOTE 2. Let Fh~ = Yh and FH~ = YH be two related Galerkin discreti­

zations of the same problem, then, for any restriction ~ : ~ -+ ~ 

we have 

3.3. The accuracy of successive approximations in a DCP iteration .... 

with different discretizations on the same problem 

Let us consider {different) discretizations of the problem Fx y, 

viz. 

for all i 0,1,2, •.. , 

and let x,xh,Y and Yh be related by 

~: X + ~ and ~: Y + Yh. 

Let the order of consistency of the discretizations be p. , and let the 
]. 

first discretization be stable. We will study the iterative applica-
i -

tion of DCPA, with the equations Fh~ = yh = ~y to s~lve in the i-th 

iteration step and with the same approximate inverse Gh = (F~)-l in 

all iteration steps. Then the DCPA reads 

We are going to estimate the relative error of approximation for a 

finite number of iteration steps: 
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THEOREM. For the relative error of approximation in the i-th itera~ 

tion step of the iterative DCPA process: 

we have 

PROOF. 

ko 

k. 
1 

u -
0 

I"' I - 0 Po 
Gh 11\iF - Fh 1\il = 0(h ) 

IGhl l~F - F~-ll\iD + n(;hn 

min (p.+(i-j)p0 ) 
O(hQSjSi J ), i 

1 _ Fi-lg 
DFh ki-1 h 

1,2' •.. 

0 "" The given estimate now follows from the stability of Fh (i.e. Gh is 
0 uniformly bounded) and the consistency of Fh. 

u - R + G (RF FiR + FhiRx Fi ) i hx h -h x - h hx h - hui 

Hence, for i = 0,1,2, ••• , 

Here again, 

consistency 

0 
the estimate follows from the stability of Fh and the 

i 
of Fh • D 
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COROLLARY. If 

~ pi :;:: fi+l) fO ::; i < n), 

l pi Pn (i~) 

then 

4. MULTIGRID ALGORITHMS 

In this section we shall describe multigrid algorithms and the 

structure of their convergence theorems. First we consider a simple 

form of the multigrid algorithm, "the two-level algorithm" (or TLA), 

and show how its convergence is proved. Then we show the multi-level 

algorithm (MLA}, which is the recursive application of the two-level 

algorithm. At the end we show how multigrid algorithms are applied to 

non-linear problems. 

The problems that are solved by multigrid methods are all discre­

tizations of a continuous problem Lx = f. The methods find solutions 

to the finest discretization Lh~ = fh by means of discretizations on 

coarser grids, which we denote by LH~ ~ fH. 

4.1. The two-level algorithm 

The two-level algorithm is a non-stationary defect correction 

process in which only two different approximate inverses are used: 

(1) some relaxation method (e.g. Jacobi, Gauss-Seidel or the incom­

plete LU-decomposition, see example 1 Section 1) on the fine grid 

and 

(2) a coarse grid correction. 

The approximate inverse in the coarse grid correction that is 

used to solve the discrete problem Lh~ = fh is given byiGi = 
-1-

= PhHLH 1\ni· Thus, one coarse grid correction step in the two-level 

algorithm reads 
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One step in the two-level algorithm, now consists of p relaxation 

sweeps of the relaxation method chosen, a coarse grid correction 

step and again q relaxation sweeps of the relaxation method. Such a 

step of the two-level algorithm is described in the following ALGOL­

like program: 

proc two level algorithm 

begin 

(ref gridf u, gridf i) void: 

for i to p 

do relax (u,f) od; 

d :=restrict (Lh u - f); 

solve (v,d); 

u := u - prolongate v 

for i !£ q 

do relax (u,f) od 

II solves L8 v d II 

Clearly, the amplification operator of one step of the two-level 

algorithm is given by 

where Bh is the approximate inverse of the relaxation process. In this 

expression we recognize the relative convergence operator and the 

amplification operators of the relaxation process: 

and we can write 

or 

(I - Bh Lh) , 

(I - Lh Bh) , 
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The structure of the convergence proof for the two-level algo­

rithm is as follows: 

Assuming that 

(1) the two discrete operators are relatively convergent of order a, 

(2) the relaxation satisfies a proper smoothing property of order at 

least a, i.e. 3 c0 (p) > O, independent of h, such that 
H ·REL P II -a 'Mti > ~ < c0 (p)h and lim c0 (p) = o, 

P"""' 
(3) the amplification operator (~.EL)q is bounded, 

(4) the mesh-ratio m(H)/m(h) is bounded, uniformly in h, then the two­

level algorithm converges for p large enough. 

PROOF. 

Since c0 (p) + 0 for p +~we see that ft~LAg < 1 for p large enough. 0 

REMARK. In an actual convergence proof the norms in the relevant 

spaces should be specified and the assumptions should be verified for 

the particular algorithm under consideration. We have to realize that, 

apart from the above mentioned structure, the two-level algorithm is 

det.ermined by the particular discretizations ~ and LH, by the re­

strictions and prolongations ~ and PhH and by the particular relax­

ation method used (characterized by Bh) . 

If the discretizations ~and LH are relatedGalerkin discreti­

zations, then we can make use of the relations in the notes 1 and 2 of 

Section 3. 2. 

4.2. The multi-level algorithm 

-1 
Whereas for the two-level algorithm we have to evaluate~ , i.e. 
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we have to solve a discretized problem on a coarse grid, in the mul­

ti-level algorithm we approximate this solution by application of a 

number of iteration steps of the same algorithm on the coarse level. 

As was explained in Section 2.5 we now only have to solve directly a 

discretized problem on the very coarsest grid. If a iteration steps 

of the multi-level algorithm are used to approximate L; 1 , this multi­

level algorithm is described in the ALGOL-like program: 

proc multi level algorithm 

begin 

(ref gridf u, grdif f) void: 

for i to p while ..• 

do relax (u,f) od; 

d := restrict (f - Lh 

if level of u = 1 

then solve (u, f) 

u); v := 

# on the coarsest grid # 

else for i to sigma while ... ----
do multi level algorithm 

fi; 

u := u + prolongate v 

for i to q while 

do relax (u,f) od 

O; 

{u,d) od 

By while •• ·. we denote in the program that some iterations may be 

terminated sooner, depending on the speed of convergence or other 

conditions that can be checked during the computation. Multigrid al­

gorithms that make use of this possibility are said to have an adap­

tive strategy, algorithms where the iterations are controled only by 

the fixed numbers p, a and q are said to have a fixed strategy. Al­

though the adaptive strategy may be very efficient {cf. ~RANDT, 1979), 

the fixed strategy is better accessible for a theoretical analysis. 

For some fixed strategies, we show in figure 1 how it is switch­

ed between the different levels of discretization. We see that - es­

sentially - most relaxation sweeps are performed on the lower levels. 
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level : 3 2 1 0 

h H 3 2 0 

h H 3 2 

k 
Fig la 

Fig lb 

h H 3 2 1 0 

F 
Fig 1d 

Fig le 

Figure 1. The recursive structure of multigrid algorithms with a fixed 

strategy. 

0 
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In all diagrams the number of levels is 3, the very coarsest level is 

denoted by 0. In each diagram la, lb, le or ld, the basic structure 

on the levels h and H is given as well as the recursive structure of 

one iteration step on level 3. Tick marks on a level > 0 denote the 

execution of a relaxation step on this level, tick-marks on level 

0 denotes the direct solution on the very coarsest level. The dif­

ferent structures shown are: 

la. A general structure with p = 3, a = 3, and q = 2. 

lb. A structure with a 

le. A structure with a 

ld. A structure with q 

1 (NICOLAIDES, 1979) p = 3, q 2. 

1, p = 0 (FREDERICKSON, 1975) q 3. 

0 (HACKBUSCH, 1979) p = 3, a = 2. 

The amplification operator of a multi-level iteration step on 

the h-level of discretisation we denote by ~' this amplification 
MLA operator on the next coarser level we denote by MH The approximate 

inverse of the coarse grid correction in the multigrid algorithm is 
-1 

not given by LH , but it is obtained by o steps in the DCP for the 

approximation of L;1. The amplification operator of such a single 

DCP-step is given by~· Hence, the approximate inverse of the a 

iteration steps together is given by (see Section 2.3): 

MLA a -1 
(I - (MH ) )LH • 

Consequently, the amplification operator of the coarse grid correction 
is 

and we have 

or 

~ + (M.REL) q p (MMLA) a L-1 R cM_REL)P L.. 
h h hH H H Hh h h 

M_TLA + r.._ (M.REL) q P (MMLA) oL-1 R _ (M_REL)P · 
h h . h hH H H -Eh 11 • 
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Therefore, if the (coarse) discretized operator LH is stable and the 

assumptions (2) and (3) of Section 4.1 hold, then 

Here we get a recursive expression, where the rate of convergence of 

the MLA on the level h is expressed in the rate of convergence of the 

TLA and the rate of convergence of the MLA on the next coarser level 

H. Further we notice that on the coarsest 
TLA 

MLA TLA 
level we have M0 = M0 

On each level we have D~ H :;; p < 1 if p is large enough, hence 

we can find a a such that llMMLAU < 1. 
H 

Often a small value of a (e.g. 
MLA 

a=2) can be shown to be sufficient to have H~ 8 :;; p < 1 on all 

levels, p independent of h. 

4.3. The non-linear multi-level algorithm 

The multi-level algorithm in Section 4. 2 essentailly used the 

fact that the operator L and its discretizations are linear. By a 

slight change of the algorithm we can adapt it for nonlinear prob­

lems. For this purpose we make use of the DCPC as treated in Section 

1. We describe the nonlinear algorithm - again - in an ALGOL-like 

program 

proc non linear mla = (ref gridf u, gridf f) void: 

if level of u = 0 

then solve (u,f) 

begin 

# e.g. by a Newton type method # 

for i to p 

do relax (u,f) od; 

y := w := restrict u; 

d : = LH y + restrictbar ( f - Lh u) /mu; 

if level of u = 1 

then solve (u,f) 

# e.g. by some Newton methods # 

else for i to sigma 
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do nonlinear mla(w,d) od 

fi; 

u := u + mu x prolongate (w-y); 

for i to q 

do relax (u,f) od 

Here, of course, the relaxation should be of a non-linear type. The 

coarse grid correction of the TLA corresponding with this MLA (i.e. 

the MLA with cr = 00 ) is here 

This can be recognized as the DCPC in Section 1, with y such that 

LH ~xi = RHhy. 

If we fit the nonlinear MLA-step into a Full Multigrid Method 

(see Section 2.4), then we may replace "Rh xi (i.e. the best approxi­

mation of the solution that is available at the level HJ by the last 

solution obtained on the next coarser grid. In that case, there is no 

need for recomputing y and LH y in each call of the nonlinear MLA. 

5. EXAMPLES OF MULTIGRID METHODS 

In this section we give two examples of multigrid methods. In 

the first example we show Fredericson's method for the solution of a 

differential equation and in the second we treat a multigrid method 

for the solution of a Fredholm integral equation of the 2nd kind. The 

essential difference between both problems is that a regular differen­

tial operator, L : A+ B, maps a space with a stronger into a space 

with a weaker topology, whereas a compact integral operator, K : A+ B, 

maps a space with a weaker into one with a stronger topology. The ef­

fect is, that for the differential equation we can get an amplifica­

tion factor ll~All which is bounded by a constant (less than one) uni­

formly in h. We call this a multigrid method of the first kind. For 

the integral equation we can get an amplification factor 11~11 which 
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is bounded by a constant of order 0(hm) for some m > 0. This we call 

a multigrid method of the second kind. 

REMARK. With Jacobi-type iteration similar differences are found for 

the two different problems: for the differential equation we have the 

bound ll~Lll S: 1 - Ch2m and for the integral equation the bound is 

II ~U s: c < 1 as h + 0. These bounds also clearly show the supremacy 

of the MLA-iteration over the classical iteration methods. 

5.1. The multigrid method of Fredericson for the solution of a dif­

ferential equation 

For Fredericson's multigrid method we have p = 0 and cr = 1. Be­

cause of cr = 1 the amplification operator is much simpler than in the 

general case. For a 3-level method (see figure 1.c) this operator is 

given by 

where L. is the discretized operator at level i, (I-B.L.) is the am-
i i i 

plification operator of the relaxation at level i, and P and R are 

the prolongation and restriction operators between the various levels. 

First we look at the first term of this operator: 

-1 
Here (I-PL 2 RL 3) reduces the low frequences in the error and 

(I-B3L3)q reduces the high frequencies in the error of the approxima­

tion to the solution. This can be seen e.g. if L2 and L3 are related 

canonical discretizations: L2 = RL3P. Then the first term can be re­

written as 

If R denotes restriction to gridponts and P denotes piecewise 
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polynomial interpolation of degree k-1 then it is clear that for 
~ k 0 ~ k 

I - PR : H -+ H we have II I-PRll k 0 :> Ch . 
-1 0 0 H -+H 

(I-PL2 RL3): H -+ H being bounded we need for smoothing property 

with C(q) sufficiently small for large enough q, i.e. components in 

the error with large derivatives should be damped sufficiently. Such 

estimates can be proved. E.g. HACKBUSCH [1979] proves for regular el­

liptic differential problems of order 2m and (damped) Jacobi relaxa­

tion: 

MLA -1 -1 Analogously, in the third term of M) , the factor L1 - PL0 R 

reduces the lowest frequencies, whereas the factors (I-B.L.), i,1,2,3, 
l. l. 

reduce each a particular range of higher frequencies. The final effect 
:·MLA 

is that a bound for HMh II can be found that is less than one uniform-

ly in h. This is in contrast with a plain relaxation method for the 

solution of a discretized differential equation for which fl~RELll -+ 1 

as h -+ O. 

5. 2. A multigrid method for the solution of a Fredholm integral equa­

tion of the 2nd kind 

In this example we consider the integral equation 

b 

x(s) - f k(s,t}x(t} dt 

a 

or, in operator notation, 

LX-X-Kx y, 

y (s) , 

and we consider a sequence of related discretizations 

L X-X-KX 
p p 

y I 
p 

p 0,1,2, •• • t 



with h + 0 as p + ®· 
p 
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A simple method to solve the discrete equation is by means of succes-

sive substitution 

x. l = K x. + y • 
J.+ p J. p 

This is a Jacobi-type iteration: it is a DCPA with approximate inverse 

G = I. It converges if IK I < 1 and, for a compact operator K, it has 
p 

a smoothing property. 

For p > O, also a coarse grid correction is possible by using 
-1 -1 

- in the DCPA - a coarse grid solution operator L 1 = (I-K 1) for 
p- p-

the approximate inverse. 

Combination of one relaxation step and one coarse grid correction 

step yield the TLA with 

MTLA 
p 

(I-L- 1
1L )K 

p- p p 

-1 
(I-K 1) (K -K 1JK • 

p- pp- p 

Under suitable conditions (see HEMKER & SCHIPPERS, 1979) it can be 

shown that - if the repeated trapez~idal rule is used for the discre­

tization of the integral equation - we have 

-1 2 
sl(I-K) ll(K-K 1Rsc.h, 

p-1 p p- p 
for p + ®· 

The TLA still needs the exact solution of the discretized equation on 

the lower level p-1. Approximating this solution by recursive appli­

cation of a MLA iterations on lower levels we have the MLA with 

F 
p 

= MTLA + cFl a (K -MTLA) 
p p-1 p p , p 1,2,3, ... 

Hence, 
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From this it can be derived that, for a = 2 and with p0 

HMTLAD small enough, we have 
0 

This is the typical behaviour of the multigrid iteration of the second 

kind: the finer the discretization of the analytical problem is, the 

faster converges the iterative process to solve the discrete system 

of equations. 
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