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ABSTRACT 

We use some results of [16] (where Delsarte's linear programming 

bound for cliques in association schemes is set against Lovasz's ~-bound 

for the Shannon capacity of a graph) to prove that the Shannon capacity 

of the graph Kv,n,t equals (~ = ~) if• v is large with respect to n 

(Kv,n, t is the graph with vertices all n-subsets of a fixed v-set, two of them 

being adjacent iff their intersection contains less than t elements). 

0. INTRODUCTION 

In [16] (and, independently, in [14] (cf. [13]), and also by A.M. 

Odlyzko & L. Shepp) relations between two upper bound functions are 

described: Lovasz 's ~-function [12], an upper bound for the "Shannon 

capacity" 0( G) of a graph G, and D e 1 s art e 's linear programming 

bound [5], an upper bound for the size of "cliques in association schemes". 

In the present paper, after a review of these two bounds and their inter­

relations, we apply results of [ 16] to prove that the Shannon capacity 
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0(Kv,n,t) of Kv,n,t equals (~ = ~) if v is large enough (with respect 

to n); here Kv,n,t denotes the graph with vertices all n-subsets of a fixed 
v-set, two of them being adjacent iff their intersection contains at most 
t - 1 elements. This extends theorems of Er d 6 s, Ko & R ado ( 7] . 
(the independence number cx(Kv,n,t) equals (~ := ~) if v is large enough) 

and Lovasz [12] (E>(Kv,n,l) = (~ := ~) if v is large enough). (Alas we 

were not able to derive a good estimate how large v must be.) The proof 
method may be viewed as an algebraic extension (using Eberlein poly­
nomials) of Katon a 's method [ 1 O] (using t-designs) to show (partially) 
the Erdos - Ko - Rado theorem. 

1. ASSOCIATION SCHEMES AND DELSARTE'S 
LINEAR PROGRAMMING BOUND 

(See Delsarte [S] or MacWilliams & Sloane [15).)Apair 
(X, d), where 8t = (R0 , •.. , Rn) is a partition of X X X, is called a 
(symmetric) association scheme (introduced by Bo s e & S h imam o to 
[4]), with intersection numbers pt (i,j, k = 0, ... , n), if 

(1) R 0 = {(x, x) Ix EX}; 

(2) (x,y)ERk iff (y,x)ERk, for k=O, ... ,n; 

(3) 
forall i,j,k=O, ... ,n, and (x,y)ERk: 

l{zl(x,z)ERi and (z,y)ERi}l=Pt· 

So vt =pi~· We may consider the pairs (X, Rk) as undirected graphs 
(k = 1, ... , n); (X, Rk) is regular of valency vk = P2k (v0 = 1). There­

fore pi~ = 8ii vi" 

It is easily seen that a symmetric association scheme is equivalent to a 
labeling of the edges of a complete graph Km with labels 1, ... , n such 
that, for each k = 1, ... , n, the edges with label k build up a regular 
graph, and, for each i, j, k = 1, ... , n, any edge {x, y} with label k is 
in exactly Pt triangles xyz with {x, z} labelled i and {y, z} labelled 
j (this number Pt only being dependent on i, j and k and not on the 
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particular choice of {x, y }). 

We give three families of examples of association schemes; the first 

two examples are of interest for coding theory. 

(a) Let n and q be natural numbers and let X be the set of vectors 

of length n, with entries in {0, ... , q - 1 }. Moreover, let, for k = 
= 0, ... ,n: 

(4) Rk = {(x,y) EX X X I d8 (x,y) = k}, 

where d H (x, y) denotes the Hamming distance of the vectors x and y, 

i.e. the number of coordinate places in which x and y differ. Let PA= 

= (R0 , ... , Rn). As can be checked easily (X, ~) is an association 

scheme. Schemes obtained in this way are called Hamming schemes. 

(b) The second family is obtained as follows. Let v and n be 

natural numbers and let X be the set of 0, 1-vectors of length v with 

exactly n ones. Moreover, let, for k = 0, ... , n: 

(5) Rk = {(x,y) EX X X I d1 (x,y) = k}, 

where d1 (x,y). = ~ dH(x,y) is the Johnson distance between x and 

y. Let PA = (R 0 , ... , Rn). Then (X, g() is an association scheme; 

schemes constructed in this way are called Johnson schemes. 

( c) A third family of association schemes is formed by strongly 

regular graphs (introduced by Bose [3], cf. Seidel [17]). These are 

exactly those graphs (X, R 1 ) such that (X, ~) is an association scheme, 

where Bl = (R 0 ,R1 ,R 2 ) and R 2 = (XX X)\(R 0 uR 1 ). It follows 

that the complementary graph of a strongly regular graph is strongly regular 

again. 

Let D,. denote the adjacency matrix of the graph (X, R) (i = 

= 0, ... , n). 

Since, by (3), one has D,.Di = f P,.~Dk (for i,j= 0, ... ,n) the 

matrices D 0 , ..• , D n generate a commutative algebra of symmetric 

matrices of dimension n + I, called the Rose - Mesner algebra of the 
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scheme. So D0 , ••• , Dn can be diagonalized simultaneously (i.e., there is 
a nonsingular matrix S such that SD0 ST, .. . , SDnsT are diagonal 
matrices) and there is a matrix P = (Pk):,u=O so that 

(6) P2, ... , P; are the eigenvalues of Dk (k = 0, ... , n), 

and 

(7) 
P0, ... , P~ belong to a common eigenvector x of D0 , ... , Dn, 

respectively, (i.e., D0 x = P0 x, ... , Dnx = P:x) (u = 0, ... , n). 

We may assume that P2 = vk, for k = 0, ... , n. Set 

µ 
Q" = ~pu 

k vk k' 
(8) 

where µu is the dimension of the common eigenspace of D 0 , •.. , D n 
belonging to P0, ... , P~, respectively (u = 0, ... , n). It can be shown 
that 

(9) 

where m = I XI, i.e. P and 1. QT represent inverse matrices. m 

For· Haming schemes (example (a)) the values of vk, µu and Pk 
are given by: 

k 

(11) 

Pk = Kk(u) = Z (- l)i(q - I)k-i(~)(nk- ~) = 
/=O I - I 

k . 

= j~ <- q)i(q _ t)k-i(Z = jH7J. 
for k, u = 0, ... , n (Kk(u) is the Krawtchouk polynomial of degree k 

in the variable u). 

The parameters of Johnson schemes (example (b)) are: 
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(12) (n ( v - n) 
vk = k) k ' ( v) ( v ) v - 2u + 1 (v) 

µu = u - u - 1 = v - u + l u ' 

(13) 

k . . 
pu =E (u)= z (-I)k-i(n-~)(n~u)(v-n~J-U) = 

k k j=O k - ] J J 

k 
= .z (- t)i(~)(n - ~}(v- n-: u), 

j=O J k - J k - J 

for k, u = 0, ... , n (Ek(u) is the Eberlein polynomial of degree 2k in 

the variable u). 

The main problem of combinatorial coding theory is to estimate the 
maximum size of any subset C (a "code") of (the set X in) Hamming 

and Johnson schemes such that n~ two elements in C have (Hamming or 
Johnson) distance less than a given value d. A generalized translation of 

this problem in the language of association schemes needs the notion of 

an M-clique; given 0 EM c {0, ... , n}, a subset Y of X is an M-clique 

if (x, y) E U Rk for all x, y E Y. So the coding problem is to deter-
kEM 

mine the maximum cardinality of {0, d, d + 1, ... , n}-cliques in Hamming 

and Johnson schemes. 

To obtain an upper bound for the size of cliques in an association 
scheme (X, Bi), define, for Y c X, the inner distribution (a0 , ... , an) 

of Y by 

(14) 
iRkn(YX Y)I 

a = 
k I YI 

n 

for k = 0, ... , n; so a0 = 1 and Z ak = I YI. Moreover, if Y is an 
k=O 

M-clique then ak = 0 whenever k fl. M. The number ak may be seen as 
the average number, over x E Y, of elements y E Y with (x, y) E Rk. 

Delsarte showed that, for the inner distribution of any subset Y of 

X, one has 

for u = 0, ... , n. Therefore, for M-cliques Y one has 
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(16) 

n 

I YI ~ max { 2; ak I a0 , ... , an ;;;;., O; a0 = 1; ak = 0 
k=O 

n 
for kfl.M; .ZakQ~;;.O for u=O, ... ,n}= 

k=O 

n 

= min { .2: b u I b 0 , ... , b n ;;;;., 0; b 0 = 1 ; 
u=O 

n 

;E b P~ ~ 0 for k EM\ {0}}. 
u=O u 

The equality in ( 16) follows from the duality theorem of linear program­
ming. This bound on the size of cliques is called Delsarte 's linear program­
ming bound. One may apply linear programming techniques to calculate its 
value - see [2] for applications in coding theory. 

Clearly, Delsarte's bound for M-cliques is a bound for the inde­
pendence number cx(G) of the graph G with vertex set X, two vertices 
x and y being adjacent iff (x, y) is not contained in a class Rk with 
kEM. 

The following result of Delsarte shows that the linear programming 
bound is a sharpening of the Hamming bound in coding theory. Let (X, .'!If) 
be an association scheme, with 9t = (R0 , ... , Rn), and let 0 EM c 
c {0, ... , n} and M = {0} u ({0, ... , n} \M). Then 

(17) 

Hence 

the product of the linear programming bound for M-cliques and 

the linear programming bound for M-cliques is at most I XI. 

I YI • I ZI ~I XI for M-cliques Y and M-cliques Z. Taking 
M = {0, d, d + 1, ... , n} in a Hamming scheme the Hamming bound 
follows. 

2. THE SHANNON CAPACITY AND LOVASZ'S BOUND 

Lovasz [12] introduced, for any graph G, the number 19-(G), 
being an upper bound for the "Shannon capacity" E>(G). 

Let cx(G) be the maximum number of independent (i.e., non-adjacent) 
points in a graph G, and let G · H denote the (normal) product of graphs 
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G and H, i.e., the point set of G • H is the cartesian product of the point 
sets of G and H, whereas two distinct points of G · H are adjacent iff 
in both coordinate places the elements are adjacent or equal. G k denotes 
the product of k copies of G. Shanno n [ 18] introduced the following 
number for graphs G: 

(18) E>(G) =sup ~G'.(Gk) = lim VG'.(Gk), 
k k_,,"" 

which number is called the Shannon capacity of G. 

If one considers the points of G as letters in an alphabet, two 
points being adjacent iff they are "confoundable'', then ex( G k) may be 
interpreted as the maximum number of k-letter messages such that any 
two of them are inconfoundable in at least one coordinate place. 

Since cx(G)k < cx(Gk), it follows that cx(G) < E>(G). Equality does 
not hold in general; e.g., o:( C5 ) = 2, whereas o:( Cff) = 5 .;;;; E>( C5 ) 2 . 

Lovasz showed that, in fact, E>(C5 ) = ¥5. Actually, he gave a general 
upper bound for E>(G) as follows. 

Let G = ( V, E) be a graph, with vertex set V = { 1, ... , n}, and 
define 

(19) 
t1(G) = min {lev A I A = (aii) is a symmetric n X n-matrix 

such that aii = 1 whenever {i, j} tl. £}, 

where lev A denotes the largest eigenvalue of A. Now, if o:(G) = k, 
each matrix A satisfying the conditions mentioned in ( 19) has a k X k 
all-one principal submatrix (with largest eigenvalue k), hence lev A~ k. 
Therefore G'.(G) < t1(G). Since, as Lovasz proved, f>(G • H) = f>(G) • {){H) 

for all graphs G and H, one has cx(Gk) < f>(G)k, which yields the 
stronger inequality E>(G) < t1(G) (Haem er s [9] showed the existence 
of graphs G with B(G) < t1(G)). 

(20) 

Moreover Lovasz showed 

19-(G) = max {Lb .. I B =(b .. ) is an n X n positive semi-definite 
i,j l} I} 

matrix, with Tr B = 1, and b;; = 0 whenever {i, j} EE}. 
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So i>(G) may be considered as both a maximum and a minimum, which 

makes the function it easier to handle .. Lovasz found, inter alia, for graphs 

G (with n points): 

it(G) • -&(G) > n (where G denotes the complementary graph), 
(21) 

with equality if G is vertex-transitive; and 

-nf... 
it(G)..;;;; A _ ~ if G is regular (A.1 and A.n being the largest 

1 n 

(22) eigenvalues of the adjacency matrix of G), with equality if 

G is edge-transitive. 

A consequence of (22) is: let v > 2n and let K(v, n) be the graph whose 
vertices are the n-subset of some fixed v-set, two vertices being adjacent 
iff they are disjoint (such graphs are called Kneser-graphs). Then 

( v - 1) (23) E>(K(v, n)) = n _ 1 , 

generalizing the Erdos - Ko - Rado theorem. 

3. ASSOCIATION SCHEMES AND THE SHANNON CAPACITY 

The theories of Delsarte and Lovasz have a number of common 
characteristics. Both theories give an upper bound for the independence 

number of certain graphs, they apply eigenvalue techniques to matrices 
determined by these graphs, they yield relations between a graph and its 
complement, and they are applicable to allied structures as Johnson 
schemes and Kneser-graphs. In [14] and [16] (cf. [13]) interrelations 
between both theories have been shown; we here give, briefly, some results 
of [16]. 

Define for any graph G the number i>'(G) by 

-&'(G) = max { i bii I B = (bii) is a non-negative positive semi-
1,1 

(24) definite n X n-matrix with Tr B = 1, and bii = 0 whenever 

{i, j} EE}. 
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So the difference with (20) is the restriction of the range to non-negative 

matrices B. It is easy to see that 

(25) et(G) ~ i'J'(G) ~ i'J(G); 

the first inequality follows from taking, in [24], bii = a(~) if i, j E Y, 

and bij = 0 otherwise, where Y is a set of independent vertices of size 

a(G). iJ'(G) can be described equivalently as a minimum: 

(26) 
{}'(G) = min {lev A I A= (aii) is a symmetric n X n-matrix with 

a .. ;;. 1 if {i,j}fl.E} 
I] 

If G has, as edge set, the union of some classes of an association scheme 

then i'J'(G) coincides with Delsarte's linear programming bound; that is, 

let (X, ~) be an association scheme, with rR = (R0 , ... , Rn), and let 

0 EM c {0, ... , n}. Let G = (X, E) be the graph with E = U Rk. 
kfil;M 

Then (t'(G) is equal to the linear programming bound (16) for M-cliques. 

On the other hand, if G has such union of classes of an association 

scheme as edge set then 

(27) 

n 

(}( G) = max { Z ak I a0 = 1; ak = 0 for k f1. M; 
k=O 

n 
Z ak Q~ ;;;. 0 for u = 0, ... , n} = 

k== 0 

n 

= min { Z b u I b 0 = 1 ; b 0 , ... , b n ;;;. 0; 
u=O 

n 
Z b pu = 0 for k E M \ {0}}. 

u=O u k 

It can be proved from (27) that 

if the edge set of graph G = (X, E) is the union of some classes 

(28) 
of an association scheme (X, rR) then (}(G) · i'J(G) = IXI. 
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4. EBERLEIN-POLYNOMIALS AND THE 
ERDOS - KO - RADO THEOREM 

Let v,n and t be natural numbers (v;;;i, n# t;;;i, 1) and let Kv,n,t 
be the graph whose vertices are all n-subsets of a fixed v-set, two of them 
being adjacent iff their intersection contains less than t elements. Er d 6 s, 

Ko and Rado [ 7] proved that a{Kv, n, t) = (~ = ~) if v is large enough 

with respect to n; that is, the maximum number of k-subsets of a v-set 

such that any two of them intersect in at least t elements equals ( ~ = : ) 
( v - 1) if v is large enough. Lo v a s z [ 12] proved that E>(Kv, n, 1 ) = n _ 1 

for v ;;;i, 2n. We here show that E>(K t) = ( v - tt) for v -r 00 , by v,n, n -

proving 

Theorem. -&(Kv,n,t) = (~ = ~) if v is large with respect to n. 

Proof. Since, trivially, {}(Kv,n,t) ;;;i, (~ = ~), it is sufficient to prove 

that {}(K t) < ( v - t) (v-+ 00 ). As the edge set of K n t is the union v,n, n - t v, , 

of some classes in a Johnson scheme, by (28) it is enough to prove that 

(29) 
- (~) 

{}(Kv n t) ;;;i, - t ' , ' ( v - ) 
n-t 

for v -7 °"· So apply (27) to the Johnson scheme, with M = 
= {0, n - t + 1, ... , n} (two !-subsets are adjacent in r-t if their v,n, 
Johnson distance is not in M). To prove (29) we must find a0 , ... , an 
such that 

(30) 
n (~) 

Zak ;;;i, , 
k=O (v-t) 

n-t 

(31) a0 = 1, a1 = a2 = ... = a71 _ t = O; 
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(32) 

where µu, vk and Ek (u) are as given in (12) and (13). To this end take 

a_ l (n)-}, (-l)k-J(~)(v-((n-j)At)), 
k - (v-t) k i=O J v-n 

n-t 

(33) 

where p A q denotes the minimum of p and q. Note that if a 
t - ( v, n, 1) design exists (a0 , ... , an) is the inner distribution of this 
design; in that case (30), (31) and (32) are satisfied by (15). But we have 
to prove them in general (for v -+ 00 ). 

We first prove (30). 

±a =(v-t)-1 j;(-l)i(~)(v-((n-j)At))x 
k = o k n - t i= o ! v - n 

n . 

(34) 

X Z (- l)k(n-~) = 
k=j k - J 

= (v-t)-1 ZC-l)i(~)(v-((n-j)At))<-l)no _.= n-t i=O J v-n O,n,1 

(~) 
( v-t). 

n - t 

Also (31) is easily seen to be fulfilled. Trivially a0 = 1, and, moreover, 
for k = 1 , ... , n - t, one has 

(35) 

hence a 1 = ... = an_ t = 0. 

We finally prove (32). Set 

(36) 
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for u = 0, ... , n. Let n and t be fixed; then bu only depends on v, 
and sometimes we shall write bu (v) instead of bu. We prove 

(37) 

(38) 

(~) 
ho= (v - t)' 

n-t 

bl = ... = bt = 0, 

(39) lim bu(v)>O for u=t+ l, ... ,n, 
v ...... 

which suffices to prove (32) for v-+ oo. 

(37) is easy to see: 

(40) 
(~) 

(v - t) · 
n-t 

To prove (38) and (39) we use 

(41) 
(v)( n)(v- (m At)) i b ( n - u )(v - m - u) = n m v - n , 

u=O u n-m n-m (v-t) 
n-t 

for m = 0, ... , n. To see this first observe that 

(v) ~ µu 8.u = L.J Ek(i)-Ek(u)= 
n ' k=O vk 

= f ± (- l)k-/ (n - ~)(n-:- i)(v - n :- j- i) µu E (u) = 
k = o i= o k - I I J vk k 

= .Z [ ( n -:- i)( v - n :- j - i)] X 
1=0 I I 

(42) 

n . µ 
X [ Z (- l)k-i(n - ~) 2- E (u)] 

k=J k- J vk k 

using (8), (9) and (13). Hence the two forms between (] represent inverse 

matrices (modulo the factor (~)); so also 
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(43) 

Therefore 

n z b ( n - u ) (v - m - u) = 
u=O u n-m n-m 

n n n. 

= Z Z Z(v-tt1(-l)k-i(n)(~)x 
u = o k = o ;= o n - t k J 

(44) X (v-((n-j)At)) µu E (u)(n-u)(v-m-u) = 
v - n vk k n - m n - m 

= J; (v-t)-l(~)(v-((n-j)At))(v) 5 = 
i=O n-t J v-n n f,n-m 

= (~=~tl(~)(v~~n"t))(~) 

(note that(~)(~)= (7)(~=~) if k~j, and0otherwise),proving(41). 

Now we prove (38) by induction. Suppose we have shown that 
b1 = ... = bw = 0 for some 0 :i;;; w < t. We prove bw + 1 = 0 by 
substituting m = w + 1 in (41). 

(v)( n )(v-w-1) 
n w+l v-n 

( v - t) 
n - t 

w -t 1 z ( n - u ) ( v- w - 1 - u) 
=u=O bu n-w-1 n-w-1 = 

(45) 
( n )(v-w-1) (v-2w-2) 

= bo w + 1 n - w - 1 + bw + 1 n - w - 1 ;:: 

(v)( n )(v-w-1) 
= n w + 1 v - n + b (v - 2w - 2), 

(v-t) w+l n-w-1 
n - t 
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which implies bw + 1 = 0. 

We finally show (39). It follows from (37), (38) and ( 41) that 

(46) 

for m = t, ... , n. Let µ~, v~ and E~(u) be the parameters of the 
Johnson scheme with v replaced by v - 2t, and n by n - t. Now 

b (v - 2t) = z b (v - 2t) 0 = 
u n-t i=t i n-t i-t,u-t 

I 

(47) x (- l)k-i(n -k t -)) µ~ E~(u - t)bi == 
- J vk 

n-t n-t . µ' 
== ~ Z (- l)k-i(n - t--:-- 1) --±;-E' (u - t) X 

j=O k=j k-J Vk k 

for u == t, ... , n, by applying (42). Now, for u == t + 1, ... , n, we have 

(48) 

It follows from (12) and (13) that 
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(49) 
. E~(u-t) 

hm I = 
v->- oo vk 

also 

(v-~+i) 
lim (1- l )-1 if 0 <.. i< n - t, 

(50) v->- oo (~ = ~) 
=0 if j = n - t. 

Therefore, ( 48) is equal to 

(51) 
n-t n-t (n-t-j)(n)(n-u) z z <- l)k-j k-i i k 

j=O k=j (nkt) 

(note that for j = k = n - t the limit ( 49) equals 0 since u > t). As 

k • z (- l)k-i(n- f~l)(~) = 
i=O k-1 l 

k 
= z (-n+ t+ .k-1)(~) = (t+ k-1) 

/=O k-1 l k 

(52) 

we have 

(53) 

for u = t + l , .. _ , n. I 

The question remains how large v has to be with respect to n and 

t for having 0(Kv,n,t) = (~ = ~); e.g., is it possible to deduce with the 

above method the good bounds of F r a n k I ( 8]? 

One could try to extend the method to obtain the 19--values of graphs 
whose edge set is the union of some arbitrary classes of a Johnson scheme; 
e.g., if the vertices of the graph G are all n-subsets of a v-set, two of them 
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being adjacent iff the size of their intersection is in a certain set { t 1 , ... 

. . . , th }, is it true that 

(54) 
h v - t. 

!J(G)' ff--' 
i= 1 n - t; 

for v~ 00 ? (Cf. Deza, Erdos and Frankl [61). 

Results analogous to the above theorem could be obtained in 
Hamming schemes to obtain the 19--value of graphs derived from those 
schemes; is there any relation between the asymptotic operativeness of 
upper bounds and certain asymptotic non-existence results for perfect 
codes (cf. Van Lint [ll] and Best [l])? 
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