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Abstract

Let I and L' be two families of linear dynamical systems, or, almost
equivalently, let I and I' be two systems over a ring. This paper
addresses itself to the question, what, if anything, can be said about
the relations between I and I' if it is known that I and L' are pointwise
isomorphic for all or aimost all of the paramcter va.ues.

1. INTRODUCTION

inear dynamical system is a system of differen~

11 equations

(1.1

X = Fx + Gu, y = Hx

n

IR, u€ Rw, y € RP, i.e. we have state space

mension n, m inputs and p outputs. Now let Q

a topological spave. Roughly a family of

near dyoamical svstems over 9 consists of a
v1lection of such equzations (1.1), one for each
€ Q, such that the matrices F,G,H depend
>ntinuously on the parameter q. More gererally
and also more properly) a family over Q consists
f a vectorbundle E over Q (of dimensien n),

vectorbundle endomorphism F: E ~ E and two
rectorbundle homomorphisms G: Q X R - E,
[: E~+Q x RP. The two definitions agree locally
(i.e) over small enough open subsets of Q and for
the purposes of this paper the first definitiom
mostly suffices.

Analogously one considers systems of equations

x(t+1) =Fx(t) + Gu(t), y(t) = Hx(t) (1.2)

where now the matrices F,G,H can have their
coefficients in any ring R (and t = 0,1,2,...,ay).
For each prime idealp of R let R(p) be the
quotient field of the integral domain R/; . This

gives us a family of systems

F(prx(e) + G(‘P)u(’t), v(t) = H(P)x(t)
(1.3)

which is the local algebraic-geometric analogue

x(t+i) =

of the topological concept of a family introduced
above. The main goal of the ctheory of f{amilies =f
systems is now to develop techniques and prove
theorems which do for families all the nice
things one can do for a single linear dynamical
system, as for example ~ realizaricn thecry for
a family of input/output maps (cf. also [3,4] )
- pole placement and stebiiization by feedback
(cf. also [J,ld
~ decomposition (e.g. completely reachable sub-
systems)

- Controllability subspaces and theirapplication
In view of the reinterpretation (sketched above!}
of a system{1.2) over a ring R as an algebraic-
gecmetric fariily of systems over Spec(R}, the
general project encompasses trying to do all
these things for svstems over rings, and chis
constitutes an important bit of motivatiom for
studying families of systems.

A related, and important, bit of motivatic

comes from linear delay differential dynamical
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systems as e.g.

il(t) = xl(t) + xz(t-l) + u(t-1)
iz(t) = x'(t-l) + u(t)
y(t) = xl(t) + xz(t~2)

(1.4)

Introducing the delay operator o, ox(t) = x(t-1),
we can write (1.4) formally as a linear system

over the ring R{o], viz.

x(t) = F(o)x(t) + G(g)u(t)

y(t) = H(o)x(t) (1.5)

where F(g), G(o), H(o) are the following matrices
with coefficients in the ring of polynomials
R[o]

I o

N 2
F(o) = ( ) , G(o) = s, H(o) = (1,0%).
1

o O
As it turns out this rather formal looking
procedure is most useful, [9]. For instance in a
very nice paper [8], Ed Kamen has worked out
some of the relationship between the spectral
properties of (1.4) and the commutative algebra
which goes into the study of (1.5). And, using
this, and the reinterpretation of (1.5) as a
family of systems, Chrys Byrnes [4] has been
able to do things abcut the feedback stabilization
theory of (1.4).
‘her bits of motivation for studying families
2 e.g. from identification theory, [7] and
study of high-gainfeedback systems, [10].
both these cases it is important to know in
at ways a family of systems can suddenly
:generate. Ideally ome would like to write down
ocal (uni)versal deformations for each system,
s Arnol'd did for matrices in [1]. For ccmplete-
y reachable or completely chservable éystems
aniversal deformations result from the fine
moduli spaces of [5,6]. And in fact the original
starting point for this paper was the far too
optimistic idea that these moduli spaces might
quite well be extendable to some extent. Thus
the main problem considered in this paper
became: Given two families of linear dynamical
systems L, L' over a manifold Q. Suppose that

L]

ointwise the systems I Z' are isomorphic
y s

for all or almost all q € Q. What can be said
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about the relation between L and Z' as families
and what can be said about the relations between
Zq and Z& at the remaining points of Q. )
The first question is of course entirely
analogous to the one studied by Wasow [13],
and later in an algebraic setting by Ohm and
Schneider [11], with respect to similarity of
families of matrices which depend (holumorphi-

cally) on a parameter.

2. ALMOST EVERYWHERE ISOMORPHIC FAMILIES OF
SYSTEMS.

We use the abbreviations cr for completely
reachable aad co for completely observable.
Recall ttat the system (1.1) is cr iff the

matrix

R(F,G) = (G FG ... F'G) (Q}
is of full rank m, and that (1.1) is co iff
the matrix Q(F,H) is of full rank n. Here
Q(F,H) is defined as

Q1T = @ FHT ... F*TaM (2.2)

",

where the symbol T means "transposes”.

1f £ = (F,G,H) is a family of linear.dynamical
systems o er a topological space Q we dencte with
L(q) the sysfem (F(q),C(q),H(q)). Completely
analogously if L = (F,C,H) is a (discrete time)
system over a ring R then I{p) = (F(p), Clpy,
H(P)) is the induced system over R(F), The
quotient 1rield of R/P.

2.3. THEOREM. Let Z and -' be two families over
a topological space Q. Let U, = :q € Q: ‘
Z(q) and Z'(q) are both cr} and U, = {q € 0_:‘
Z(q) and L'(q) are both co:}. Supp;se that
U‘ v} U2 = Q and suppose that Z(q) and 2'(aq)
are pointwise isomorphic for a dense set Z of
points q in Q. Then £ and £’ sre isomorphic as
families over Q, (which, by definition, means
that there is a éontinuous map Q - GLnGR).
qr S(q), such that F'(q) = S(q)F(q)S(q)-],
G'(q) = S(Q)G(q), H'(q) = H(q)S(q) ' for all
q€Q. '

It follows in particular that Z(q) and Z'{(Q

are also isomorphic in all the points of Q ~ Z.



The (local) algebraic geometric version of this

theorem is

2.4, THEOREM. Let I and L' be two systems over

a ring R. Let U, = {pe Spec(R)IZ(p) and

I'(p) are both cr}, u, = {pe Spec(R)lZCP) and
Z'(P) are 1 V] U2 =
Spec(R) and that there is a dense subset

Z « Spec(R) such that Z(P) and Z'(*) are isomor-
phic for all p € Z. Then L and I' are isomorphic

as systems over R.

both co}. Suppose that U

This.means in particular that if R is an integral
domain and £ = (F,G,H), L' = (F',G',H') are two
n—dimensioqal systems. over R which are isomorphic
over K, the quotient field of R, and if moreover
for all maximal ideals m < R we have that the
rank of both R(F,G), R(F',G') or of both

Q(F,H), Q(F',H') stays n mod wm., then % and L'

are also isomorphic as systems over R.

Both theorems 2.3 and 2.4 are almost trivial
consequences of the existence of fine moduli
spaces for cr families and for co families.

These exist both in the topological case (cf.[5])
and the algebraic geometric case (cf.[6]). The
proofs of 2.3 and 2.4 now go roughly as follows.
By the existence of the fine moduli space MT

for cr families, such families over Q correspond
(up to isomorphism)bijectively to continuous

and L'

. Similarly using the fine

c
maps Q - M T, It follows that T are

isomorphic over %
mnoduli space u° they are isomorphic over U,.
On U, N U2 finally these isomorphisms agree
because two cr or co systems can have at most
one iéomorphism between them.

The trouble with theorems 2.3 and 2.4 is that,
unless one demands something like pointwise
isomorphism everywhere, or cr everywhere, or co
everywhere, the condition Ul U U2 = Q cannot be
stated in terms of the separate families I and
I'. So one is lead to ask whether not a condition
like everywhere co or cr would be sufficient.

It is not, as is more or less predictable from
the wellknown fact that as a rule it is perfectly
possible for twa nonisomorphic systems I and I'

over an integral domain R to become isomorphic
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over the quotient field, [12]. The
simplest such example is undoubtedly

the following one dimensional omne over
Rlo]. - -

L:F=1,G=o0, H=1

(2.5)
Z': F'=1, 6'=1, H'=0

Considered as families over Q = R, parametrized

by 0, we have that I is co everywhere and cr
everywhere except in 0, while L' is cr ev erywhere
= U, =

1 2
R~ {0}. Also I(q) and L'(q) are isomorphic for

and co everywhere except in 0. Thus U

all q # 0. But of course I and L' are not isomor-
phic as families nor as systems over the ring
Rlo].

Another example, which is slightly more
illustrative of what goes on is given by the
families

L=, ¢ b, oy
0 g b

| 1 (2.6)
'= (), D, 1,00
0 I b

which have essentially the same properties as the
families (2.5). And here we note that though

£(0) and I'(0) are of course not isomorphic,

they are also not totally unrelated. In fact they
agree on the completely reachable subsystem of

£(0). (For a more precise description of what
this means, cf. below). Note also that these

examples largely destroy all hope about extending

the fine moduli spaces M and M°° a bit.
min’p m’n’p
2.7. MORPHISMS. Let £ and Z' be two families over

-

Q. A morphism I ~ Z' over Q then consist of a
Q - yxn
matrices such that for all q € Q, ¥(q)G(a) =
F' (U (q) = v(DF(q), H'(b(q) = H(q).

Completely znalogously a morphism L = L' between

continuous map ¥ the space of n 1k n

G'(q),

two systems over a ring R is an n x n matrix T
such that TG = G', F'T = TF, H'T = H. Using this
notion one can now state the two following (dual)

"mildness of degeneracv" results.

2.8. THEOREM. Let Z and Z' be two families over
Q. Suppose that £(q) is cr for all q € Q. Suppose
moreover that L'(q) and Z(q) are isomorphic for

all q in a dense subset Z of Q. Then there is a



worphism T: I + I' ovér Q such that

T(q): IL(q) -~ I'(q) is an isomorphism for all

q € Z and such that T(q): Z(q) -~ Z'(q) maps the
state space of I(q) onto the completely
reachable subspace of the state space of I'(q)

for all q € Q.

<1

2.9. THEOREM. Let T and L

Q. Suppose that Z(q) is

be two families over-
co for all q € Q. Suppose
moreover that Z'(q) and Z(q) are isomorphic for
"all q in a dense subset Z of Q. Then there is a
Q such that T(q): I(q) =

for all q € Z and such

morphism T: I' + I over
£'(q) is an isomorphism
that for ;il q € Q ~ 2 two states x,x' in state
space of I'(q) are indistinguishable (by means

of observations) if and only if their difference

x - x' is in Ker(T (q)).

There are of course the obvious analogous results
for systems over rings. In this case 2.8 says,
among other things, that the system over a ring
R which is cr everywhere is maximal in the
lattice of all realizations over R which realize
the same input/output behaviour; similarly 2.9
says that the everywhere co realization is the

minimal element of this lattice.

2.10. ON THE PROOFS OF 2.8 aAND 2.9.
Let q € N. Because [ is cr in q, there are a
nice selection % (cf.[5]) and an open subset U
of q such that R(F(q'),G(q'))a is invertihle
for all q' € U. Now let Z s2gpn e be a sequence
of points of Z N U converging to q.
We define the matrix T(q) as the limit
T(@) = lim R(F(z;),G6(z,) RE' (20,6 (z )
oo
It is not difficult to check that T(q) dces not
depend on the choice of @ or on the choice of
Zis Zpseee and to check that the T(q) combine
to define a continuous map T: Q » Vant i €3
q € 2z, then T(q) is of course the unique
isomorphism £(q) ~ IZ'(q). It follows that T
‘induces a morphism L - L' over Z and by
continuity it follows that T is a morphism over

Q. For each q € Q we then have

T(qQ)R(F(q),G(q)) = R(F'(q),G'(q)) (2.11).
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The last statement of the theorem now follows by
a rank consideration. The proof of 2.9 is similar

(or use duality).

2.12. EXAMPLE. Let T and ' be two families over
Q, which are pointwise isomorphic over a dense
subset Z of Q. Then, without any further
assumptions, we know of course that for all q € Q,
T(q) and £'(q) are related in the sense that their
¢r and co subquotients are isomorphic. This
follows from the continuity of the laplace
transform. Beyond this there seems little one can
say (without making some sort of stableness
hypothesis as in 2.8 and 2.9 above), as the

following example shows.

_ 1 1 a
Z = ((0))’ (0 2)’ (‘;,‘)) - ‘(\
. _ ;. O 1-oa g a i
2= (D, O g 0O
These families are pointwise iscmorphic for all

o # 0. But for 0 = 0 there is not even amorphisn
2(0) ~ I'(0), in fact therge is not a morphism
between the input parts of the completely

reach:.ble subsystems of Z(0) and Z'(0).

3. EVERYWHERE POINTWISE ISOMORFPHIC FAMILIES OF
SYSTEMS.

Now let L and Z' be families of svstems over Q
{resp . Spec(R)) which are pointwise lsomorphic
everywhare. Then it does not necessarily
foilow that - and ' are isomorphic as families
over Q (resp. are isomorphic as systemns over R),

as the following example shows,

3.1. FXAMPLE. Comnsider the two families cver'

(or the two systems over R{g]) defined by

it

29, .2

%, .20

P«

.o !
=) (

5 1
g
I
o]
These two families are pointwise isomorphic for
all o(resp. the systems Z{p), Z'(p) are
isomorphic for all prime ideals 3 = R[u]) but
they are not isomorphic as families cver R

-

(resp. as systems over R[0]); indeed I and I'
are not isomorphic in any neighbourhood of 0
(resp. not isomorphic cver any loczlization

1R[cs]f of R[o] for which £(0) # 0).



g0 we shall need some sort of extra condition to
insure that pointwise isomorphism implies iso-

morphism as families.

3.2. STABILIZER SUBGROUPS. Let I be a family over
Q. Then for each q € Q we define

N(g) = {5 € GL_(R): SF(q) = F(q)S, SG(q) =
=G(q),H(q)S = H(q)}.

This is the stabilizer subgroup in GLnGR) of the
system Z(q). The Lie algebra of N(q) is

L(q) = {T € M™*"|TF(q) = F(q)T, TG(q) = 0,
H(q)T = 0}

We use r(q) to denote the dimension of N(gq) which
is of course equal to the dimension of L(q).
Completely analogously one defines in the case

of a system L = (F,G,H) over a ring R the
subgroup N(p) of GLn(R(?))

invertible matrices S over

consisting of all

the field R(P)

(= quotient field of R/p), such that SF(p) =

= F()S, SCP) = G(p), H(3)S = H(p), and L(p) as

the Lie algebra of all n x n matrices T with

coefficients in R(?) such that TF(P) = F(?)T,
G(p) = 0, H(PT = O.

Lald

T z

o

3.3. THEORFM. Let and be two differentiable

families cver the differentiable manifold Q.

-

Suppose that T and L' are pointwise isomorphic
everywhere. Suppose moreover that r(q) = dimN(q)
(= dim L(q)) is constant in some neighbourhood
U of 9 € Q. Then there is a (possibly smaller)
and Z'

isomorphic as differentiable families over V.

-

neighbourhood V of a, such cthat I are

Here a family is differentiable if the map q—
(F(q),G(q),H(q)) is differentiable. and an
isomorphism of families V - GLnGR) is differentia-
ble if this map is differentiable. For the proof
at least, some sort of differentiability
restriction is necessary. There are analogous
theorems for holomorphic families and real
analytic families. The corresponding theorem

for systems over rings is

3.4, THEOREM. Let L and I' be two systems over
a ring R. Suppose that I@@) and I'(P) are

isomorphic for all prime ideals P contained in

159

some open subset U of Spec(R). Suppose moreover
that r(p) = dim N(p) is constant for some
neighbourhood U' of Po € U. Then there exiéts an
open neighbourhood V = Spec(Rf), f € R, of ?o
such that I and I' are isomorphic as systems over

Rf (or, equivalently, as families over V).

For both these theorems it is in general not
true that I and I' are necessarily isomorphic
over all *f Q (resp. isomorphic as systems over R)

as the following example shows.

3.5. EXAMPLE. Consider the following two systems,
either as families over R or as systems over the
ring R{o]

b on, %1,-00)

e %2, (@%-1,-0-2))

L= (), (

g
These two families are pointwise isomorphic
evervwhere; the dimension of the stabilizer
subgroups is 1 everywhere; in addition one has
that rank R(F(S), G(g)) and rauk Q(F(c),q4(c))
are also equal tn 1| everywhere. As families che
two systems are isomorphic over R ~ -1} and
also over R ~ {1}. As svstems over rings they
3-1 and‘m[:]:*l,

as is easily checked, as systems over R{u]itself.

are isomorphic over R[0] but not,
The systems I and L' are not even isomorphic as
differentiable (or topological) familiies.

Indeed such an isomorphism nust necessarily be
I [
1

0

2 |, where ¢, and

12 are

Cay
la

of the form gr+ (

€22

continuous functions, such that c is nowher=

22

zero on R. One calculates that €121%03

must thén

satisfy that
o2 -] _
¢ (@) = (67-1) e, (0)(0+2) - g

For this to remain finite in 0 = 1 and -!, we must
0.

) = 3-‘, c22(—1) = -] and there is no real

have 3c22(l) - 1 = 0 and c22(—1) + 1 = e.

i.
4 1

22(
continuous function assuming these values in | and

-1 and which is also everywhere nonzero.

3.6. ON THE PROOF OF THEOREM 3.3. To prove
theorem 3.3 one considers the map Q x GLn -
Q x L , given by ¢ : (q,8)~ (q,(SG(q),
TP o . .
SF(q)S ,F(g)S )). The constant dimension




assumption means that this map has constant rank,
so that the image is locally a differentiable

submanifold of Q X L . Note that the fibre of

m,n,p
¢ at (q,L'(q)) is precisely the set of all

possible isomorphisms £(q) -~ I'(q). Let Q' be the

submanifold of Q % Lm, ,
Then Q' < Im¢ by the everywhere pointwise iso-
morphic hypothesis. Using that ¢ is a submersion
onto its image it now follows that ¢_I(Q') > Q'
_admits local sections, proving the theorem.

To prove the local algebraic geometric version
of theorem 3.3, that is theorem 3.4, we use a
somewhat dif ferent idea. The main ingredient is

the following generalization of the central

lemma of [11 1]

3.7. LEMMA. Let R be a ring without nilpotents,

let A be an m X n matrix with coefficients in R
and let a € R". Consicer the equation Ax = a.

Suppose that the equation A(p)y = a(p) over the
field R(p) can be solved for all prime idealsp.
Suppose moreover that r(p) = rank A(p) is
constant (as a function of $). Then Ax =

R.

a is
solvable cver Moreover if wm is a meximal ideal
of R and y@m) is any pregiven solution of
AGmyy = a(m),

Ax =

then there ts a solution x of

a over R such that x = v(m) mod m. Finally

if p is a prime ideal and v(p) is auy given
solution of A(p)y = a(p) then there is an

f € R ~p and a solution of Ax = a over RE such

that x = y(p) mod pr.

3.8. ON YHE PROOF OF LEMMA 3.7.
Q:
rank hypothesis and the fact that R has no nil-

Let P = Imn(A),

Rm/Im(A). Then it readily follows from the

potents that for all prime ideals p the
localization Q, = CokEY(R; - R;) is free of rank
m - r {(where r = r(p)). It follows that Q is a
projective R-module ([2], Ch. II, §5) and hence

a direct summand of a free module. Now consider
the image a of a in Q = R™®/Im(A). The solvability
of A(P)y
Q ~ Q) =

S8ecause Q is projective and R is reduced it

a(P) means that a maps to zero under
Q 8 R(p) for all prime idealsp .
follows that a = O proving that Ax = a is

solvable over R. Now let y(m) be any pregiven

> defined by qr (q,Z'(q)) .
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solution of .. (M)y = a(m) where Wt is a maximal
ideal of R. Consider the diagram

0+cC Ao

L iRl |

0+ Cc@m - RmM" -+ Pm -~ 0

->

- 0 . -

where C is the kernel of A: R" - Rm. The module

Q.

It follows that the lower sequence is also exact.

P is also projective as the kernel of R ~

Some diagram chasing, using that j' is surjective
now readily proves the second assertion of the
lemma. If p < R is prime, one argues exactly the
same. The only extra difficulty is that

j': €~ C(p) is not necessarily surjective.
However, if z € C(F) is any element, then there
always is an £ € R ~P such that z is in the

image of Cf - C(p).

¢

v 3.9. ON THE PROOF OF THEORE! 3.4. Given the

lemma, the proof of theorem 3.4 is entirely
straightforward. Indeed one considers the linear
map A: Rk - Rz given by Xm (XF-F'X, XG,H'X)

2 . .
where k = n~ and X is a k~vector written as an
2
n x n matrix. Here L= n" + om + ap. Now let

a € RL be the vector (0,G',H). The constancy of
dim N(p) =

constant. Now let be any prime ideal and S(p
[¢] P o

dim L{p) means that rank A(p) =

an invertible matrix over R(?O) taking Z(po)

a(?u?.

So by the lemma there is a solutinn S over R, for

into Z'(po). Then S(PO) solves A(po)y =

some f € R ~ P, of Ax = a which moreover agrees

¢

with § od . ) is ix ibl
(Po) mod p . Because S(FO, is invertible
S is invertible over x

f' € R~ po .

£ for some suitable
3.10. EXAMPLES. It does not appear that the
condition that the dimensicn of the stabilizer
subgroups N(q' remains constant as q varies has
much to do with conditions which seem system-—
theoretically more natural like rank R(F(q),G(g)}
is constant. Consider for exampie the family

1 1

~_
<=, (G G 0,2))

For this family over R one has rank(R(F(q)),G{qJ)
rank(Q(F(3),H(3))) for all 7 € R, but
dim N(o) = |

= | =

if ¢ = 1 and dim N(2) = 0 otherwise.

On the other hand the family



0

p- (b, @ P o)

has dim N(o) = O everywhere but rank(R(F(0),G(0)))
=2 if o# 0and = 1 if 0 = 0 (and rank(Q(F(o),

H(o)) = 2 everywhere.
4. CONCLUSIONS.

The main questions studied in this paper were:

(1) Given two families of system L and I' which

are pointwise isomorphic. Are they then also

isomorphic as families?

(2) Given two families of systems & and I' over Q

which are pointwise isomorphic over Q or some dense

subset Z of Q. What can be said about the relations

between £(q) and I'{q) at the points of Q ~ Z.

Question (1) reccived a positive answer which

specializes to a theorem of Wasow's [13] for

holomorphic families of matrices under similarity

It seems also likely that the theorem is best
ssible in the sense that if Z is a family such

‘at dim N(q) is not constant then there is a

family ' which is pointwisé isomorphic to &

everywhere but not iscmorphic as families in any

ueighbourhood of a point q where dim N(q) sudden- '

ly increzses. Ac to question (2), thev are

definite relations between Z(q) and L'(q) if

either L or I' is cr or co in a neighbourhood of

q. If not than a number of examples show that the

ways in which a family of systems can degenerate

do not depend only on the isomorphism cliasses

of the systems involved but also on the systems

themselves (apart frcm the subquotients which

are recoverable from the transferfuncrions

(cf. also [7]). Thus one nas nere tne usual scaling

and singular perturbation phenomena. It remains

to construct local versal deformations of non cr

and non co systems.
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