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l. Following DE GROOT [6], a topological space X is called superc?mpact if 

X has a so-called binary subbase, that is a subbase S such that if S 1 cS 

and nS' = !il then there are s 1 and s2 in S' with s 1ns 2 0. (Here and in 

the sequel each subbase is supposed to be a subbase for the closed sets.) 

Using Alexander's subbase lemma it is clear that each supercompact space 

is compact. Also it is easy to prove that the product of supercompact 

spaces is again supercompact. Not every compact Hausdorffspace is super

compact, since BELL [ 1 J proved that BJN is not supercompact (cf. [4]). 

Examples of supercompact spaces: 

(l) Compact orderable spaces (binary subbase: the collection of closed 

intervals); and more generally: 

(2) Compact lattice spaces (binary subbase: the collection of closed 

intervals); 

(3) Compact treelike spaces (a space X is treelike if X is connected and 

for each two different points there is a point separating them; 

binary subbase: the collection of closed connected subsets; cf. 

[3,9, 10]); 

(4) Compact metric spaces (STROK & SZYMANSKI [11]). 

Also products of the examples give supercompact spaces. 

2. A first characterization of supercompactness uses the notion of an inter

val structure. An interval structure on a set X is a function 

I: X "X + P(X) such that: 

(i) Vx,yEX: x,yEI(x,y), 

(ii) Vx,y,u,vEX: u,vEI(x,y) implies I(u,v) cI(x,y), 

(iii) Vx,y,zEX: I(x,y) nl(x,z) nl(y,z) f 0. 
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A subset S of X is called I-aonvex if I(x,y)cS for all x,yES. Using a 

result of GILMORE [5] (cf. [2] p.396) the characterization is as follows. 

THEOREM. A space X is superaompaat if and only if X is compact and there is 
an interval structure I on X and a sUbbase S for X such that each set in S 
is I-convex. 

In the first three examples of section I we can take as interval structure 

the obvious intervals: 

in (I) : I(x,y) [x,y] if x ,;; y, 

I(x,y) [y,x] if x > y; 

'.n (2) I(x,y) [ xAy ,xvy]; 

in ( 3) I(x,y) {x,y} u {zl z is a point seperating x and y}. 

3. The second characterization needs the notion of a graph. A graph G is a 

pair (V,E), where Vis a set and 

E c {{v,w} I v,wEV, v f w} 

(cf. [2]). 

A subset V' of V is stable if {v,w} ~ E for all v,wEV', and maximal 
stable if V' is stable and not contained in another stable subset of V 

(by Zorn's lemma each stable subset is contained in a maximal stable 

subset). 

Now define successively: 

I(G) = {V'cVIV' maximal stable}; 

B(G) = {B) VEV}. 

B(G) is a collection of subsets of I(G). Let T(G) be the space with 

point set 1 (G) and subbase B(G). We call T(G) the stability spaae of G. 
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The following theorem is due to DE GROOT [7). 

THEOREM. A spaae X is T 1 and superaompaat if and only if X is (homeo
mol"phia to) the stability spaae of a graph. 

Special classes of supercompact T1-spaces can be characterized by being 

the stability space of special graphs: 

(I) A space X is compaat orderabZe if and only if X is (homeomorphic to) 

the stability space of a aonnected comparable gl"aph (a graph 

G = (V,E) is connected if for each two v,weV there are v1, ••• ,vn 

in V such that 

G is comparable if from 

it follows that {v1,v4 } EE or {v2,v5} EE). 

A space X is a product of compact orderable spaaes if and only if 

X is (homeomol"phic to) the stability of a comparable graph (this 

follows easily from the foregoing characterizations; cf. [8)). 

(2) A space X is a compact Zattiae spaae if and only if X is (homeo

morphia to) the stability spaae of a bipartite graph (a graph G = 
(V,E) is bipartite if V is the disjoint union of two sets v1 and v2 
such that 

(3) For a graphical characterization of compact treelike spaces see [10). 

(4) A Hausdorff space X is compact metrizable if and onZy if X is (homeo

morphia to) the stability space of a c~untabZe graph (this result of 

DE GROOT [7) is based on STROK & SZYMANSKI's theorem [II] that each 

compact metric space is supercompact). 

For proofs and more details we refer to [10). 
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