COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 18. COMBINATORICS, KESZTHELY (HUNGARY), 1976.

THE LINKING OF MATROIDS BY LINKING SYSTEMS

A. SCHRIJVER

With the help of the concept of a linking system theorems relating matroids with bipartite and directed graphs can be deduced. In this way one obtains natural generalizations of theorems of Brualdi, Edmonds & Fulkerson, Mason, Perfect, Pym and Rado. (For a survey on theorems on "matroids induced by directed graphs" see Brualdi [3].) Here I give one such generalization.

First I give the definition of a matroid and I mention one result from matroid theory, namely Edmonds' intersection theorem [5], since this theorem is used in the proofs of Theorems 1 and 2.

A matroid is a pair (X, \mathscr{I}) , where X is a finite set and $\phi \neq \mathscr{I} \subset \mathscr{P}(X)$, such that

(i) if $X'' \subset X' \in \mathcal{I}$ then $X'' \in \mathcal{I}$, and

(ii) if $X' \in \mathcal{I}$, $X'' \in \mathcal{I}$ and |X'| < |X''| then $X' \cup \{x\} \in \mathcal{I}$ for some $x \in X'' \setminus X'$.

The elements of \mathcal{I} are called the *independent* sets of the matroid. The

- 973 -

matroid (X, \mathscr{I}) determines a rank function $\rho: \mathscr{P}(X) \to \mathbb{Z}$, where for each subset X' of X the rank $\rho(X')$ equals the maximal cardinality of an independent subset contained in X'.

Matroids can be obtained, inter alia, from graphs (in some different ways) and linear spaces (see, e.g., Welsh [20]); matroid theory has applications in graph theory, transversal theory, network analysis, operations research. One of the matroid theoretical results is Ed monds' intersection theorem [5]: let (X, \mathscr{I}_1) and (X, \mathscr{I}_2) be matroids, with rank functions ρ_1 and ρ_2 , respectively. Then the maximal cardinality of a common independent set (that is a set in $\mathscr{I}_1 \cap \mathscr{I}_2$) equals

$$\min_{X' \subseteq X} (\rho_1(X') + \rho_2(X \setminus X')).$$

For a proof of this theorem we refer to Welsh [19].

A second structure we need is that of a linking system, defined as follows.

A linking system is a triple (X, Y, Λ) , where X and Y are finite sets and $\phi \neq \Lambda \subset \mathcal{P}(X) \times \mathcal{P}(Y)$, such that:

(i) if $(X', Y') \in \Lambda$ then |X'| = |Y'|;

(ii) if $(X', Y') \in \Lambda$ and $X'' \subset X'$, then $(X'', Y'') \in \Lambda$ for some $Y'' \subset Y'$;

(iii) if $(X', Y') \in \Lambda$ and $Y'' \subset Y'$, then $(X'', Y'') \in \Lambda$ for some $X'' \subset X'$;

(iv) if $(X_1, Y_1) \in \Lambda$ and $(X_2, Y_2) \in \Lambda$ then there is a $(X', Y') \in \Lambda$ such that $X_1 \subset X' \subset X_1 \cup X_2$ and $Y_2 \subset Y' \subset Y_1 \cup Y_2$.

A linking system determines a linking function $\lambda: \mathscr{P}(X) \times \mathscr{P}(Y) \to Z$, where, for $X' \subset X$ and $Y' \subset Y$,

$$\lambda(X', Y') = \max\{|X''| \mid X'' \subset X', Y'' \subset Y' \text{ and } (X'', Y'') \in \Lambda\}.$$

This notion is comparable with that of the rank function of a matroid.

Examples of linking systems may be obtained as follows.

(a) Let (X, Y, E) be a bipartite graph and let Λ be the set of all pairs (X', Y'), such that $X' \subset X$, $Y' \subset Y$ and X' and Y' are matched in the bipartite graph (that is, there is a bijection $f: X' \to Y'$ such that $(x, f(x)) \in E$ for all x in X'). Then (X, Y, Λ) is a linking system. The axioms (i), (ii) and (iii) for a linking system are verified easily; axiom (iv) is implied by a theorem of Ore [10] (cf. Perfect & Pym [13]). By König's theorem the linking function λ of this linking system is given, for $X' \subset X$ and $Y' \subset Y$, by

$$\lambda(X', Y') = \min_{Y'' \subset Y'} (|E(Y'') \cap X'| + |Y' \setminus Y''|),$$

where $E(Y'') = \{x \in X \mid (x, y) \in E \text{ for some } y \in Y''\}, \text{ for } Y'' \subset Y.$

(b) Let (Z, E) be a directed graph and let $X \subset Z$ and $Y \subset Z$. Let furthermore Λ be the collection of all pairs (X', Y') such that $X' \subset X$, $Y' \subset Y$, |X'| = |Y'| and there are |X'| pairwise vertex-disjoint paths starting in X' and ending in Y'. (Note that a path may consist of a single vertex.) Then (X, Y, Λ) is a linking system. Again, the axioms (i), (ii) and (iii) follow straightforwardly; axiom (iv) follows from the "linkage theorem" of Pym [14] (cf. Brualdi & Pym [4]). Let λ be the linking function of this linking system. Then, by Menger's theorem, for $X' \subset X$ and $Y' \subset Y$, $\lambda(X', Y')$ equals the minimal cardinality of a subset of Z intersecting each path from X' to Y'. Also it is true that

$$\lambda(X', Y') = \min_{Z' \subset Z \setminus Y'} (|E(Z') \cup X'| - |Z'|),$$

where $E(Z') = Z' \cup \{z \in Z \mid (z', z) \in E \text{ for some } z' \in Z'\}$, for $Z' \subset Z$.

(c) Let M be a matrix over some field, with collection of rows Xand collection of columns Y. Let Λ be the collection of all pairs (X', Y') such that $X' \subset X$, $Y' \subset Y$ and the submatrix of M generated by the rows X' and the columns Y' is regular. Then, using simple linear algebraic methods, one proves that (X, Y, Λ) is a linking system. Clearly, its linking function λ is such that $\lambda(X', Y')$ equals the rank of the submatrix of M generated by the rows X' and the columns Y' $(X' \subset X,$ $Y' \subset Y)$. Linking systems and matroids have close relations; one of these relations is shown here in two theorems.

Theorem 1. Let (X, \mathcal{I}) be a matroid, with rank function ρ , and let (X, Y, Λ) be a linking system, with linking function λ . Define

$$\mathscr{I} * \Lambda = \{ Y' \subset Y \mid (X', Y') \in \Lambda \text{ for some } X' \in \mathscr{I} \}.$$

Then $(Y, \mathscr{I} * \Lambda)$ is again a matroid. The rank function $\rho * \lambda$ of this matroid is given by

$$(\rho * \lambda)(Y') = \min_{X' \subseteq X} (\rho(X \setminus X') + \lambda(X', Y')).$$

Proof. We first prove that $(Y, \mathscr{I} * \Lambda)$ is a matroid. Since $\phi \in \mathscr{I}$ and $(\phi, \phi) \in \Lambda$ it follows that $\mathscr{I} * \Lambda \neq \phi$. Furthermore, if $Y'' \subset Y' \in \mathscr{I} * \Lambda$ then $(X', Y') \in \Lambda$ for some $X' \in \mathscr{I}$. By axiom (iii) of a linking system there exists an $X'' \subset X'$ such that $(X'', Y'') \in \Lambda$. Since $X'' \subset X'$, also $X'' \in \mathscr{I}$, which implies $Y'' \in \mathscr{I} * \Lambda$.

If $Y' \in \mathcal{I} * \Lambda$, $Y'' \in \mathcal{I} * \Lambda$ and |Y'| < |Y''|, we have to prove that $Y' \cup \{y\} \in \mathcal{I} * \Lambda$ for some $y \in Y'' \setminus Y'$. Let $X' \in \mathcal{I}$ and $X'' \in \mathcal{I}$, such that $(X', Y') \in \Lambda$, $(X'', Y'') \in \Lambda$ and $|X' \cap X''|$ is as large as possible. As |X'| = |Y'| < |Y''| = |X''|, there is an $x \in X'' \setminus X'$, such that $X' \cup \cup \{x\} \in \mathcal{I}$. Now $(X' \cap X'') \cup \{x\} \subset X''$, hence, by axiom (ii) of the definition of a linking system, there exists a subset Y''' of Y'' such that $((X' \cap X'') \cup \{x\}, Y''') \in \Lambda$. By axiom (iv) there is a pair (X_0, Y_0) in Λ such that:

$$(X' \cap X'') \cup \{x\} \subset X_0 \subset X' \cup \{x\}$$
 and $Y' \subset Y_0 \subset Y' \cup Y'''$.

Now it is not possible that $Y_0 = Y'$, for in this case $(X_0, Y') \in \Lambda$, $X_0 \in \mathscr{I}$ and $|X_0 \cap X''| > |X' \cap X''|$, contradicting the maximality of $|X' \cap X''|$. Therefore $|Y_0| > |Y'|$, hence $X_0 = X' \cup \{x\}$ and $Y_0 =$ $= Y' \cup \{y\}$ for some $y \in Y''' \setminus Y'$. It follows that $Y' \cup \{y\} \in \mathscr{I} * \Lambda$. Therefore, $(Y, \mathscr{I} * \Lambda)$ is a matroid.

Next we show that the rank $(\rho * \lambda)(Y')$ of a set $Y' \subset Y$ equals $\min_{X' \subset X} (\rho(X \setminus X') + \lambda(X', Y')).$

- 976 -

This is done using Edmonds' intersection theorem. By the same method as in the first part of this proof one shows that, if $\mathscr{J} = \{X' \subset C \mid (X', Y'') \in \Lambda$ for some $Y'' \subset Y'\}$, the pair (X, \mathscr{J}) is a matroid. Here one uses the matroid on Y where each subset of Y' is independent. It is clear that in the matroid (X, \mathscr{J}) the rank of a subset X' of X equals $\lambda(X', Y')$. Now by Edmonds' intersection theorem:

$$(\rho * \lambda)(Y') = \max \{ |X'| \mid (X', Y'') \in \Lambda$$

for some $Y'' \subset Y'$ and $X' \in \mathscr{I} \} =$
$$= \max \{ |X'| \mid X' \in \mathscr{J} \text{ and } X' \in \mathscr{I} \} =$$

$$= \min_{X' \subset X} (\rho(X \setminus X') + \lambda(X', Y')),$$

which was to be demonstrated.

Besides results of Edmonds & Fulkerson [6] (if (X, Y, E) is a bipartite graph and $\mathscr{I} = \{Y' \subset Y |$ there is a matching in E between some subset of X and Y'}, then (Y, \mathscr{I}) is a matroid) and Perfect [11] and Pym [15] (if (Z, E) is a digraph, $X, Y \subset Z$ and $\mathscr{I} = \{Y' \subset Y |$ there are |Y'| pairwise vertex-disjoint paths in E starting in X and ending in Y'}, then (Y, \mathscr{I}) is a matroid), we have the following corollaries.

Corollary 1a (Perfect [12], Rado [16]). Let (X, Y, E) be a bipartite graph and let (X, \mathscr{I}) be a matroid, with rank function ρ . Let \mathscr{I} be the collection of all subsets of Y, which are matched with some $X' \in \mathscr{I}$. Then (Y, \mathscr{I}) is again a matroid. The rank $\sigma(Y')$ of a subset Y' of Y equals $\min_{Y'' \subset Y'} (\rho(E(Y'')) + |Y' \setminus Y''|)$.

Proof. Straightforward by applying Theorem 1 to example (a). Observe that

$$\min_{X' \subset X} (\rho(X \setminus X') + |E(Y'') \cap X'|) = \rho(E(Y'')), \quad \text{for} \quad Y'' \subset Y. \blacksquare$$

Corollary 1b (Brualdi [2], Mason [9]). Let (Z, E) be a directed graph and $X, Y \subset Z$. Let (X, \mathscr{I}) be a matroid, with rank function ρ . Let \mathscr{I} be the set of all subsets Y' of Y such that there are |Y'| pairwise vertex-disjoint paths starting in some independent sub-

set X' of X and ending in Y'. Then (Y, \mathscr{J}) is again a matroid. The rank of a subset Y' of Y equals $\min_{Z' \subseteq Z \setminus Y'} (\rho(X \setminus E(Z')) + |E(Z')| - |Z'|).$

Proof. This is again clear in the light of example (b) and Theorem 1. In this case we need the following obvious identity:

$$\min_{X' \subset X} (\rho(X \setminus X') + |E(Z') \cup X'|) =$$
$$= \rho(X \setminus E(Z')) + |E(Z')|, \quad \text{for} \quad Z' \subset Z.\blacksquare$$

Corollary 1c. Let M be a matrix over some field, with row collection X and column collection Y. Let furthermore (X, \mathscr{I}) be a matroid. Define \mathscr{J} as the collection of all subsets Y' of Y such that, for some $X' \in \mathscr{I}$, the submatrix of M generated by the rows X' and the columns Y' is regular. Then (Y, \mathscr{I}) is again a matroid.

Proof. Apply Theorem 1 to example (c).■

The second theorem generalizes a theorem of Brualdi [1] (see Corollary 2a).

Theorem 2. Let (X, Y, Λ) be a linking system, with linking function λ , and let (X, \mathscr{I}) and (Y, \mathscr{I}) be matroids, with rank function ρ and σ , respectively. Then the maximal cardinality of a set $Y' \in \mathscr{I}$ such that for some $X' \in \mathscr{I}$ the pair (X', Y') is in Λ , equals

$$\min_{X'\subset X, Y'\subset Y} (\rho(X\setminus X') + \lambda(X', Y') + \sigma(Y\setminus Y')).$$

Proof. If a pair $(X', Y') \in \Lambda$ is such that $X' \in \mathscr{I}$ and $Y' \in \mathscr{I}$, then $Y' \in \mathscr{I} * \Lambda$ (cf. Theorem 1). Hence the maximal cardinality of a set $Y' \in \mathscr{I}$ such that $(X', Y') \in \Lambda$ for some $X' \in \mathscr{I}$ equals max {| Y' | | $Y' \in \mathscr{I}$ and $Y' \in \mathscr{I} * \Lambda$ }; by Edmonds' intersection theorem this is

$$\min_{Y'\subset Y} ((\rho * \lambda)(Y') + \sigma(Y \setminus Y')),$$

and by Theorem 1 this equals

- 978 -

$$\min_{X' \subset X, Y' \subset Y} (\rho(X \setminus X') + \lambda(X', Y') + \sigma(Y \setminus Y')). \blacksquare$$

This theorem has the following corollaries.

Corollary 2a (Brualdi [1]). Let (X, Y, E) be a bipartite graph and let (X, \mathscr{I}) and (Y, \mathscr{I}) be matroids, with rank functions ρ and σ , respectively. Then the maximal cardinality of a set $Y' \in \mathscr{J}$ which is matched in E with some $X' \in \mathscr{I}$ equals

 $\min_{Y' \subseteq Y} (\rho(E(Y')) + \sigma(Y \setminus Y')).$

Proof. Apply Theorem 2 to example (a) and observe that

$$\min_{X' \subset X} \left(\rho(X \setminus X') + |E(Y'') \cap X'| \right) = \rho(E(Y'')),$$

and

$$\min_{Y' \supset Y''} (|Y' \setminus Y''| + \sigma(Y \setminus Y')) = \sigma(Y \setminus Y''),$$

for $Y'' \subset Y$.

Corollary 2b. Let (Z, E) be a directed graph and let X and Y be subsets of Z. Let (X, \mathscr{I}) and (Y, \mathscr{I}) be matroids, with rank functions ρ and σ , respectively. Then the maximal cardinality of a set Y' in \mathscr{J} such that there are |Y'| pairwise vertex-disjoint paths starting in an X' in \mathscr{I} and ending in Y' equals

$$\min_{Z' \in \mathcal{Z}} (\rho(X \setminus E(Z')) + |E(Z')| - |Z'| + \sigma(Z' \cap Y)).$$

Proof. Apply Theorem 2 to example (b) and observe that

$$\min_{X' \subseteq X} \left(\rho(X \setminus X') + |E(Z') \cup X'| \right) = \rho(X \setminus E(Z')) + |E(Z')|. \blacksquare$$

Other theorems of Mason [7], [8] and Brualdi [2] on matroids and graphs have also their generalizations to theorems on matroids and linking systems. For more details see [17] and [18].

- 979 -

REFERENCES

- [1] R.A. Brualdi, Admissible mappings between independence spaces, *Proc. London Math. Soc.*, (3) 21 (1970), 296-312.
- [2] R.A. Brualdi, Induced matroids, Proc. Amer. Math. Soc., 29 (1971), 213-221.
- [3] R.A. Brualdi, Matroids induced by directed graphs, a survey, in: *Recent advances in graph theory*, Proc. Symp. Prague June 1974, p. 115-134; Academia Prague 1975.
- [4] R.A. Brualdi J.S. Pym, A general linking theorem in directed graphs, edited by L. Mirsky, Studies in pure mathematics, Academic Press, London and New York, 1971.
- [5] J. Edmonds, Submodular functions, matroids and certain polyhedra, lectures, Calgary International Symposium on Combinatorial Structures, June 1969.
- [6] J. Edmonds D. R. Fulkerson, Transversals and matroid partition, J. Res. Nat. Bur. Standards, 69 B (1965), 147-153.
- [7] J.H. Mason, Representations of independence spaces, Ph.D. Dissertation, University of Wisconsin, Madison, Wis., 1969.
- [8] J.H. Mason, A characterization of transversal independence spaces, in: *Théorie des matroïdes*, Springer Lecture Notes 211, 1971.
- [9] J.H. Mason, On a class of matroids arising from paths in graphs, Proc. London Math. Soc., (3) 25 (1972), 55-64.
- [10] O. Ore, Theory of graphs, Amer. Math. Soc. Coll. Publ. 38, Providence, 1962.
- [11] H. Perfect, Applications of Menger's graph theorem, J. Math. Anal. Appl., 22 (1968), 96-111.
- H. Perfect, Independence spaces and combinatorial problems, Proc. London Math. Soc., (3) 19 (1969), 17-30.

- 980 -

- [13] H. Perfect J.S. Pym, An extension of Banach's mapping theorem, with applications to problems concerning common representatives, *Proc. Cambridge Phil. Soc.*, 62 (1966), 187-192.
- [14] J.S. Pym, The linking of sets in graphs, J. London Math. Soc., 44 (1969), 542-550.
- [15] J.S. Pym, A proof of the linkage theorem, J. Math. Anal. Appl., 27 (1969), 636-639.
- [16] R. Rado, A theorem on independence relations, Quart. J. Math. (Oxford), 13 (1942), 83-89.
- [17] A. Schrijver, Linking systems, Report ZW 29/74, Mathematical Centre, Amsterdam (1974).
- [18] A. Schrijver, Linking systems, II, Report ZW 51/75, Mathematical Centre, Amsterdam (1975).
- [19] D.J.A. Welsh, On matroid theorems of Edmonds and Rado, J. London Math. Soc., (2) 2 (1970), 251-256.
- [20] D.J.A. Welsh, Matroid theory, Academic Press, London, 1976.

A. Schrijver

Mathematical Centre, Tweede Boerhaavestraat 49, Amsterdam-1005, the Netherlands.