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Abstract 

Let l: an.d l:' be two families o! linear dynamical systems, or, almost 
equivcllently, let l.: and l:' be two systems over a ring. This. paper 
addresses itself to the question, what, if anything, can be said about 
the relations between r and l.:' if it is known that r and l.:' are pointwise 
isomorphic for all or almost all of the param~ter va.ues. 

I. INTRODUCTION 

inear dynamical system is a system of differen­

' 1 equations 

:ii: • Fx + Gu, y • Hx ( J. l) 

~:Rn, u € JRm, y € IP..P, i.e. we have state space 

cnension n, m i.nputs and p outputs. No'W let Q 
a topological spJL'e. Roughly a family of' 

near dynamical systems ov11r q consists of a 

•llection of such equ3tions (1.1), one for each 

E: Q,such that the matrices F,G,H depend 

>ntinuously on the parameter q. More g~nerally 

and also more properly) a family over Q consifits 

fa vectorhundle E over Q (of dimension n), 

vectorbundle endomorphism F: E + E and two 

'ectorbundle homomorphisms G: Q x lRm - E, 

l: E • Q x :mP. The two definitions agree locally 

(i.e) over small enough open subsets of Q and for 

t:he purposes of this paper the first definition 

mostly suffices. 

Analogously one considers systems of equations 

x ( t +I ) • Fx ( t) + Gu ( t) , y ( t) • Hx { t) (I. 2) 

where now the matrices F,G,H can have their 

coefficients in any ring R (and t • 0,1,2, ... ~ay). 

For each prime ideal -p of P. let R(f') be the 

quotient field of the integral domAin R/~ • This 
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gives us a family of systems 

x(t+I) F<'(t)x(t) + G{'f>)u(t), y(t) = H'1)x<t) 
(I .3) 

which is the local algebraic-geometric analogue 

of the topological concept of a fami~y introduced 

above. The main goal of the theory fJf families :f 

systems is now to develop t~chniques and prove 

theorems wliich do for families .all tl.e r.ice 

things .me can do for a single li:1eilc dynam:cal 

system, as for example - realizaticn theory for 

a family of inpct/output maps (cf. also (3,4] I 

- pole placement and st~bilizaci0n by feedback 

(cf. also ( 4', 14] 

- decomposition (e.g. completely reac~able sub-

systems) 

- Controllab.ility subspaces and theirapplication 

In view of the reinterpretation (sketched above) 

of a systern(l.2) over a ring Ras an algebraic­

gecmetric f.:i.:·iily of &ystems over Spec(R), the 

general project encompasse: trying to do all 

these things for 3ystems over rin11;s, and this 

constitutes an i~portant bit of motivation for 

studying families of systems. 

A related, .and important, bit of motivatic 

comes from linear delay differential dynamical 



systems as e.g. 

x1(t) = x1(t) + x2(t-I) + u(t-1) 

x2(t) • x,<t-1) + u(t) 

y(t) = x 1(t) + x 2(t-2) 

(I. 4) 

Introducing the delay operator a, crx(t) = x(t-1 ), 

we can write (1.4) formally as a linear system 

over the ring R[o), viz. 

x (t) 
y ( t) 

F(o)x(t) + G(a)u(t) 

H(a)x(t) (I. 5) 

where F(o), G(o), H(o) are the following matrices 

with coefficients in the ring of polynomials 

R[o] 

F (a) C :J, G(o) =(:), H(o) = (t,o2). 

As it turns out this rather formal looking 

procedure is most useful, [9). For instance in a 

very nice paper [8), Ed Kamen has worked out 

some of the relationship between the spectral 

properties of (I .4) and the commutative algebra 

which goes into the study of (I .5). And, using 

this, and the reinterpretation of (1.5) as a 

family of systems, Chrys Byrnes [4) has been 

able to do things abc~t the feedback stabilization 

theory of (1.4). 

·her b;ts of motivation for studying families 

~e.g. from identification theory, [7] and 

study of hi.gh-gainfeedback systems, [ 10). 

both these cases i.t is i.mport.rnt to know in 

at ways a family of systems can suddenly 

~g.:nerate. Ideally one "'ould like to write down 

ocal (uni)versal deformations for each systPm, 

s Arnol'd did for matrices in (I]. For cumpLete­

y ~eachable or completely cbservable systems 

3niversal deformations result from the fine 

moduli spaces of (5,6]. And in fact the original 

starting point for this paper was the far too 

optimistic idea that these moduli spaces might 

quite well be extendable to some extent. Thus 

the main problem considered in this paper 

became: Given two families of linear dynamical 

systems l:, 1:' over a manifold Q. Suppose that 

pointwise the systems ' ~· are isomorphic -q• ~q 

for all or almost all q E Q. What can be said 
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about the relation between ;: and i:' as fa'Dilies 

and what can be said about the relations between 

r and r· at the remaining points of Q:. 
q q 

The first question is of course entirely 

analogous to the one studied by Wasow [13], 

and later in an algebraic setting by Ohm and 

Schneider [II], with respect to similarity of 

families of matrices "·hich depend (holv,norphi­

cally) on a parameter. 

2. ALMOST EVERYWHERE rsmtORPHIC FA:-!ILIES OF 

SYSTEMS. 

We use the abbreviations er for completely 

reachable a,1d co for completely obst!rvable. 

Recall tilt the system (I. I) is er i ff the 

matrix 

R(F,G) (G FG 

is of full rank ·n, and that (I. I) is co iff 

the matrix Q(F,H) is of full rank n. Here 

Q(F,H) is defined as 

where the symbol T means. "transposes". 

(2. 2) 

If 1: • (F,G,H) is a family of linear.dyc3mi~al 

systems o er a t?polo1;ica l ,;race Q "e denote 'Nicli 

I:(q) the system (F(q),G(q),H(q)). Completely 

analogously if : • (F,C,H) is a (discrete cime~ 

system over a ring R then :: C-pi = (F(f>), GCp!, 

H(p)) is the induced system over iHf", ".:he 

quotient iield of Rip. 

2.3. THEOREM. Let - and b~ two families o~~r 

a topological spac.;: Q. Let G1 "q E Q: 

Z(q) and Z:' (q) are both cd and u2 •.q E Q:. 
I(q) and 1:' (q) are both co;. S·Jppose that 

u1 U u2 =~and suppose that :::(q) and .::'fqj 

are pointwise isomorphic for a dense set Z of 

points q iu Q. Then::: and :::• qre isomorphic as 

families over Q, (which, by definitio~,, means 

that there is a continuous map Q ... CL QR), 
n -I 

q,..,. S(q), such that F' (q) = S(q}F(q)S(q) 

G'(q) = S(q)G(q), H' (q) = H(q)S(q)-l for all 

q E Q). 

It follows in particular cha~ :(q) and:'(~ 

are also isoIBorphic in all the points of Q' Z. 



The (local) algebraic geometric version of this 

theorem is 

2.4. THEO'REM. Let r and E' be two systems over 

a ring R. Let u1 • {'f' E Spec(R)IE(~) and 

r• Cp) are both er}, u2 • {f E Spec(R) lrq.) and 

E'{f>) are both co}. Suppose that u1 U u2 = 
Spec(R) and that there is a dense subset 

Z c Spec(R) such that E(~) and E'(p) are isomor­

phic ~or all J> E z. Then r and r I are isomorphic 

as systems over R. 

This means in particular that if R is an integral 

domain and E = (F,G,H), E' = (F',G',H') are two 

n-dimensional systems. over R which are isomorphic 

over K, the quotient field of R, and if moreover 

for all maximal ideals 'll't c R we have that the 

rank of both R(F,G), R(F',G') or of both 

Q(F,H), Q(F',H') stays n mod n,,, then rand E' 

are also isomorphic as systems over R. 

Both theorems 2.3 and 2.4 are almost trivial 

consequences of the existence of fine moduli 

spaces fer er fai::ilies and for co families. 

These exist both in the topological case (cf.[S]) 

and the algebraic geometric case (cf.[6]). The 

proofs of 2.3 and 2.4 now go roughly as follows. 

By the existence of the fine moduli space Mcr 

for er families, such families over Q correspond 

(up to isomorphisil'J biji>ctively to continuous 

maps Q ~ Mcr. It follows that E and t' are 

isomorphic over u1 • Similarly using the fine 

~uduli space Meo they are isomorphic over U~. .. 
On u1 n u2 finally these isomorphisms agree 

because two er or co systems can have at most 

one isomorphism between them. 

The trouble with theorems 2.3 and 2.4 is that, 

unless one demands something like pointwise 

isomorphism everywhere, or er everywhere, or co 

everywhere, the condition u1 U u2 = Q cannot be 

stated in terms of the separate families E and 

E'. So one is lead to ask whether not a condition 

like everywhere co or er would be sufficient. 

It is not, as is more or less predictable from 

the wellknown fact that as a rule it is perfectly 

possible for two nonisomorphic systems E and E' 

over an integral domain R to become isomorphic 

over the quotient field, [ 12]. The 

simplest such example is undoubtedly 

the following one dimensional Otte over 

11.[a). .. 

r : F - I, G - a, H = 
E': F'• I, G'• I, H'= a 

(2.5) 

Considered as families over Q •lR, parametrized 

by a, we hsve that I is co everywhere and er 

everywher~ except in O, while E' is er ev erywhere 

and 

ll ..... 

all 

co everywhere except in O. Thus u1 • u2 ~ 

{O}. Also E(q) and E' (q) are isomorphic for 

q # 0. But of course E and E' are not isomor-

phic as families nor as systems over the ring 

ll[ a] • 
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Another example, which is slightly more 

illustrativ~ of what goes on is given by the 

families 

r = «~>. <~ 
E'= «b>, (: 

I 
b)' (1.0)) 

~)' (I ,0)) 
(2.6) 

which have essentially the same properties as the 

families (2.5). And here we note that though 

E(O) and I'(O) are of course not isomorphic, 

they are also not totally unrelated. In fact they 

agree on the completely reachable subsystem of 

E(O}. (for a_more precise description of what 

this means, cf. below). Note Jlso that these 

examples largely destroy all hope about extendin~ 

the fine moduli spaces Mcr and Meo a bit. 
m,n,p m,n,p 

2.7. MORPHISMS. Let i and Z' be two familie& ov~' 

Q. A morphism r.~ E' over Q then consist of a 

continuous m&p ~ : Q Mnxn the space of n x n 

matrices sach that for all q E Q, ~(q)G(q) ~ C'(q) 

F'(q)W(q) = ~(1)F(q), H'(q)~(q) = R(q). 

Completely analogously a morphism I: - l:' between 

two systems over a ring R is an n x n matrix T 

such that TG = G', F'T" TF, R'T =H. Using this 

notion one can now state the two following (dual) 

"mildness of degeneracy" results. 

2.8. THEOREM. LE:t I: and i' be t .... o families over 

Q. Suppose that I(q) is er for all q € Q. Suppose 

moreover that E'(q) and I(q) are isomorphic for 

all q in a d~nse subset Z of Q. Then there is a 



morphism T: r .... r I over Q such that 

T(q): I:(q)-+ I:'(q) is an isomorphism for all 

q €Zand such that T(q): Z(q) ·• l:'(q) maps the 

state space of Z(q) onto the completely 

reachable subspace of the state space of :'(q) 

for all q E Q. 

2.9. THEOREM. Let: and Z' be two families over· 

Q. Suppose that Z(q) is co for all q E Q. Suppose 

moreover that Z'(q) and Z(q) are isomorphic for 

all q in a dense subset Z of Q. Then there is a 

morphism T: I:' .... Z over Q such that T(0a): Z(q) _,. 

E'(q) is an isomorphism for all q E Zand such 

that for all q € Q ~ Z two states x,x' in state 

space of Z'(q) are indistinguishable (by means 

of observations) if and only if their difference 

x - x' is in Ker(T (q)). 

There are of course the obvious analogous results 

for systems over rings. In this case 2.8 says, 

among other thing~, that the system over a ring 

R which is er everywhere is maximal in the 

lattice of all realizations over R which realize 

the same input/output behaviour; similarly 2.9 

says that the everywhere co reaiizat ion is the 

minimal element of this lattice. 

2. I 0. ON THE PROOFS OF 2. 8 A.'W 2. 9. 

Let q E ~- Because : is er in q, there are a 

nice selection :t (cf.(S]) and an open subset U 

of q such that !'l(F(q') ,G(q')\i. is invertilile 

for all q' EU. Now let z 1 ,~ 2 , •.. be a sequence 

of points of Z n U converging to q. 

We define the matrix T(q) as the limit 

T(q) = lim R(F(z.),G(z.)-IR(F'(z.),G'(z.)) 
i-+«> l. 1 CL 1 1 :;i. 

It is not difficult to check that T(q) does not 

depend on the choice of a or on the choice of 

z 1, z2, ••• and to check that the T(q) combine 

to define a continuous map T: Q _,. Mmm. If 

q E Z, then T(q) is of course the unique 

isomorphism l:(q) l:'(q). It follows that I 

·induces a morph ism l: _,. t' over Z and by 

continuity it follows that T is a morphism over 

Q. For each q € Q we then have 

T(q)R(F (q) ,G(q)) = R(F' (q) ,G' (q)) (2. 11). 
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The last statement of the theorem now follows by 

a ran~ consideration. The proof of 2.9 is similar 

(or use duality). 

2.12. EX~IPLE. Let: and;';' be two families over 

Q, which are pointwisc isomorphic ever a dense 

subset Z of Q. Then, without any further 

assumptions, we know of course that for all q E Q, 

l:(q) and :• (q) are related in the sense that their 

er and co subquotients are isomorphic. This 

follows from the continuity of the Laplace 

transfonn. Beyond this there seem~ little one can 

say (without making some sort of stableness 

hypothesis as in 2.8 and 2.9 above), as the 

following example shows. 

l:' 

I l a 
((0)), <o 2), (o,I)) 

2 

( cr) (1-oa a a) (O )) 
t I ' - a cra+2 ' a 

(2.1t' 

These families are pointwise :scr.iorphic for all 

o i- O. But for a= 0 there is not even a morphism 

:(O) _,. l:'(O), in fact ther~ is not a morphism 

between the input parts of the completely 

reachc.ble subsystems of :':(0) and ::'(0). 

3. EVERYWHERE POI NTWISE lSO~lORHiL: Fl~U LIES OF 

SYSTEMS. 

Now let l: and:• be families of syst<0ms over Q 

\resp Spec(R)) wLich are point·~i.se isornurpbic 

evervwhere. Then it does not necessarily 

foilow that :: and :• are isomorphic as fami lie~ 

over Q (resp. are isomorphic as syste~5 over R), 

as the following example sho•.:s, 

3.1. rXA'1PLE. Consider the two iaI:iilies ever~ 
(or the two systems over JR[o]) defined by 

~' 

((~) , (~2 ~) , (I , 2)) 

( (~), (~ ~), (I , 2o)) 

Trese two families are pointwise isomorphic for 

all cr(resp. the systems Z(p), :'(~) are 

isomorphic for all prime _ideals 1 ::::n<[,,]) but 

they are not isomorphic as families over lR 

(resp. as systems over IR[cr]); indeed l: and?.' 

are n0t isomorphic in any neighbourhood of 0 

(re~p. not isomorphic ever any localization 

R(o]f of lR(o] for which f(O) f. O). 



So we shall need some sort of extra condition to 

insure that pointwise isomorphism implies iso­

morphism as families. 

3.2. STABILIZER SUBGROUPS. Let [ be a family over 

Q. Then for each q € Q we define 

N(q) = {S € GLn(IR): SF(q) a F(q)S, SG(q) = 

•G(q),H(q)S = H(q)}. 

This is the stabilizer subgroup in GLn(IR) of the 

system !(q). The Lie algebra of N(q) is 

L(q) = {T E MnxniTF(q) = F(q)T, TG(q) • 0, 

H(q)T m O} 

We use r(q) to denote the dimension of N(q) which 

is of course equal to the dimension of L(q). 

Completely analozously one defines in the case 

of a system r: = (F,G,H) over a •ing R the 

subgroup N(f') of GLn (R('.f>)) consisting of all 

invertible matrices S over the field R{~) 

(a quotient field of R/~), such that SF(y>) 

• F (1 ) S, SG If>) = G '1>) , H (1 ) S = H Cp) , and L (j)) as 

the Lie algebra of all n x n matrices T with 

coefficients in RCp) such that TF(r) = F(f)T, 

TGC'f'l = 0, H('f')T = 0. 

J,J. THEOREM. Let : and r:• be two differentiable 

families ever the different i.ab le manifold Q. 

Suppose t'1at '.: and z:r are pointwise isomorphic: 

everywhere. Suppose moreover that r(q) = dimN(q} 

(=dim L(q)) is constant in some neighbourhood 

U of q0 E Q. Then there is a (possibly smaller) 

neighbourhood V of q0 such that r: and !: ' are 

isomorphic as differentiable families over V. 

Here a family is differentiable if the map q...,. 

(F(q),G(q),H(q)) is differentiable. and an 

isomorphism of families V ~ GLn(IR) is differentia­

ble if this map is differentiable. For the proof 

at least, some sort of differentiability 

restriction is necessary. There are analogous 

theorems for holomorphic families and real 

analytic families. The corresponding theorem 

for systems over rings is 

3.4. THEOREM. Let I: and I:' be two systems over 

a ring R. Suppose that !(p>) and l:' C(>) are 

isomorphic for all prime ideals p contained in 
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some open subset U of Spec(R). Suppose moreover 

that r('f)) " dim N(J>) is constant for some 

neighbourhood U' of p0 € U. Then there exists an 

open neighbourhood V = Spee (Rf), f € R, of '(> 0 

such that l: and r:• are isomorphic as systems over 

Rf (or, equivalently, as families over V). 

For both these theorems it is in general r.ot 

true that r: a~d r:• are necessarily isomorphic 

over all if Q (resp. isomorphic as systems over R) 

as the following example shows. 

3. 5. EXAMPLE. Consider the following two systems, 

either as families over 1R or as systems over the 

ring lR[o] 

r: a ( Cb), C~ 

r: I = ( Cb). (I 
0 

~2), (02-1,-0)) 

o+2 2 
2 ) , ( o - I 1 -o-2) ) 

0 

These two families are pointwise isomorphic 

everywher~; the dimension of the stabilizer 

subgroups is I everywhere; ·in addition one has 

that rnnk RCF(o), G(o)) and rank QCF(G),H(c)) 

are also equal tQ I everywhere. As families the 

two systems are isomorphic over'!R' f-1} and 

also over lR' r I}. As systems over rings they 

are isomorphic over JR(o)J-I and lfl.(-:J.;·..J, but nor::, 
as is easily checked, as systt:ms ovt>r JH[•)) itself. 

The systems I: and I:' are not even isomorphic as 

differentiable (or topolol'!ical) familie~. 

Indeed such an isomorphism ~ust neces;>riiy be 

of the fo:m cr.-( 1 c12J, where c 12 and c 22 are 
0 c22 

continuous functions, such that c 22 is nowher~ 

zero on JR. One calculates that c 12 ,c 22 must th,;11 

satisfy that 

For this to remain finite in o = ar.d -1, we lllllSt 

have )c 22 (:~ - I = 0 and c 22 (-l) + a O. i.e. 

c 22 Cl) "'3 , c22 (-l) = -1 and there is no real 

continuous function assuming these values in I and 

-I and which is also everywhere nonzero. 

3.6. ON TilE PROOF OF THEOREM 3.3. To prove 

theorem 3.3 one considtrs the map Q ~ GLn ~ 

Q x L , given by ~ : (q,S) 1-+ (q, (SG(q), 
m.a.V•P -I 

SF(q)S ,P(q)S )). The constant dimension 



assumption means that this map has constant rank, 

so that the image is locally a differentiable 

submanifold of Q x L . Note that the fibre of 
m,n,p 

4> at (q,l:' (q)) is precisely the set of all 

possible isomorphisms l:(q) _,. l:' (q). Let Q' be the 

subrnanifold of Q x L defined by q~ (q,l:'(q)) 
rn,n,p 

Then Q' c Im~ by the everywhere pointwise iso-

morphic hypothesis. Using that 4> is a submersion 

onto its image it now follows that q,-I (Q') _,. Q' 

. admits local sections, proving the theorem. 

To prove the local algebraic geometric version 

of theorem J.3, that is theorem 3.4, we use a 

somewhat different idea. The main ingredient is 

the following generalization of the central 

lemma of [J 1 ]. 

3. 7. LEMMA. Let R be a ring without nilpotents, 

let A be an m x n m~trix with coefficients in R 

and let a E: Rm. Consicer the equation Ax = a. 

Suppose that the equation A(f')Y = a(f>) over the 

field R(fl) can be solved for all prime ideals 1'. 

Suppose moreov"r that df) = rank A(p) 1s 

cor.stant (as a function of 7'). Then Ax = a is 

so lvahle over R. ~loreover if in is a maximal ideal 

of R and y(lrt) 1s any pres;iven solution of 

A(m)y = a(ln.), then chere is a solution x of 

Ax a ovec R such that x y(llt) mod m... FinJlly 

if 'f> is a pri.me ide;<l .:ind y('F') is a.1y given 

so Lucion of A(f>)Y = a(f>) then :hne is an 

f E: R 'f> and a ~vlution of Ax= a over Rf such 

that x = y('f>) modf-Rc 

J.8. ON lHE PROOF OF LE~1}!A 3.7. Let P = Im(A), 

Q = Rrn/Im(A). Then it readily follows from the 

rank hypothesis and the fact that R has no nil­

potents that for all prime ideals p the 

localization Q~ = Coker(Rr + R~) is free of rank 

m - r (where r = r(p)). It follows that Q is a 

projective R-module ([2], Ch. II, §5) and hence 

a direct sununand of a free module. Now consider 

the image~ of a in Q = Rrn/Irn(A). The solvability 

a(~) means that a maps to zero under 

Q Q R(p) frir all prime idealsp. 

Because Q is projective and R is reduced it 

fol lows that a = 0 proving that Ax = a is 

solvabl" over R. tlow let y(t11.) be any pregiven 

160 

solution of , (m)y = a(llt) where m is a maximal 

ideal of R. Consider the diagram 

0 -+ C ~ Rn ... A p .... 0 

lj' d l 
0 -+ C(m) -+ R(m) 0 _,. P (m) ... o 

where C is the kernel of A: Rn Rm The module 

P is also projective as the kernel of R _,. Q. 

It fol lows that the lower sequence is al so exact. 

Some diagram chasing; using that j' 1s ~c.trjective 

now readily rroves the second assertion of the 

lemma. If? c R is prime, one argues exactly the 

same. The only extra difficulty is tLat 

j': C ·• C(~) is noL necessarily surjc>ctive. 

However, if z E: C(f') is any elemc>nt, then there 

always is an f E R '1' such that z is in the 

image of Cf + CC'(>). 

3. 9. ON THE PROOF OF TllEORE~! 3. 4. Given the 

lemma, the proof of theorem 3.4 is entirely 

straightforward. Indeed one con~iders the linear 

A Rk R'l, . map : _,. given by X>-+ (XF-F'X, XC,H'X) 

••here k = n 2 and X · w is a k-vector written as an 

n x n matrix. Here l = n 2 +·run + np. Now let 

a E R1 be the vector (O,G',H). The constancy of 

dim N«p) =dim L(1')· means chat rank A<f>) = 

constant. Now let ~o be any prime ideal and srp0 l 

an invertible rnati:ix over R(f>0 ) takin1; ZCf>0 J 

into l: ' Cf> 0 ) • Then S r.p 0 ) s '> 1 v e E A ( '{' 0 ) y = .1 I ?., :• . 
So by the lemma ~h-=n' i:; a solution S 0'!<.:r ~F :or 

some 

with 

S is 

f E R' f' 0 of Ax = a wr·, ich '°'.>r2ovcr agrees 

S('t> 0 ) mod f'o· Because SCf>0 ) is i:wertible 

invertibie over ~ff' fur some suitable 

i' E R-.... °t'o . 

]. 10. EXAMPLES. It does not appear that the 

condition that the dimension cf the stabilizer 

subgroups N(q~ remain~ constant as q varies has 

m:.ich to de with conditions which seem syscem­

theoretically more natural li~e rank R(F(q) ,G!q)) 

is constant. Consider for example the family 

I I ( 
0 ,, 0,2)) 

For this family over m one has rank(R(f(q)),G(qi) 

= I = rank(Q(F(0) ,H(Ji )) for al 1 0 E JR, but 

dim N(o) = I if G = I and d irn :qc;) = O otherwise. 

On the other hand the family 



I 
I), (1,0)) 

has dim N(o) = 0 everywhere but rank(R(F(o),G(o))) 

= 2 if o ~ 0 and = l i"f o = 0 (and rank(Q(F(o), 

H(o)) = 2 everywhere. 

4. CONCLUSIONS. 

The main quest:ions studied in this paper were: 

(l) Given two families of system [ and [' which 

are pointwise isomorphic. Are they then also 

isomorphic as famiiies? 

(2) Given two families of systems r. and L:' over Q 
which arc pointwise isomorphic over Q or some dense 
subset Z of Q. \,'hat c'an be said about the relations 
between [(q) an~ ['(q) at the points of Q' Z. 
Question (I) received a positive answer which 
specializes to a theor~m of Wasow's [13) for 
holomorphic families of matrices under similarity 
It seems also likely that the theorem is best 

aissible in the sense that if [ is a family such 
~at dim N(q) is not constant then there is a 

family [' which is p.oint"1ise isomorphic to L: 
ever,.,.,here but not iscmorphic as families in any 
ueighbourhood of a poLnt q where dim N(q) sudden­
ly incre:ses. As to question (2), they are 
definite relations between L:(q) and Z'(q) if 
either L: or ::• is er or co in a neighbourhood of 
q. If not than a number of examples show that the 
ways in which a fa~iiy of systems can degenerate 
do not depend only .:m the isomorphism ciassi:s 
of the systi:ms involved but al8o on the svscems 
themselves (aparc from the subouocients which 
are recoverdble from th2 cransferfunct1ons 
(cf. also (7)). Thus one nas ~•ere the usual scai.in~ 
and singular perturbation phenomena. It remains 
to construct local versal deformation~ of non er 
and non ~o systems. 
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