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I. - INTRODUCTION. 

Consider a linear time-varying dynamical system 

(1.1) x = Fx + Gu , y = Hx 

where x(t) Ent , y(t) E nf , u(t) E IRm and where F , G , H are matrices of 

the appropriate sizes with coefficients which may depend on the time t . To fix 

the ideas suppose for example that the coefficients of F, G, H all belong to the 

field of rational functions over IR . Then it makes perfect sense to consider 

bases changes of the type ~ = Sx where S is an nx n matrix also with coef

ficients in IR(t) with nonzero determinant. Such a base change transforms the 

equations (1.1) into 

(1. 2) - -1 . -1 - -1 -
x · = (SFS + SS ) x + SG , y = HS x 

u 

and at least in the algebraic sense one can ask about invariants, moduli and cano

nical forms just as in the case of non-time varying systems (L3- 6]). 

Solutions to equations like (1.1) with u(t) E IR(t) given, certainly exist as 

vectors with coefficients in some differential extension field (cf. [ll], [13], or [14]). 

They also exist as "functions" albeit as multiple valued functions with poles and 

branching points if F,G or u(t) have poles, cf. e.g.[9]. 

The main purpose of the present note is to point out that the results of [5, 6] 

also go through in a time variable setting like the one discussed just above. In 

fact, more generally, these results go through for systems 

(1. 3) Ii x = Fx+ Gu, y = Hx 

where the F, G, H are matrices with coefficients in any differential field k 
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with differentiation operator 5 {for a definition cf. 2 .1 below). Examples of 

such differential fields are 

(a) k = IR{t) or a:; (t) , 5 = :t 

(b) 

(c) 

d 
k = real meromorphic functions or complex meromorphic functions, o =dt 

d 
k = IR {sin t, cos t, sin 2t, cos 2t, ... ), 5 = dt · 

Thus when one specializes the results for abstract differential fields obtained 

below to one of these cases one obtains results for "real life" dynamical systems 

with time variable coefficients. 

The techniques used to obtain the results below are basically the same as in 

Cs, 6]. Most of the (minor) difficulties are caused by the fact that differential al

gebraic geometry is more difficult and certainly far less developped than ordinary 

algebraic geometry. The present note only outlines the definitions and results. A 

more complete version is [7] . 

II. - PRELIMINARY REMARKS CONCERNING DIFFERENTIAL ALGEBRA 
UND DIFFERENTIAL ALGEBRAIC GEOMETRY. 

A differential field k is a field together with an additive operator a : k-+ k 

which satisfies 6(ab) = o(a)b+ ao(b} for all a, bE k. Examples were mentioned 

in the introduction. If the characteristic of k is zero (as in all the examples 

given) then there exists a differentially closed extension differential field (k, a) 

of k (cf. D.4]), i.e. a field such that every polynomial expression in a number 

of variables and their derivatives has a solution in K . E.g. there will be ele-
2 3 2 7 

ments x1 ,x2 E K such that x1 + ('i x1) (5 x 2 )+ x 2 = 1. If char(k) > 0 the ques-

tion of existence of a differentially closed extension field is open. But there exist 

in any case large enough extension fields K to play the role of the universal 

field O of algebraic geometry. Just as an affine algebraic variety over k is 

the set of solutions in nn of a set of polynomials in xl, ... 'xn with coeffi

cients in k, one defines an affine differential algebraic (d.a.) variety as the set 

of points in Kn , K big enough, which satisfy a set of polynomial expressions 

in their coordinates and their derivatives. There is an obvious Zari ski type topo

logy on ~ defined by taking as closed subsets all affine d.a. varieties in ~ 
and hence an induced topology on affine d.a. varieties. A morphism between d.a. 
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varieties is a map which can locally be described by means of rational expressions 

in the coordinates and their derivatives and a d.a. variety is a T 1-space which 

locally looks like an affine d. a. variety. It now requires little imagination to de

fine morphisms of d.a. varieties, d.a. groups, d.a. vectorbundles and d.a. 

actions of ad.a. group on a d.a. variety. In particular ordinary algebraic va

rieties, .•. , over k are special kinds of d. a. varieties, ... , over k . If 

Gx V-+ V is a d. a. action of the d.a. group on the d. a. variety V then an 

invariant'is a d. a. rational function f : V-+ K such that f(gx) = f(x) for all 

x E V , g E G for which x and gx are both in the domain of f . This defini

tion of course agrees with the one of S . Lie in [12], modulo the changes caused 

by the present algebraic -geometric setting. 

III.- THE D.A. QUOTIENT VARIETY Mar = Lar /GL . INVARIANTS. 
m,n,p m,n,p n 

Let k be any differential field with universal extension K For example 

k may be the field of rational or meromorphic functions over IR or <C , with 
d 

c'.i = dt We consider equations 

( 3 .1) fix = Fx + Gu, y = Hx 

with x(t)Ekn, u(t)E km, y(t)E kp and F, G, H matrices of the appropriate 

sizes with coefficients in k . As a rule we shall write x instead of ax . 

Let L be the d. a. variety of all triples of matrices (F, G, H) of 
m,n,p 

sizes nxn, nx m, pxn respectively .. Let GL be the d.a. group of all nxn 
n 

invertible matrices. We define a d. a. action of GL on L by 
n m,n,p 

(3. 2) 
s -1 . -1 -1 

GL x L -+ L , (F, G, H) = (SFS +SS , SG, HS ) 
n m, n, p m, n, p 

Note that this is indeed a d.a. GL - action, but not a morphism of the algebraic 
n 

variety 

action of 

( 3. 1). 

GL x L 
n m,n,p 

into the algebraic variety L 
m,n,p 

. Of course, this 

GLn corresponds to the transformation x-+ Sx in state space in 

Let (F, G, H)E L We define the nx (n+l)m matrix R(F, G) by 
m,n,p 

(3. 3) 
1 I I 

R(F, G) = (G(O) : G(l): ... i G(n)) 
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where G(i) is inductively defined by G(O) = G, G(i) = FG(i-1)- G(i-1), i=l, 2, .• , n. 

More or less dually the matrix Q(F, H) is defined as 

(3. 4) 
T T 1 TI I T 

Q(F, H) = (H(O) : H(l) 1 ••• 1H(n) ) 
I I 

with H(O) = H, H(i) = H(i-l)F + H(i-1), i=l, 2, ... , n, where the symbol T de-

notes "transposes". (Note the sign difference). 

The triple (F, G, H) is said to be algebraically reachable (abbreviated "ar") 

if rank (R(F, G)) = n ; the triple (F, G, H) is said to be algebraically observable 

(abbreviated "ao") if rank (Q(F,H))= n. These two conditions define open d.a. 

subvarieties of L which we denote L ar Lao . In addition we 
rn,n,p tn,n,p m,n,p 

define Lar, ao 
m,n,p 

Lar n Lao 
m, n,p m,n,p 

Of course the notions "algebraically reachable" and "algebraically observa

ble" as defined above correspond to the usual geometric notions of reachability 

and observability in the cases where k is a field of rational or meromorphic 

function over lR or <C . Indeed the system (F, G, H) is ao iff Q(F, H) 

has rank n . Because of the nature of the functions involved this happens iff 

Q(F(t), H(t)) has rank n pointwise in t for all t except possibly a set of 

measure zero and this in turn means that (F, G, H) is completely observable 

in the usual geometric sense (cf. [16], corollary 8. 8). Dually one has that alge

braically reachable corresponds to completely reachable in the geometric sense 

for such differentiable fields. 

Let J = { (0, 1), ... , (0, m) (1, 1), ... , (1, m) ; ... ; (n, 1), ... , (n, m)} , n,m 
lexicographically ordered. We use J to label the columns of the matrices 

n,m 
R(F,G) by assigning the label (i,j) to the j-th column of G(i). A subset 

o:cJ 
n,m 

is nice if (i,j)Eet => (i-1,j) Ea for all 

is called as nice selection. Given a nice selection 

i, j . A nice subset of size n 

a, , a successor index of C'J 

isanelement (i,j)EJ \a suchthat a.U{(i,j)} isnice.Forevery 
n,m 

j E {l, ... , m} and nice selection a. there is precisely one successor index 

(i,j') of a. such that j'= j. This successor index will be denoted s(a,j). 

(3. 5) Nice selection lemma. -

selection a c J such that 
n,m 

Let (F,G,H)E Lar 
m,n,p 

det(R(F, G) ) I 0 . (Here 
a. --

118 

Then there is a nice 

R(F, G) is the 
Cl 



INVARIANTS AND MODULI 

square nx n matrix obtained from R(F, G) by removing all columns whose 

index is not in a ) . 

We now proceed as in [5, 6] . First, note that 

(3. 6) 
-1 • 1 

R(SFS + SS- , SG) = SR(F, G) 

(because (SFS-l + ss-1) (SG(i) )-(SG(i) )° = SFG(i)t SG(i)- SG(i)- SG(i) = S(FG(i)-G(i))). 

L t b · 1 · ( ) nm n n e a. ean1ceseect1onandlet x= x1, ... ,xmEk =k x···xk. Using 

(3. 6) one now shows just as easily as in [5, 6] that there exists precisely one 

triple (F,G,H)E Lar such that R(F,G) =I, R(F,G) ( .)= x. for 
m, n, p a n s o:, J J 

j=l, ... ,m. It follows that if U =[(F,G,H)EL \det(R(F,G) )/O}then o: m, n, p a 

(3. 7) U ~ GL x Kmn+np, U /GL ~ Kmn+np . 
a n a n 

For each nice selection a and x = (y, z) E Kmn+np let ~ (x)=(F (x), G (x), 
a rr a 

H (x)) be the unique triple such that R(F (x),G (x)) =I , R(F(x),G (x)) ( ") a a a: a n a o: s a, J 
is the j-th component of y = (y1, ... , y ) E (kn)m, and such that H (x) = z . m a 

We now construct the d.a. quotient variety Mar as follows ; again as 
m,n,p 

in [6]. For each nice selection a let V = knm x knp and let 
a 

V Q = [x E V I det(R(F (x), G (x))S) I 0} . We now glue the V 
a"' a a a o: 

together by means 

of the isomorphisms ~ : V -. V , which are defined by 
aS aB Ba 5 

Y"" (113 (y),G8(y), HS(y))= (~(x),Ga(x),Ha(x)) where 

ijl (x) = 
ai3 -1 

S = R(F (x), G (x))8 a rr 

This defines us a d.a. variety provided we can show that Mar is T1 m,n,p 

Note that by construction Mar = L ar /GL , in any case as sets. 
m,n,p m,n,p n 

Now let G be the d. a. Grassmann variety of n-planes in 
n, (n+l)m 

space. Then by (3.6) R induces a map 
"' ar (n+l)2 

also defines h : L -. K by 
m,n,p 

(n+l)-

g : Mar ._. G 
m, n, p n, (n+l)m 

h(F,G,H) = Q(F,H) R(F,G) 

One now 

Now note 

that similarly to (3. 6) 

(3. 8) Q(SFS-l + • -1 -1) ( ) -1 SS , HS = Q F, H S . 

"" s "" h(F, G, H) ) = h(F, G, H) so that h indu-
Combining this with (3. 6) we see that 

ar (n+1)2 mp 
ces a map h : M -. K 

m,n,p 
One now shows as in [6] that 
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2 
(g, h) : Mar -+ G ( l) x K(n+l) mp is injective which proves that 

m,n,p n, n+ m 

Mar is T1 and hence a d.a. variety. The maps g and h are d.a. 
m, n, p 

morphisms (defined over k ). 

(3. 9) Corollary. - Mar 
m,n,p 

is an irreducible quasi projective d. a variety. 

It is the quotient of L ar 1?.Y. GL 
m,n,p n 

in the category of d. a. varieties. 

One also verifies with no trouble that Mar in addition enjoys the plea-
m, n, p 

sant quotient property that Mar (k') = L ar (k')/GL (k') for all interme-
m,n, p m, n, p n 

diate differential fields kc k'c K 

Let TT : L ar -+ Mar be the natural projection. Then 
rn,n,p rn,n,p 

Mar,ao the 
m,n,p 

image of L ar' ao is an open d. a. subvariety of 
rn, n,p 

Mar 
m,n,p 

and one shows as 

in [6] that the morphism h above is injective on Mar, ao . Its image is rea
m, n, p 

dily described. An (n+l) x (n+l) block matrix with blocks of size px m 

A A 
o,o o,n 

A= 

A A 
n,o n,n 

is of the form h(F, G, H) for some triple (F, G, H) E L ar' ao is and only if the 
m,n,p 

following two conditions hold : (i) rank (A)= n = rank (A'), where A' is the ma-

trix obtained from A by removing the last column and row of blocks, and 

(ii) A. 1 .- A .. 1 
i+ 'J l, J+ 

A .. for all i,jEfO,l, ... ,n-1}. 
l, J 

(3 .10) Corollary. - Mar, ao 
is a quasi-affine d. a. variety. 

m,n,p 

(3 .11) Corollary. - Every differential invariant of GL acting on L n m,n,p 
is a rational function in the entries of the matrix h(F,G,H)= Q(F,H) R(F,G) 

and their derivatives. 
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Note that L Mar Mar, ao . 
rn, n, p ' m, n, p ' m, n, p are defined by polynomials invol-

ving no derivatives, and hence are ordinary algebraic varieties reinterpreted 

within the context of d. a. varieties. On the other hand the definitions of 
Lar , Lar,ao 

rn, n, p m, n, p do involve derivatives and so do the projection map 

TT : L ar -+ Mar ar ao ~ K(n+l)2mp m , the embedding h : M ' ~ and hence , n, P rn, n, p m, n, p 

the description of Mar, ao as a quasi affine d. a. subvariety. Note that if k 
m,n,p 

is one of the "function differential fields" mentioned in the introduction then 
Mar, ao 

rn,n,p 
tions. 

is a certain space of functions which satisfy certain differential equa-

IV. - CANONICAL FORMS, UNIVERSAL FAMILIES, LIMITS. 

We can be brief about the matter of existence or nonexistence of global con

tinuous canonical forms. On the one hand there exist of course the local canonical 

forms C111.,,.. : U ~ U for every nice selection a. defined by c~l'I (F, G, H) = 
5"1'""' O'. f'1. -1 

(F, G, H) , S = R(F, G) . On the other hand the same examples and construc-
Ct 

tions used in [5, 6] show that global continuous canonical forms on Lar, ao 
m,n,p 

exist if and only if m = 1 or p = 1 • This is not completely immediate from the 

corresponding result in the non-time-varying case, because, a priori, the cano

nical form of a non-time varying linear system could be timevarying in the pre

sent setting. There are similar analogues of all the other results of [5, 6] per-

taining to 

Lar 
m,n,p 

canonical forms. E.g., there is a continuous canonical form on 

(resp. Lao ) if and only if 
rn, n, p 

m= 1 

Let us also note that L ar -+ Mar 
m,n,p m,n,p 

GL fibre bundle over 
n 

Mar , in complete 
m,n,p 

non-time-varying case. 

(resp. p = 1). 

is a locally trivial principal d. a. 

analogy with the situation in the 

It is also true that Mar is a fine moduli space for a suitable notion of 
m,n,p 

families of time-varying linear dynamical systems. And finally one also has 

"degeneracy" or "partial completeness" results analogous to those of CsJ · 
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