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1. INTRODUCTION.

In this paper we give an explicit construction for the logarithm of
more dimensional (commutative) formal groups of various kinds. The
procedure is basically the same as in [3], [4]; cf. also the brief
indications in [2], part I, II for the more dimensional case. That
is, we first construct a suitable candidate for a universal formal
group by giving its logarithm in terms of a functional equation,
then we prove that the formal group with this logarithm is indeed
integral and finally we prove universality of this formal group

by a more dimensional extension of the method which Buh$taber

and Novikov have used in [1] to prove universality of the formal
group of complex cobordism. The one dimensional algebraic version

of this trick has already been used in [3], [4].

Thus one avoids Lazard's truly tough (and computational) comparision
lemma between more dimensional formal groups. Cf. [7]. This lemma now

appears as a corollary.

Thus, starting from nothing, one obtains in 10 pages or so (i) a
proof of the existence of a universal n-dimensional formal group,(ii)
the structure of the underlying ring and (iii) an explicit description
of the logarithm of this formal group, and, if one wishes, the same
things for p-typical formal groups.

All formal groups will be commutative. All rings will be commutative
with unit element. Z stands for the integers, gé(p) for the integers
localized at p and B for the rational numbers; N denotes the natural
numbers, N = {1, 2, 3,,,,}. If F(X,Y) is a formal group over a ring
A and ¢ : A+ B a ring homomorphism then F¢(X,Y) denotes the formal
group obtained from F(X,Y) by applying ¢ to its coefficients.

2. CONSTRUCTIONS AND STATEMENT OF MAIN THEOREMS.

2.1. A multiindex p = (n1,...,nm) is an m-tuple . of integers. > 0.
Let ||§|| =n, +n, + ... +n . We shall only consider multiindices p
with ||p|| > 1. We use g(i), i = 1, ..., m to denote the multiindex
(Gs:.250,1,0,.04,0) with 1 in the i-th place. If p is a multiindex

and i €N then i g is the multiindex ip = (in1,...,inm). We use



to denote the set of all multiindices

: with ||n|| > 1 and
n#pe(i)forallr= 1,2,...31=

n
1, ., m and prime numbers p € W
2.2. If g(X) is a power series over A[U],Uz, ...] and n €N then g(n)(x)
denotes the power series obtained from g(X) by replacing each U ; with

U‘;, i=1,2, ...

2.3. Constructions.

.
LY

Choose m € N. Let Z [V]be short for =Z__[Vi(j,k); i=1,2,
J.k =1, ..., m]. We write Vi for the matrix Vi(j,k), X for the column
vector (.X1, ,Xm) and Xn, n €N for (X?, ces ,X:l). Choose a prime
number p. With these notations we define the m~tuple of power series
£,(X) with coefficients in B[V] by

= Vi (p), . pt
(2.3.1) fv(x) =X + 121 = fv (x* )

and we define
(2.3.2) PLX,Y) = £ (2,000 + £(Y))

where h-1(X) is the inverse m-tuple of power series to h(X); i.e.
n” ' (h(X)) = X = n(x™ (X)),

Let Z [V;T] be short for ZIV,(5,k), T;(3.K)5 1 =1,2, ..o5 §.k =1, ... ,ml,
We define

® et T YN et
i=1 1=1
and
-

For each sequence (q1, vees qt) of powers of prime numbers, q; & power

of p;, choose an integer n(q1 »-++>Qt) such that the following congruences
are satisfied

r .
n(q1,...,q_t) 1 mod p, 1.f‘p1’—';32=...=pr15pr4.1
(2.3.5)

1

n(qT,...,qt) Omodp;- if p1#1)2=...=pr#pr+1



i=1, ..., m]. We also define U(i,g(j) = 0 if i # j and U(i,e(i)) = 1.

If q is a power of a prime number in I, we use Uq to denote the matrix

Let Z [U] ve short for Z [U(i,n); n & multiindex with ||n|| > 2,

(U(i,q_g(j))i ja.nd if d is a multiindex we use U, to denote the column
£}

d
n n, n,
vector (U( Tﬁ%), ...d\U(m,g)). Finally X =X, ... X = and if a is

a vector a.X= = (3.1)(“, caes a.mX=). We now define the column m-vectors

a for all multiindices n with Hr=1[| > 1 as

n(q1,...,qt) n(qz,...,qt) n(qt)

(2.3.6) a_ = I N
et (q1,...,qt,g_) P4 P2 P‘t :

ool gt temllaeey)
1% 4 d

where the sum is over all sequences (q1, ...,qt,g) such that

q1....qtg =n, d€D, q; a power of a prime number P;- NBt =0 1is allowed.
We now define

n
(2.3.7) ny(X) = i e X , Hy(X,¥) = n7 (ny(0)+n,(Y)
pl|>1 =
and
(2.3.8) By(x) = w(x), By(x,Y) = #(x,Y)

where ¢: Z [U] > Z [U] is the homomorphism which takes U(i,qe(J)) into

itself for i,j = 1, ..., m and prime powers q, and which sends U(i,n)

to zero for allnp € E, i =1, ..., m, where E = D ~ {e(idli=1,... ,m}

2.4. Iniegrality Theorem.

The formal power series FV(X,Y), FV,T(X’Y)’ H.U(X,Y) and ﬁU(X,Y) have
their coefficients respectively in Z [V], Z [V;T], Z [U] and Z [u].

2.5. Theorem (Universality of B(X,Y)).

H”(X,Y) is a universal m-dimensional formul group.
i.e. for every m-dimensional commutative formal group F(X,Y) over a

ring A there is unique homomorphism ¢ : Z {U] > A such that

HI(X,1) = F(X,1).



2.6. Theorem.
HU(X,Y) and ﬁU(X,Y) are strictly isomorphic over Z [U].
2.7. Curves.

Let F(X,Y) be an m-dimensional formal group over a ring A. A curve in
F(X,Y) is an m~tuple of power series y(Z) in one indeterminate Z with
coefficients in A and zero constant terms. Two curves can be added
by means of F(X,Y) as follows y(Z) o §(z) = F(y(2), 6(2)). Let n € W.
One now defines a Frobenius operator gn in exactly the same way as

for one dimensional formal groups. I.e. formally we have that
_ 1/n 2,1/n n,1/n
(2.7.1) (£,0)(2) = v(z 2" +p v(222'P) o e v(2R2!/R)

where [ is a primitive n-th root of unity. For a more precise

definition, cf. [3].

2.8. More Dimensional p-typical Formal Groups.

Choose a prime number p. Let F(X,Y) be a formal group over a ring A.

A curve y(Z) is said to be p-typical in F if (f;y)(z) = 0 for all

prime numbers q # p. We shall say th%t the fo%'mal group F(X,Y) is p-typical
if all curves of the form y(Z) = (Z¥ 1,...,Zp oy, r, EN Y {0} are
p-typical.

If A 1s a characteristic zero ring, i.e. A > A QZQ is injective, and

£(X) is a logarithm for F(X,Y) and f£(X) is of the form

(=]

e. _1
(2.8.1) £(X) = x + 1 =
i=1 p
for certain matrices c, with coefficients in A, then F(X,Y) is a
p-typical formal group, as is easily seen. The converse is also true;

this follows from theorem 2.9 below.
2.9. Theoren.

FV(X,Y) is a universal p-typical formal group (of dimension m) for
p-typical formal groupsover Z (p)—algebras or characteristic zero

rings.

I.e. for e\}ery p-typical formal group G(X,Y) over a ring A which is
a Z (p)—algebra or a characteristic zero ring there is a unique

homomorphism ¢: Z [V] + A such that F?}(X,Y)_ = G(X,Y).



Let «: Z [V] » Z [U] be the injective homomorphism defined by

. T , .
K(Vi(,],k)) = U(j,p glk)), and X : Z [U] »~ Z (p)[U] be the localization
homomorphism.

2.10. Theorem.

Ak
The formal groups F (X,Y) and HG(X,Y) are strictly isomorphic

(over Z (p)[U])'

—

2.11. Corollary.

Every formal group over a Z (p)-—algebra is isomorphic to a p-typical

formal group.

2.12. Theorem.

The formal groups FV(X,Y) and Fy T(X,Y) are strictly isomorphic over
3
Z [V;T] and this isomorphism is universal for strict isomorphisms between

p-typical formal groups over Z (p)-algebras or characteristic zero rings.

2.13. Curvilinear Formal Groups.

If k,% are multiindices of length m we define k2 = (k1£1, cees kmlm).
Let Q be the multiindex Q = (0,...,0). In [7] Lazard defines a formal

group F(X,Y) over a ring A to be curvilinear (curviligne) if

(2.13.1)  [{gll.[lell >~ 1,

=

-&:

o

= ag’ (i) =0foralli=1, ..., m

=

where F(X,Y) = (F(1)(X,Y), ..., F(m)(X,Y) and F(i)(X,Y) =

X+ Y+ oey ()X

2.14. Let Z [R] be short for ZIR(jk);31i=2,3,....,5=1, ..., m
k=1, ..., m]. Let g : Z [U] ~ Z [R] be the projectiong (U(i,d)) = 0
unless d is of the form dg(j) for some d €N, d > 2, j € {1,...,m}, and
4 (U(i,ag(j)) = Ry(1,5).

Let 1: Z [R] » Z [U] pe the injection defined by 1(Rd(i,j)) = U(i,dg(J)).

We define
(2.14.1) hR(X) = h (X), HR(X,Y) = HS(X,Y)

2,15. Theorem.

HR(X,Y) is a curvilinear m-dimensional formal group over Z [R] and

it is universal for curvilinear m-dimensional formal groups. The formal



groups HF:(X,Y) and HU(X,Y) are strictly isomorphic over Z [U].

2.16. Corollary.

Every formal group over a ring A is strictly isomorphic to a curvilinear

formal group over A.

2.17. The formal group HR(X,Y) is the multidimensional analogue of the
one dimensional universal formal group denoted HU(X,Y) in [4]. There is
also a multidimensional curvilinear analogue of the universal one

dimensional formel group FU(X,Y) of [4]. To obtain it choose c(p,i),

p & prime number, i € ~ {1} as in [4] and determine n(i1, ey is)
for all sequences (i1, cees is), ij EN ~ {1} as in [4]. Let d(i1,...,is) =
. . . . . .oa=1 .oy=1 .oy=1
n(11, ...,1s)n(11,...,1s) . n(1s)v(11) v(12) . V(ls) . Now
define the matrices b;(R) as
(i1) (i1...is_1)
(2.17.1) bv.(R) = d(i,,...,i_)R. R. ... R.
1 (i i) 1 s 11 12 1
gore iy s
i=2,3, ...
where R is the matrix (Rk(j,z))jl and the sum is over all sequences
(11,...,is), ij EN ~ {1}, s > 1, such that 11, cees is = 1.
We put
(2.17.2) £o(X) = 1 b (R)X", b, (R) = I, them x m identity matrix
i=1
- _ o
(2.17.3) Fp(X,Y) = £ (£(X) + £(Y))

2.18. Theoremn.

FR(X,Y) is an m-dimensional curvilinear formel group over Z [R] and
it 1s universal for m-dimensional curvilinear formal groups. FR(X,Y)

is strictly isomorphic to HR(X,Y) over Z [R].

2.19. Because the d(i ,is) in (2.17.1) have been chosen as in [U]

PR
we find exactly as in [L] the following formula between the Ri and

the bi(R)'



(2.19.1) v(n)bn(R) =R+ d)|:n p(n,d)bn/d

d#1,n

()R{>/ &)

3. PROOF OF THE INTEGRALITY THEOREMS 2.k4.

3.1. Let g1(X) and gQ(X) be m-tuples of power series over Z (p)[V;W]
where W is short for an additional set of indeterminates and V is as

in 2.3.

Suppose that gj(X) =X+ ... ,J=1,2,has its coefficients in gl(P){V;W];
o Vi ( i) i
(3.1.1) ‘ £.(X) = g.(X) + 1 —=p:P /(xP)
J 3 iy DI

(1) F(X,Y) = f; (f1(X) + f1(Y)) has its coefficients leZé(P)[V;W]

(ii) There is a hT(X) with coefficients in g;(p)[V,W] such that
f1(h1(X)) = £,(X)

(iii) If h,(X) is of the form h,(X) = X + ... Then f1(h2(X)) satisfies
a functional equation of the form 3.1.1.
The proofs of these facts are completely analogous to the proofs of the

corresponding lemmas in [3].

3.2. Choose numbers n(qT, N qt) for all sequences of powers of prime

numbers (q1, ...,qt) such that (2.3.5) is satisfied. Let

n(q1,...,qt) n(q2,...,qt) n(qt)
> . = .o —5;———

(3.2.1) dlay, --vs q) =
where q. is a power of the prime number P, -

Lemma (i) If Py = ... =D #p ~+q then p1d ,...,qt

(ii) dlqq,...»q) - Py d(qg,---,qt) € Z(P1)

Proof. We prove (i) by induction. The car= t = 1 is trivial. If r = 1,
s=1

Let Py = Py = .-+ = PSS#1PS+1. Then p, d(qZ,...,q_t € Z and

n(q1,...,qt) = 0 mod p2 . Therefore p1d q1,...,qt)

n(q1,.. th)d Ao qt Now let r> 1, then p1" d(qz""’qt) €Z



r -1
Hence p1d(q1,...,qt) = n(q1,...,q_t)p11‘ d(q2,...,qt) €Z.

To prove (ii) we distinguish two cases. If r = 1 then d(qz,.. .,q_t) € Z,

1 )
by (i) and hence d(q1,...,q_t) - p; d(qg,...,q_t) =

P; (n(q1,...,qt)—ﬂd(qg,...,q_t) € g(p1), because n(q'1,‘q2,...,qt) = 1 mod p,

if Py # Py If py=p, = ... = pr#er with r > 1, then

r-1

p, d(ap,...,q,) €Z by (i) and hence d(q1,._,,q_t) _ P—]

] d(qz,...,qt) =

P;1(n(q1,...;q_t)«1)d(q2,...,qt) € _Z,(

in this case.

: r
) because n(q1,...,q_t) 1 mod Py

Py

3.3. Lemma.

The formal power series hU(X) satisfies a functional equation of the

form

U . . .
(3.3.1) b (X) = g () + 3 2 n(P)(xP))
33 | AR io1 P U
with gp(X) =X+ ...€% (p){U][[X]] for all prime numbers p.

This follows from (2.3.6) and lemma (3.2) (ii) above.-

3.4. Proof of Theorem 2.4 (Integrality Theorems)

By lemma 3.3 end lemma 3.1 (i) we have that HU(X,Y) is in Z (p)[U][[X,Y]]

for all prime numbers p. Hence I-LU(X,Y) in Z [UJ[[X,Y]]. The m~tuple of
power series ﬁU(X,Y) is obtained by setting certain U(i,g) equal to zero
in HU(X,Y), hence also ITLU(X,Y) in Z [UL[X,Y]].

The power series fV(X) and fV,T(X) satisfy by their definition a functional
equation of type (3.1.1). Moreover the only denominators occurring in
fV(X) and fV,T(X) are powers of p. Hence FV(X,Y) and FV,T(X’Y) can only
have denominators which are powers of p. Now epply lemma 3.1 (i) again,

to conclude that Fu(X,Y) and F, (X,Y) are in Z [VI[[X,Y]] and

Z [vyT][[X,Y]] respectively.

v,T

L. A LITTLE BIT OF MULTIDIMENSIONAL BINOMIAL -
COEFFICIENT ARITHMETIC.

2

4.1. Let n be a multiindex of length m. Recall that ||n|| = nt ...+
n; €W U {0}. We write k <p if k;, <n;, i =1, ..., mand k < p if

k<pend [[k|| < ||g]|- I k < g ve define



(4.1.1) (%) =

We also define v(n) = 1 unless n is of the form n = pe(j) for some

r €N, j € {1,...,m}, and prime number p, then v(prg(j)) = p. Then
one has that

(h.1.2) v(g) = g.c.d. {(%); Q0 <k < n}

where Q stands for the multiindex (0,0,...,0).
This is clear if n is of the form o = n g(j). And if n is such that at
least two different ni are > 0, let i1 be the smallest number such that

n. 0. Take k = n. e(i 4y -
;7 k=n 2(11). Then (5) 1.

¥ 14
L.2, Let n €EN, n > 2. Choose A_ ., .., A such that
= - n,l n,n-1
n ' n o, _ . _ .
An,1(1) + ...+ An,n—1(n—1) = v(n). If n is of the form n = n g(J),
then if 0 <k <p, k =k g(j) for some 0 < k < n. We put AMpL.k) = A

n,k
for all Q0 < k < n in this case. If n is not of the form n e(j), let i

1

be the smallest natural number such that ni # 0. For these n we take
1

AMa,k) = 0 if k # (0,...,0,n; ,0,...,0), 0 < k < n and X(p,k) = 1 if

i

= (0,0,...,0,ni ,0,...,0). Then we have of course
1

=

(k.2.1) A(g,g)(ﬁ) = v(n)

<k<n =

Ho
= ™

4.3. Lemma.

Let n be a multiindex, |ln|| > 2. For each Q < k < n let X(k) be an

indeterminate and let X(k) = X(n-k). Then every X(k) can be written as

an integral linear combination of the expressions

(L.2.2) £ Mp,k)X(k)
k@
(h.2.3)  ERxgee) - (EBX(gm) g+ L+m=1. ki p> 0



10

where the x(g,g) are as above

Proof. If p is of the form o = n g(j), this the binomial coefficient
lemma of [4] section 4. If n is not of the form n g(j) let i be the
smallest natural number such that n # 0. Then (L4.2.2) is equal to
X(n;e(i))

For all 0 < k < n, take k = k e(i), & = (ni—k}g(i), m=n -k -%. Then

X(k+g) = X(n.e(1)), X(gwm) = X(k)

it
fad
=
o
[
~—
o
fa]
o
it
H

we have written all X(kg(i)) with 0 < k < n; as linear combinations
of (4.2.2) and (4.2.3). Now let d = (j1, R jm) be a multiindex
with Q0 < j <1, o<y £np  and ¢ :#:jgil).

i=4-k2°

-k - &. Then ( & = 4, X(k+g) = X(])

+
= &

[e]

X(g+m) = X(
such that j.

=
L}

X(jigi). So that we can write all X(k) with 0 < j <1

<
; <n; as linear combinations of (L4.2.2) and (L4.2.3). But
if 0 < j < n either j or n - j has its i-th component ?aea&e1 than o
and X(j) = X(p-])- ‘

q.e.d.

5. PROOF OF THE UNIVERSALITY THEOREMS.

5.1. Let n € N. We write hU(n)(X) and HU(n)(X,Y) for the m-tuples
of formal power series obtained from hU(X) and HU(X,Y) by substituting

0 for all U(i,d) with ||d|| > n. Then we have
(5.1.1) , hU(X) = hU(n)(X) + rn+1(x) mod (total degree n+2)

where rn+1(x) is the following m-tuple of homogeneous forms of degree

n+ 1 1in Xis =evs Xm

(x) = =z v(g)—1U x&

| 1] ]=n+1

(5.1.2) T

e

where the notation is as in (2.3). This follows immediately from (2.3.6).

It follows that we have for HU(X,Y) that



11

(5.1.3) Hy(X) = Hy () + 1 () + 1 (¥) - Py (X+Y)

mod (total degree n+2)

where Fn 1s as in 5.1.2.

+1

5.2. Let

(5.2.1) By(%,Y) = (H;(0D(X,Y), o, Hydm)(X,Y))
and write

(5.2.2) B (1)(X,Y) = X, + ¥, + 2 (i)xEvy&

e
IIRInIEE R

Let for all d with ||d]| > 2

A(

=]
=
[¢]

(1)

i
Iﬁ%
"=

(5.2.3) yv(ig) = =
} g<§<

Lie]]

where the A(d,k) are as in L.2.
Lemma. The y(i,d) are a polynomial basis for Z [U].

I.e. every element of Z [U] can we written uniquely as a polynomial
in the y(i,g).
This follows from (5.1.3) together with (k.2.1).

5.3. Proof of Theorem 2.5 (Universality of HU(X,Y))

Let G(X,Y) be a commutative m-dimensional formal group over a ring A.
Write G(X,Y) = (6(i)(X,Y), ..., G(m)(X,Y)) and let

(5.3.1) G(i)(X,Y) = X, + Y 4 'Z 1a§,§(i)X§Y§

el el 1>

=
=

Now define the homomorphism ¢ : Eé[U] -+ A by the requirement that

(5.3.2) o(y(i,g)) = Mg,y (1)

L
0<k<g k-4

=

This is a well defined homomorphism because of lemma 5.2. And certainly

. . ¢ -
¢ 1is the only possible homomorphism such that HU(X’Y) = 6(X,Y). It



T/)&sr 7/1 nepase | %lj}/?m

W opaces ety 1 b 12
/ﬁf)f'; 11»7'»vjf"0:2 C (o
J,m,,‘/ oS /JA ! Hown ool )
remains, therefore to prove that ¢(e§ g (1)) = ag’&(i) for all
k,g2 with ||k||,||&|] > 1. The case ||k+g|| = 2 follows directly

from (5.3.2) because both G(X,Y) and HU X,Y) are commutative, i.e.

eg’ (i) = e, (i) and a.lé (1) = § i).

e
=
L4

=
o
Ilzo

Associativity of HU(X,Y) and G(X,Y) means that the coefficients

(1), 8 (i) must satisfy some universal relations. These
k.2 5.2

are easily seen to be of the form

) (5t o) .

A e T
(5.3.3)

k+d Moy o

g DO T e T ey
where the P§,§,§a; are certain universal polynomials in the eg’g
(resp. ag t) with ||s+t|| < k+2+m. Now use induction on ||k+g|| and

=%= ' - = - =T ==

lemma 4.3 to prove that ¢(e k’é(l)) =a 2(1) for all k,&,i.

5.4. Corollary. (Lazard's comparison lemma, cf [6]).

Let F(X,Y), G(X,Y) be two m~-dimensional formal groups over a ring A,
and suppose that F(X,Y) = G(X,Y) mod (total degree n). Then there
is an m-tuple of homogeneous forms I" of degree n with coefficients

in A and a m x m matrix M with coefficients in A such that

(5.4.1)  F(X,Y) = G(X,Y) - T(X) + P(X+¥) = r(¥) + M(u(n) ™ ((x+1)P-x"-¥?))

mod (degree n+1)

If one adds the restriction that T'(X) may contain no terms of the
form aX?, a € A then the ' and M in (5.4.1) are unique.
This follows from theorem 2.5 and (5.1.2).



5.5. Proof of theorem 2.9. Let F(X,Y) be a p-typical formal group

over A, Then there is a unique homomorphism

¢: Z [U] > A such that Hﬁ(X,Y) = F(X,Y). We are going to prove that
¢(U(i,n)) = 0 for all multiindices p which are not of the form plg(j).
Suppose we have done this, Then ¢ factors uniquely through

z [ul ~ z [v], U(j,l:oig(k))l'-’> Vi(j,k) and U(i,d)~ 0 for all other
$<x,Y) - F(X,Y).
(This last fact follows immediately from a comparision of fV(X) with

(i,d), to give a homomorphism Y: Z [V] » A such that F

hU(X)). Moréover Y is certainly unique. For otherwise there would be
two homomorphisms Z [U] - A (both zero on the U(i,d) with
d # p'g(j)) taking H (X,Y) into F(X,Y).

It therefore only remains to prove that ¢(U(i,g)) =0 if D is not

r ,. . . . .
of the form p e(j). To prove this we first do two universal calculations,

5.6. Lemma. Let n € N and suppose that v(n) # p. Let hn(X) and Hn(X,Y)
be the power series over Q[U] and Z [U]respectively, obtained by
substituting zero for all Ui(j,k) =U0(j,1 g(k)) with i < n, v(i) # p,
j, k € {1,...,m}. Then for all prime numbers q # p which divide n we
have in the group of curves in Hn(X,Y) over Z ful.

n/q

gqéi(t) = qv(n)U t mod (degree q—]n+])

ne(i)
where 6i(t) is the curve (0,...,0,t,0,...,0) with the t in the i-th

spot.

Proof. It follows immediately from the definition of hU(X) in 2.3 above
that hn(ﬁi(t)) is of the form

i
T bitp + U n

ne(i)"

(5.6.1) hn(éi(t))

s

because the coefficients of the X for n of the form ng(j) do not involve
any U(i,g) with d = (dl""’dm) such that more than one of the dj is
nonzero.
The lemma follows immediately from (5.6.1).

The second universal calculation which we need involves

lexicopgraphic degrees.

5.7. Lexicographic degree. Let n,k be two multiindices of length m.

We shall write n <

g k 1ff(nl < k) or (n]=k1 and n, < ky) or ...

|



or (n]=k1,...,n . = km—l and n < km). Let n be a multiindex of

length m, and suppose that at least two of the nj, j €{1,...,m}

are nonzero. Then there exist Tys eevs T € N such that
T T
. - 1 . .. . .
(i) n = n,p + ..+ n p ® is divisible by a prime number different
from p.

(ii) if n <

T r

1=cthen1—1<1:=klp1+...+kmpm.

L

5.8. Lemma. Let D= (nl,...,nm) be a multiindex such that at least two

of the nj are nonzero. Let hB(X) and HB(X’Y) be the formal power series
obtained from hU(X) and HU(X,Y) by substituting zero for all Ui(j,k) =

U(j,ie(k)) with j,k € {1,...,m} with v(i) # p and by also substituting

zero for all U(j,d), j € {1,...,m} for which d <y s v(d) # p and

Ig[ > 1. Let Tis eees Tp be such that (i) and (ii) of 5.7 hold. Then

for all prime numbers q dividing, it follows that

&
r r

1 m o -
£ (tP ,...,tp ) = qUntn/q mod (degree n/q + 1)

Proof. It follows immediately from the definition of hU(X) in 2.3
above that for k <£ p and v(g) #p

ak(U) =0 mOd(Ui(jak)9 U(‘Q'sg)‘\)(l) # P \)(Q_) # P,zg <2 n, l‘;i__t > 1)

It follows also that

a (U) 20 mod(U (3,00, 0L, [v(E) #p, v(@ 42, d < m, |g] > D)
= - T r
m
It follows that hn(tP ,...,tp ) is of the form
r rm ; _

(5.8.1) hn(tp ,...,tp )y =L bitp + Ut mod(degree T+l)

ns

The lemma follows immediately from (5.8.1).

5.9. Proof of theorem 2.9 (conclusion). It is now easy to finish the

proof of theorem 2.9. We first show with induction that ¢(Un(j,k)) =0
for all n for which v(n) # p. Suppose we have shown this for all r < n,
for which v(r) # p. If v(n) = p the induction step is trivial. If

v(n) # p, let q be a prime number # p which divides n. Let i € {I,...,m}.
Then,by lemma 5.6 (and the functoriality of ;q),we have in the group

of curves of G over A



li+h

5100 = V(! (Une(i))tn/q mod (degree n/q + 1)

Now by hypothesis £q6i(t) = 0; hence ¢(U = 0 because

ne(i)’
A is a Z.(p)—algebra or a characteristic zero ring.

Next we show that also ¢(U(i,d)) = O for all d = (dj""’dn)
for which two or more of the dj are nonzero. Suppose this is not the
case. Let n be the lexicographically smallest multiindex among these
for which ¢(Ud) # 0. Choose Tis eees T such that (i) and (ii) of 5.7
hold. Let q be a prime number # p which divides fi. Then we have by

lemma 5.8

IiH-h
~
t

g
-
.
.
.
-
rt
el
~
1l

= q¢(Un)tn/q mod (degree fi/q+1)

But, by hypothesis, §q’of such curves is zero; a contradiction because

A is a characteristic zero ring or a Zi(p)—élgebra. This finishes the

=
=

proof of theorem 2.9.

6. ISOMORPHISM THEOREMS.

A 1. Proof of Theorems 2.6 and 2.10 and Part of Theorem 2.12.

These theorems are proved in the standard way. The logarithmsof
ﬁU(X,Y) and HU(X,Y) both satisfy functional equations of type (3.1.1)
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for all prime numbers p (both with U i instead of Vi). Now apply
P

part (ii) of the functional equation lemma to conclude that
ha1(EU(X)) € gg(P)[U][[X]] for all prime numbers p, hence
-1,= ‘

w7 Ry (X)) € Z [ulllxl].

Similary the logarithms of FV(X,Y) and FV,T(X’Y) both satisfy
functional equations of type (3.1.1) for the fixed prime number p.
Hence FV(X,Y) and 'FV,T(X’Y) are strictly isoForphic over Z (p)[V,T]. But
the only denominators which can occur in f; (fV,T(X)) are powers

of p. Hence the isomorphism is actually over Z [v,T].

Finally the logarithms of Féﬁ(X,Y) and HG(X,Y) also both satisfy
functional equations of type (3.1.1) for the (fixed) prime number p

(both with U . instead of V.). Hence F.f‘I.K‘(X,Y) and HG(X,Y) are

P
strictly isomorphic over Z (p)[U] .

6.2. Lemma.

Let y(Z) and 6(Z) be two p-typical curves in a formal group F(X,Y)
over a ring A, which is either a.zg(p)—algebra or a characteristic
zero ring. Then if y(Z) = 6(Z) mod (degree p'n), we have

v(2)

Proof. Let n be not a power of the prime number p. Let q # p be a

11}

8(2) mod (degree n+1) unless n is a power of the prime p.
prime number dividing n. There is a unique vector a € A such that
v(z) = 6(2) + Z™a mod(degree n+1)

Applying ;q to this we find, because gqy(Z) = gqa(z), that aq = 0.
As A is a characteristic O ring or a.gé(p\—algebra it follows that a = 0

6.3. Lemma.

Let a: F(X,Y) » G(X,Y) be an isomorphism of formal groups, and let

. -1 . .
G(X,Y) be a p-typical formal group. Then a (y(Z)) is a p~typical
curve in F(X,Y) for all p-typical curves 7{z) in G(X,Y).

This is immediate because a(61(Z)) +Ga(62(z)) = a(61(Z) +F62(Z)).
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6.4. Let Z [U;S] be short for Z [U(i,d); s(i,d); i =1, ..., m,|]g|| > 2].

Let d(q1,...,qt) = n(q1,...,qt)n(qe,...,qt)...n(qt)p;1p;1... p;1,

where the n(q,,...,q, ) are as in 2.3. Let U_.s denote the matrices
1 qt q’q

(U(i,ag(3)); 5 Slisaglk)); 5.

Let U(i,g(j)) =0 =5(i,e(§)) if i # j and U(i,g(i)) = 1 = 8(i,e(d)).
Finally let Uy, 54 be the column vectors (u(1,4)s ..., U(m,d),
(8(1,8)5 ..., s(m,g)). |

We now define for all multiindices n, ||n|| > 1

(q,)

(6.4.1) a (U38) = ¢ a(q.y...,9,)U_ U
'E‘ (q.]s-"aqtag) ! q-t q1 qé
9 ( ) ) )
d,> s q,s . > s
th1 L1 v, 1 g, +qu1 i )

+ 3 d(q JU U
1000
(qp5.-05a,2) 4 % L1
g |1=1
(q1...qt_1 (q1...qt_1)
(th + ptSq—t )Ud
i
where the sums are over all sequences (q1,...,qt,g), q = P; » Ty EWN,

p; & prime number, q,, ..., q, 4 = n, Ilgl{ > 1.
(NBt =0 is allowed). Let

(6.4.2) by ((X) = ||il|>1a‘-1xg By o(X,Y) = n oy ((X) + by o(¥))

6.5. Proposition.

HU,S(X’Y) is a formal group over Z [U;S] and it is strictly isomorphic
over Z [U,S] to the formal group HU(X,Y) of (2.3.7).
This is proved in the usual way by means of the functional equation
lemma. The strict isomorphism from HU(X,Y) to H S(X,Y) is

-1 _ ’ :
hU,S(hU(X)) = uU,S(X). Let aU,S(n)(X) stand for the power series

obtained from a ) by substituting zero for all S(i,d) with Ilgll > n,

U,S(X
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Then one has immediately from (6.4.1) that

[}

(X) + ¢ S X

(6.5.1) | “U,S(X) = oy n mod(degree n+1)

,3(n)

Using this one proves easily (in the same way as the corresponding

theorem is proved in the one dimensional case in [4]):

6.6. Theoremn.

The triplé (HU(X,Y), aU,S(X)’ HU,S(X’Y)) is universal for triples

consisting of two formal groups and a strict isomorphism between them.

6.7. Proof of theorem 2.12.

That FV(X,Y) and FV,T(X’Y) are strictly isomorphic has already
been shown in 6.1 above. Now let (F(X,Y), ao(X), G(X,Y)) be a
triple of two formal groups and a strict isomorphism over a ring A
which is a characteristic zero ring or a Z (p)—algebra. By theorem
6.6. There is a unique homomorphism ¢: Z [U;8] > A such that

A (X,¥) = F(X,1), ag,s(x) = a(X) and Hg’T(X,Y) = G(X,Y). We are
going to prove that ¢(U(i,4)) = 0 = ¢(S(i,d4)) for all g, ||d|| > 1
which are not of the form pr_;e_(j), €N, i € {1,..., m}. We already
know that ¢(U(i,3)) = O for these ¢ because of 5.T. (Proof of

e B

p-typical universality of FV(X,Y)). Suppose that there is d with,
H_g_|| > 1, 4 not of the form prg(j) such that ¢(sS(i,d)) =a # 0.

Choose r1, cees T 611‘\1 such that

r r
(6.7.1) d,p e+ d P ™ is not a power of D
' r1 rm r1 rm
) < .
(6.7.2) d1p + ... + dmp e1p + ... 0+ e p if ¢ <2 e

1 m
Let v(Z) be the curve y(z) = (zP2 , ... , 2P ) in G(X,Y). Let
Vv Z [Vi;T] + A be the composition of ¢: Z [U3s] » A with the
canonical embedding Z [V;T] + Z [U;S]. Let B(X) = (X), where

1
%y,
“V,T(X) = fv,'r(fv(X)) is the strict isomorphism from

FV(X,Y) to Fy T(X,Y). Then we have two isomorphisms
9

rx,y) 25 ax,y)
(6.7.3)

rixy) BEL B ()

3
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and

(6.7.4) a(X)

1t

d
B(X) + aX’ mod( degree > d)

By lemma (6.2) the curves u-1(y(Z)) and 8-1(y(Z)) are both
p-typical in F(X,Y). And from (6.7.L4) we see that

(6.7.5) a—1y(Z) = B-1y(Z) - a2 moa (degree d+1)

But this contradicts lemma 6.2 in view of (6.7.1)

qg.e.d.

T. CURVILINEAR FORMAL GROUPS.

(X,Y)

T.1. Proof of Curvilinearity of HR(X,Y) and F

The proofs are identical for these two case$ More generally
let A be a characteristic zero ring and let G(X,Y) be a formal group
over A with a logarithm of the form

oo »
(7.1.1) g(Xx) =X+ Iax

. i

1=2
where the a; arem x m matrices with coefficients in A QZZQ. Then
G(X,Y) is a curvilinear formal group. Indeed, write =

k&
(7.1.2) a(i)(X,Y) = X, +¥, +Ic (i)xy

3

=
Hee

Suppose that there are ¢, o # 0 with k,4 = 0 and !]gll,|l§|| > 1

== : .. .
such that c # 0. Choose a c # 0 with ||k+%|| minimal. Then looking
k.2 k 2 ¥ -

at the coefficient of X Y on both sides of
g(G(X,Y)) = g(X) + g(Y)

we see (7.1.1) that we must have a relastion of the form

r
(7.1.3) S =T (e o (3) T (e

c
ks
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(o e
with j] = ... = js’ Here the multiindices k

T gy +g 1< Tlgeglls vk, + .o+ r k. =k
J J 1 s

These last two relations imply that k. & 0 for all j =1, ..., s, hecause 5£=g.

sucrion e i
Hence byYinductionYc . = 0O unless 51 0 or éi = 0. Because

k. of. .
=1.%=1,
j j J J

j1 = ...=],=J and a(j)(X,0) = xj, G(j)(o,Y) = Yj the products

under the sum sign on the right (of 7.1.3) are nonzero if only if

for 811 ¢t = 1, ..., s, K.

= e(j,) = e(j) and 2. = Q or vice versa
-lt ='Y¢ = =

but this is impossible because k.2 = 0 and [lgli > 1, [igl] > 1.

T.2. Comparison lemma for curvilinear formal groups.

Let F(X,Y), G(X,Y) be curvilinear formal groups over a ring A, and
suppose that F(X,Y) = G(X,Y) mod degree n. Then there is a unique

matrix a with coefficients in A such that
F(X,Y) = G(X,Y) + a(v(n)™ ((x+Y)2-X-¥"))

This follows directly from the general comparison lemma 5.k4.

7.3. Integrality of FR(X,Y), HR(X,Y).

This is proved in the usual way by showing that fR(X),hR(X) satisfy
functional‘eQuationqbf the type (3.1.1) and applying the functional

equation lemma.

7.4. Universality of Fp(X,Y) and H(X,Y)

This follows directly from (7.2 ) and the formulae for f

R
hR(X).

T.5. Proof of Theorems 2.15 and 2.18.

(X) and

Most of this has already been proved ir 7.1, 7.3, T.4 above. It
remains to prove the strict isomorphism statements. These are proved

in the stendard way, i.e. via the functional equation 3.1 (Cf. also

6.1).
|
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8. CONCLUDING REMARKS.

The universal more dimensional formal group HU(X,Y) constructed here
is the analogue of the one dimensional universal formal group

HU(X,Y) of [4]. I do not know of a more dimensional analogue for

the one dimensional universal formal group FU(X,Y) of [4] except

the curvilinearly universal formal group FR(X,Y) constructed above.
There are also more dimensional analogues of the p-typically
universal.one dimensional formal groups FS(X,Y) of [3].

If one chooses the n(q1, "”qt) of (2.3) in the special way
described in [3] (and [5]) one finds recursion formulae for the U(i,d)

in terms of the an(U) similar to the formulae in [3] and [5].
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CONSTRUCTING FORMAL GROUPS V.

1. INTRODUCTION.

Let R be a local ring with residue field k and maximal ideal M.

One way to try to classify formal group (laws) over R is to try to
describe all formal group laws over R which reduce modulo mto ®(X,Y),
where ®(X,Y) is a pregiven formal group (law) over k. Suppose that
char(k) = p > 0, then if R is of characteristic zero one speaks of
liftings of &(X,Y) and in case R is of characteristic p also one usua“;
talks about deformations. More precisely one studies liftings (resp.
deformations) F(X,Y) over A under the equivalence relation:

F(X,Y) v G(X,Y) iff there exists an isomorphism a(X): F(X,Y) - G(X,Y)
over R such that 0(X) = X modm. In [10] Lubin and Tate have shown
that if k is perfect, if R is complete and Hausdorff in the m-adic
topology and if &(X,Y) is one dimensional and of height h < «, then
the space of all lifts of ®(X,Y) modulo the equivalence relation just
deseribed is 19_1; i.e. there are h-1 formal moduli. Their methods are
cohomological in nature, and involve the calculation of a certain special
second cohomology group especially invented for this purpose.

Now in [2] part I we described a universal strict isomorphism between
LK) ¥ Fy p(X,¥) = Fy(X,Y) over 2z [V;T].
(X,Y) is also p-~typical and hence there exist
polynomials Vi (in T ,..., T35V ’Vi), such that FV’T(X,Y) = F=(X,Y)

: R 7
and the homomorphism Z [V] - Z [V,T], Viho Vi describes the most general

p-typical formal groups F

The formal group FV,T

change of parameters possible within a given strict isomorphism class
of formal groups. (This homomorphism Vih+ Vi can also be interpreted
as the map ng: BP,(pt) + BP,(BP) of Brown-Peterson cohomology, cf [1],
[2] part III, [4] and [8]). In [2] part III we also gave a recursion
formula for vi. So if this formula is any good it ought to give

(among other things) a reasonably direct (noncohomological) proof of
the Lubin-Tate formal moduli theorem. It is one of the purposes of
the present work to show that this is indeed the case. There are two
bonusses: first one obtains an explicit parametrization of the moduli
space wP_1 and second it turns out that the proof carries over unchanged
(except for‘the occasional replacing of p by g or T) to the case of

formal A-modules.



The last sec¢tion of this note uses the formulas for Vi to give a new
proof of Lazard's classification theorem for one dimensional formal
group laws over algebraically closed fields [§]. Here it is perhaps
interesting to note that the congruence formula which makes things
work (formula (6.3.2)) translates into the fundamental lemma 1.9 of
[7] (sometimes known as the Budweiser lemma) when one interpretes

Z [V] » Z [V;T] as ng: BP,(pt) ~ BP,(BP).

And, again there is a bonus and one obtalns also the corresponding
classification result for formal A-modules.

The phrase "formal group" will from now be used as an abbreviation of
"one dimensional commutative formal group law'". Standard notations:

W =1{1,2,3,...}; Z: the integers, Q: the rational numbers.

2. RESUME OF SOME FORMULAS OF [2] PARTS I AND III
(cf. also [4]).

Let Z [V], Z [V;T] be short for Z[VJ, T ool Z[VJ,Ve,.. T],Tz, R
Let an(V), an(V,T) be the polynomials in R[V], R[V;T] defined recursively

by

n pn--i
(2.1) pan(V) = iioan_i(V)Vi R ao(V) = 1
n i
(2.2) a (V,T) = iEOai(V)Tfl—i , 8 (V,T) = 1 and T_ =1
and let fv(x), fV,T(X), FV(X,Y), FV’T(X,Y), aV’T(x} be the power series
- p” > p"
(2.3) fV(X)_ = E an(v)x . fV,T(X) = E an(V,T)X
n=o n=o
. -]
(2.4) Fy(X,Y) = £ (f (X) + £,(0)), Fy o(X,Y) = £y o (fy o(X) + £y o (¥))
(2.5) O‘V,T(X) £y, T(f (X))

Then FV(X,Y), F, T(X,Y), oy T(X) have their coefficients in Z [V;T],
9 H]
FV(X,Y) is a universal p-typical formal group and
“V,T(X)‘ FV(X,Y) -> FV,T
p-typical fromal groups. The formal group Fy T(X,Y) is also p-typical and
L

(X,Y) is a universal strict isomorphism of

hence there are unique polynomials Vi in Vi, <oy Vo3 Ty .el, T, with
coeff%zlents in Z such that FV,T(X’Y) = FV(X,Y) (and fV(X) = fV,T(X))
We haye (cf. [2] part III, (5.3.1)).



_ n-1 n-k -pn-k
Vn = Vn * PTn * E an—k(V){(Vk ’Vk )+
k=1
- ne-1 pn—kTpn«j TPn—k pn--i
(2.6) + Z a (V) & (V% A, LS |
k=1 PE e 19 T3
i,§>1
i3
+ I (ViTI? 7.7 )
itj=n 9 I
i,3>1

and modulo the ideal generated by the elements TiTj’ i,j €N and the

elements PTi’ i=1,2,... we have

1, % 5t 53 5 i
7 o=z (-nbylentl (e e othgp Te1 0 gp "l g
n 1 n-—sJ n-s, 13
(2.7)
D pn-]
+ Vn - Tlvn—1 - .. - Tn_1V1

where the sum is over all sequences (sJ,.,.,st,i,j) such that

Sk,i,j,t €W, S1+ ves + st+i+j =n.

3. STATEMENT OF THE FORMAL MODULI THEOREM.

3.1. The setting. Let R be a local ring with residue field k

and maximal ideal m which is complete and Hausdorff in the m-adic
topology. Let ®(X,Y) be a formal group over k of height h < «, We
assume that k has characteristic p > O (the other case being absolutely
trivial because every formal group over a R-algebra is strictly
isomorphic to an additive omne). Let F(X,Y), G(X,Y) over R be two lifts
of ®(X,Y). Then we shall say that F(X,Y) and G(X,Y) are * -isomorphic
([10]) if there exists an isomorphism o(X): F(X,Y) + G(X,Y) such that
o(X) = X mod m and we shall say that F(X,Y) and G(X,Y) are strictly

*~isomorphic if there is a *-isomorphism a(X) such that also a(X) = X

mod (degree 2).

3.2, We can just as well assume that ¢ (X,Y) is p-typical because every
formal group over a ZZ(p)—algebra is strictly isomorphic to a p-typical
one ([?] part I, corollary 2.11). Indeed if a(X): &(X,Y) » (X,Y) is

. . . v . .
a strict isomorphism and o(X) € R[[X]] is any power series such that



" "
a(X) = X mod degree 2 and o(X) reduces to o(X) mod ™ then 0(X) sets up a
bijective correspondence between lifts of ¢(X,Y) and lifts of &(X,Y) which

respects *-isomorphism and strict *-isomorphism.

3.3. Let therefore ®(X,Y) be p-typical of height h. Then there are unigue
elements v,,v,,... € k such that d(X,Y) = FV(X,Y), where v = (vj,vg,...)
and because ®(X,Y) is of height h we have VTV T e =Yy 0= 0,
Vi # 0. (This follows from [2] part I, formula (4.4.5); in fact this

formula shows that

®(X,¥) = X + Y + v, C, (X,Y] mod(degree pP+1)

1Y
4 B b h
where C , (X,¥) = p (xP +YP ~(x+Y)? ) € m [X,Y]. Now choose arbitrary
1Y
" ) .
elements v; € R, i = h, h+1, ... such that ¢(¥i) = v, vhere ¢: R >k is
the natural projection. For each h- tuple of elements s = (s],.,.,sh),

s. €m let'Fv(S)(X,Y) be the formal group obtained from F_(X,Y) by the

Jd i
substitutions

V.er v. , 1 = h+1, ht+2, .,.

The formal groups F,  (X,Y) are all lifts of ®(X,Y) (because the
v(s

coefficients of FV(X,Y) are polynomials with coefficients in Z in the
V],Vg,...).

3.4. Theorem (Formal moduli theorem). With the notations and assumptions

of (3.1) and 3,3 above we have

(i) For every lift F(X,Y) of ®(X,Y) there is a unique h-tuple
s = (Sl"" ¥ € M such that F(X,Y) is strictly *~isomorphic

»S, )
to F, (X,Y) (and the F,  (X,Y) are all lifts of ®(X,Y)).
v(s) v(s)

h

(ii) For every 1lift F(X,Y) of ®(X,Y) there is a unique h-tuple
s = (s1,...,sh),'sj €m with s, = O such that F(X,Y) is

*-isomorphic to F,  (X,Y).
! v(s)



L. PROOF OF THEOREM 3.L.

L.1. First step. Let F(X,Y) be a formal group over R which lifts ®(X,Y).

As a first step we show that F(X,Y) is strictly *-isomorphic to a

p-typicel formal group which lifts &(X,Y). This is almost a triviality.
Indeed let FS(X,Y) over zz[sg,ss,...] be the formal group law of [2]

part I formula (2.2.6), (2.2.3) with logarithm fS(X). This formal group -
j-algebras. Let By o(X) = £ (£5(X))
=1,2, ... . Then BV,S(X) is a

is universal for formal groups over Zl(p

where we have identified Vi with 8 x i
p

strict isomorphism FS(X,Y) > FV(X,Y) over Z [S8] which gives us a functorial

way of making formal groups p-typical. Viz. let G(X,Y) be any formal

group over B; let ¢ : Z [S] + B such that G(X,Y) = Fg(X,Y) let

B(X) = B$’S(X) then G(X,Y) = 85(8"](X),6'1(Y)) is p-typical. This method ‘.

has obviously the property that if H(X,Y) = G(X,Y), ¢s B > C then

ﬁ (X,Y) = Ew (X,Y). (by the uni@peness part of the universality property

of FS(X,Y)). Also G(X,Y) is p-typical if and only if ¢(si) = 0 for all i

which are not a power of p ([2] part I, proof of theorem 2.8 in section 6.6)

ind because f, (X) = fV(X) mod(Si; i not a power of p) we also have

G(X,Y) = G(X,Y) if G(X,Y) is p-typical, because then B(X) = X.

Now let F(X,Y) over R be a 1lift of ®(X,Y), then by functoriality

%(X,Y) 1ifts %(X,Y) and by the rem ark just made the isomorphism

F(X,Y) + %(X,Y) reduces to X modm if &(X,Y) is p-typical, i.e.

F(X,Y) = F (X,Y) is a strict *-isomorphism.

L.2. Second step. Now let F(X,Y) over R be a p-typical lift of &(X,Y).
Then F(X,Y) = FW(X,Y) for a certain sequence of elements w = (WJ,Wg,...) of‘.
Because FW(X,Y) and F, (X,Y) both reduce to &(X,Y) mod m we have that

v(o)

Wis eees Wy 4 €M

(k.2.1)

_ N .
v, =V modm, 1 = h, h+1, ...

Inductively we are now going to construct sequences of elements of R

\

v(n) = (v](n), vy(n),..n)

and power series Bn(X) € R[[X]] such that



(b.2.2) Bn(X): Fv(n)(X,Y) - Fv(n+1)(X’Y) is a strict isomorphism

X mod(m"™)

i

(b.2.3) 8 (%)

(h.2.4)  w(1) = w3 v, (n) = %i mod M for i = h+1, h+2, ...

(k.2.5) v;(n) = v;(n+1) mod m for i =1, ..., h

First assume that h > 1. Suppose we have already found vi(n) and

Bn_](X) (one takes BO(X) = X). Now define elements ti(n) with induction

with respect to i by means of the formula

i
(4.2.6) t5(n) = v, ()7 (vy, (0)¥, <t (ndv, . ()P~ ... -

i+h i+h-1

1

1-
t, (n)v, . (n)? )

1-1'"Vhaq

(a formula which is clearly suggested by formula (2.7) above). Note
L (n)

(1) is invertible. Induction with respect to

that this is welldefined because vh(n) = vh(l) mod vt so that v

is invertible because vy

i gilves us
t;(n) € mt,i=1,2, ...
Now let t(n) = (t](n), te(n),...) and let

BalX) = 0y g (n) (XDs V(1) = T, (v(m) o ()

PR

1l

because
v mod(T],.,.,Tn), ef e.g. (2.7)’andYaV,T(X) =X

yop(X) 2 fv(x),gg§£f9,wz,,_,) we have

—L

Then because Vn

mod(T1,T2,...)(because f
Bn(X) Z X mod m
vi(n+1) = vi(n) mod W', i = 1, 2, ...

which takes care of (4.2.3) and (L4.2.5) and also of (4.2.2) because

i 1 1 i F X,Y) > F X,Y).
uv(n),t(n)(x) is a strict isomorphism v(n)( ,Y) . v(n),t(n)( s ?
It remsins to check that (4.2.4) holds (with n+1 instead of n) which



follows from (4.2.6) combined with (2,7) because vj(n)tj(n) € m*
as h > 1

In the case that h = 1 one cannot neglect the sum term in (2.7} ,
but this does not matter precisely because h = 1, One proceeds in

the same way except that formula (L4.2.6) is replaced by

1

i .
tn) = v ()T (v, (0)F -t ()P ol -ty (v )P )+
(k.2.7)
: St %t %

+ v1(n)—p (Z(_1)tv1(n)(p-1) (p '+...4p —t)v?+1:;1(n)_

8

t J

-1

‘Vli3+1—s1-...-st(n)("t,jvl;i (n))). .

Now consider the composed isomorphisms

F(X,Y) = FW(X,Y) > F )(X,Y) > .. > Fv(n)(X’Y)

(e
Because of (4.2.3) and the completeness of R these converge to an

isomorphism
"
F(X,Y) ~ Fv(m)(X,Y)

and because of (4.2,4) we have that vi(w) = %i mod w® for all n if
i > h and hence because R is Hausdorff vi(w) = rw\r’i. This proves (together .
with step 1) that every 1lift of &(X,Y) is strictly *-isomorphic to a
formal group of the form F, (X,Y).
v(s)
4.3. Third step.

To finish the proof of part (i) of the theorem it only remains to prove

that two formal groupsF, (X,Y) and F, (X,Y) are strictly
v(s) via')
% -isomorphic if and only if they are equal (i,e. s=s'). So suppose that -

F (X,Y) and F (X,Y) are strictly *-isomorphic. By the universality
¥(s) ¥(s")

of the isomorphism ay T(X) ([2] part I, theorem 2.12) this means that
b

there are t],tg,... € R such that the isomorphism is equal to



o (X) = a(X)
v(s),t

n
- P . n
Now aV,T(X) =X+ TX mod (T .>T__y3 degree p +1). So as a(X)

120"
is a *-isomorphism we must have ti € m for all 1 € IN. Now suppose

that a(X) # X and let n,r € IN be such that

ti€w3”,1=1,.“,n4;tn€wf\ mt,

(4.3.1)
tj € m" for J = n+l, n+2, ..,

We have that v the (n+h)-th element of %(s’) is equal to ¥ (%(s) t)
n+h’ n+h i

for all n € N, and formula (2.7) combined with (4.3,1) gives

n

- n _n is) r+1
Vn+h(v(s),t) Voan - tpvy mod M

which is' a contradiction, so that indeed 0(X) = X, This concludes the

proof of part (i) of theorem 3.k.

L.L. Proof of the second part of theorem 3.4. To prove the second

part of theorem 3.4 we need to use more general isomorphisms then the
strict isomorphisms o t(X). The isomorphism y(X) = (J+To)']X applied
L]

to F T(X,Y) = F=(X,Y) changes FV(X,Y) to a p-typical formal group
. ( ,

2 e~ AN —
law Fa(X,Y) with V_equal to
v n
(L.4.1) Vn = (]+To) ~Vn

(simply because the logarithm of (1+TO)*’FV((J+To)x,(J+TO)Y) is

(]+TO)—]fV((J+TO)X)). Now let IO be the ideal generated by all elements
TiT,j’ i,j =0,1,2,..,, and all elements pTi, 1= 0,1,2,¢e.
Then we find

(L.4.2) ' Vn = Vn - TOVn mod IO

Of course for all this to make sense we must be working over a ring
.. -1 .

with TO in it and such that moreover (1+To) exists.

One takes e.g. the ring ﬂ;[[To]][V;T]. The proof of the second part of

theore? 3.4 now proceeds exactly as the proof of the first part; i.e.



(7, (0) v, (n),een), ¥(1) = W,
t

we construct sequences of elements v(n) =
vi(n+1) = Vi(v(n),t(n)) where now t(n) = ( O(n),t](n),...) and power

. - _° ~ = -1
series Bn(X) = Qa ~ Wwhere QV,T (1+TO) QV’T(X), such that
v(n),t(n)
(b.%.3) é (X); Fa  (X,Y) > F. (X,Y) is an isomorphism '
n
v(n) v{n+1)
(4.h. 1) B_(X) = X mod m"
(b.4.5) ;(1) = w; ;i(n) = %i mod am for i = h,h+1,...
" _ -~ n .
(L4.4.6) - vy(n) = vi(n+'1) mod m~ for i =1, ..., h~l .

(Note the three small changes with respect to (4.2.2) - (4.2.5). The

formulae for the ti(n) are

-~ ~

& (n) = v, ()7 (v, (@) ¥, (0), £ (n) = £, (n) - & _(n)v, (n), i = 1,2,..

where the ti(n) are as in (4.2.6) (resp. L4.2.7)) if h > 1 (resp. h=1)

The remainder of the proof is exactly as before.

5. FORMAL MODULI FOR FORMAL A-MODULES.

5.1. Formal A-modules.

Let A be a ring. A formal A-module over an A-algebra R is a formal group .
F(X,Y) over R together with a ring homomorphism ppi A~ EndR(F), such
that pF(a)(X) = aX mod(degree 2).

A homomorphism of formal A-modules over R is a homomorphism

o(X): F(X,Y) » G(X,Y) of formal groups over R such that

a
F —_— G
lpF(a) l pg(a)
[0
F —— G

commutes for all a € A. (If R is of characteristic zero this condition
is automatically fulfilled, but if R is of characteristic p > O there
are inlgeneral many homomorphisms of formal groups which are not

homomorphisms of formal A-modules).



a0

5.2. From now on suppose that A is a discrete valuation ring with
residue field k of q elements, q = pr, p = char(k) > 0. The ring

A itself maybe of characteristic p or 0. (The hypothesis "k is finite"
is no great reftriction; if k is infinite all formal A-modules are

isomorphic to G(X,Y) = X + Y with the obvious formal A-module structure

(er. [61)).

Choose a uniformizing element m of A. We define (almost exactly as in

section 2 above)

n n-i

(5.2.1) naﬁ(V) = iioaﬁ'i(v)v(il , a‘g(V) = 1
A - T qi A _

(5.2.2) an(V,T) = iioai(V)Tn_i , ao(V,T) = 1
(5.2.3) A = p bW L 0 = 3 e
5.2.3 v = nioan X, fV,T = nzoan .
(5.2.4) Fp(X,Y) = (£0) T (EH00+E(0), pi(a) = (£9) 7 (agh(x))
(5.2.5) £y .p(K1) = (2 7 (] (1) + 2} (1)),

oy p(a) = (g )7 ety (X))
(5.2.6) oy p(X) = (gy 97 ((00).

Then (Fé(X,X), pe) and (Fé’T(X,Y), pé’T(X)) are "A-typical" formal
A-modules over A[V] and A[V,T] and they are strictly isomorphic (as
formal A-modules) via aé,T(X). The integrality statements on which these
assertions rest are proved in [2] part VIII. Moreover there exists a

S

isomorphic to F%(X,Y) (where we identify A with S i) and this

isomorphism gives us a functorial way of making 9 formal A-modules

universal formal A-module FA(X,Y) over AfSZ,S3,...] which is strictly

A-typical (compare the first step of the proof of theorem 3.4 above;

i.e. section 4.1)., Finally the isomorphism o, (X) is universal for

v,T
strict isomorphisms between A-typical formal A-modules over A-algebras
R. These statements are also proved in [2] part VIII, albeit under

some extra (totally unnecessary) hypotheses.
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A less restrictive treatment will be found in [5], chapter IV, sections
21.4, 21.5 end 21.7.
We have now all the ingredients to state and prove the analogue for formal

A-modules of theorem 3.4 except the notion of height.

5.3. A height of formal A-modules. Let F(X,Y) be an A-typical formal
A-module over a field & (where A is as above in 5.2); i.e. F(X,Y) = Fﬁ(X,Y)

for a suitable sequence v = (v1,v2,...) of elements of 2. We define
A—height(Fﬁ(X,Y)) = index of first \ # 0. For arbitrary formal
A~modules over & there is a strictly isomorphic A-typical formal
A-module %(X,Y) over % and we define A-height (F(X,Y)) = A—height(%(X,Y)).
This is welldefined. From the structure of fﬁ(X) one sees that if

VS e =v S 0 then pﬁ(ﬁ)(x) = thq mod (degree qh+l), which gives
us an alternative definition of A-height. If A is the ring of integers

of a finite extension K ofIQ? and [K:QP] = n, then A-height (F(X,Y)) =h"

height (F(X,Y)) which is also clear because in that case

1

he
[p1p(X) = p2(E2(X) = pB(r®) (1) ehu)(x) = vEux?

mod (degree qeh+1) if p = Tu, u & unit in A. (If A is of characteristic
P > O then F(X,Y) always has infinite height as a formal group, but
may very well have finite height as a formal A-module).

We now state the analogue for formal A-modules of part (ii) of theorem 3.k4.

5.4. Theorem. (Formal moduli for formal A-module). Let &(X,Y) be an

A-typical formal A-module over a field £ (as £ must be an A-algebra £ is an
extension field of k). Let R be a local A-algebra with residue field

% and maximal ideal m which is complete and Hausdorff in the Mm-adic

topology. -—~—‘—“‘“”“:Zz-—
- Let ®(X,Y) be of A-height h < = and let
Ve, = o

1 =v,.,=0,0 #mv s Vpyqs+-+ € L be such that e(X,Y) = Fﬁ(x,y)
and choose elements v, , V , .- € R which are 1lifts of v., v e
h+1 h h+1°?

For each h - 1 tuple s = (s],...,sh__1) of elements of m let Fﬁ: (X,Y)

' v(s)

be the formal A-module over R obtained by substituting s for Vi’
i=1, ..., h-1 and %j\for Vj’ j = h,h+1,... in Fé(X,Y). Then every 1lift
F(X,Y) over R of &(X,Y) is *-isomorphic (as formal A-modules) to exactly

one of the Fﬁ (X,Y) (and the Fﬁ (X,Y) are all lifts of ¢(X,Y)).
v(s) ‘ v(s)
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5.5. On the proof of theorem 5.4. By and large one obtains a proof

of theorem 5.4 by copying the proof of theorem 3.4 while obseryving

the following transcribing rule "p's in exponents become gq's and

p's on line or in denominators become T's ¥,

There is one small difference: the somewhat obnoxious sum term in

the analogue of formula (2,7) disappears. (This term can be nonzero mod

(TiT" T, i,] € N) only if p = q and A is unramified; i.e. this term

J
contributes something only in the case that F(X,Y) is a formal A-module

over nothing larger than ZSP). So the proof actually simplifies somewhat.

6. LAZARD'S CLASSIFICATION THEOREM AND ITS
FORMAL A-MODULE ANATLOGUE

The classification theorem alluded to in the title of this section 1is;:

6.1. Theorem. ([ ]). Let K be a separably closed field of characteristic
p > 0. Then the one dimensional formal groups over K are classified
by their heights.

6.2. Start of the proof. Let Fh(X,Y) over K be the formal group obtained
by substituting Vi =0 for i # h, Vh = 1 in the universal p-typical
formal group law FV(X,Y). This gives a formal group law of height h over K
for each h € N, and these are (by the definition of height) pairwise
nonisomorphic and also nonisomorphic to the additive formal group

aa(A,Y) over K.

Now assume that F(X,Y) has infinite height; as F(X,Y) is strictly
isomorphic to a p-typical formal group we can assume that F(X,Y) = FV(X,Y)
for a suitable sequence of elements v = (v],vg,...) in K. The height of
FV(X,Y) is equal to the first index i such that ] # 0, hence v, = 0 all i
as FV(X,Y) has infinite height, hence FV(X,Y) = @a(x,x).

So it only remains to show that a formal group of height h <wover K

is isomorphic to Fh(X,Y). To prove this we use two congruence formulas

for the polynomials Vn in Vis woes Vs Tys vees T -

6.3. Lemma. Fix h € IN, then we have for every n € W

(6.3.1) Vn =V mod(V1,...,Vn*1?p)

LV

n h
- - P .
(6.3.2) ¥, =V . -TV + VhTE mod (V. , ...,V netd

n+h h—]’vh+]"'
T],...,Tn_],p)
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6.4. Remark. Formula (6.3.2) translates into the Budweiser lemma if
one interpretes Vih* Vi as the right unit homomorphism

Ng: BP,(pt) + BP,(BP) of the Hopf algebra of homology operations of
Brown-Peterson cohomology. Cf. [7] lemma 1,9 and [4], [2] part III.

6.5. Proof of lemma 6.3. We work in R[V;T]. First of all we have directly
from the defining formulas (2.1)

(6.5.1) a; (v) =0 mod(V né1) if i < n, an(V) = p’]V

mod (V

s Vo)

1°° n-1

which by (2.2) gives us that
(6.5.2) a; (V,T) = 7} mod(V],..,,Vn_]) if i < n,

_ =1
an(V) =p Vn + Tn mod(V1,...,Vh_])

and as by the definition of the Vi we have

n-1J
- P 5P N
(6.5.3) pan(V,T) = a.n__](V,T)V_1 + .., + aJ(V,T)V + V

n-1 n
we see that (6.3.1) follows immediately from (6.5,1), (6.5.2) (and (6.5.3)).
To prove (6.3.2) we use formula (2.6) above. We proceed by induction on n
(keeping h fixed). The case n = 0 is taken care of by (6.3.1).

By induction hypothesis we therefore have

(6.5.4) if i < n+h then V.=V, mod(V],...,Vh_],Vh+J,...,Vn+h_J,TJ,...,Tn_],p)
Let ¢t be the ideal (V],...,Vh_1,Vh+],...,Vn+h_],T],..,,Tn_]) in 2 [V,T].

We now deal with the various terms appearing in formula (2.6) separately.

(a) The terms A T? , 1, 21,1+ J =n+ h. These are all zero mod @ unless
i =h (and hence j=n) which gives us a term v Tp

(b) The terms T V , 1, 21, 1+ J=n+h. Thesg are zero mod (6t ,p)
unless j = h, i = n which gives a term - Tnvi . (Here (6.5.4) is used).
Let & be the ideal aQ[V;T] <= @[V;T]. We shall use the notation

b(V,T) = 0 mod(# ,p) to mean that b(V,T) € & + pZ [V,T].
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-k _n-k
=%, ), k=1, ..., n-1. By the induction

-

hypothesis (6.5.4) we have that Vk = V. mod (ov,p) for these k and

n
D
(c) The terms a’n—-k(v)(vk

k
pn-—k pn-—k . ) . ;
R henc‘:‘e’ Yk = Vk which implies that the terms under consideration
)_ are = 0 mod (ol,p) because pn"kan_k(‘v*) € Z[V;T].
” n-kX _n-j

(4) The terms a__, (V)V} ’I‘? L k=1, c..,n-1, 1+ j=Xk,i,j> 1.

There are all zero mod #L because for these i and j either V:.L €0l or

T. € 01 .
J n-k n-i
(e) The terms an_k(v)'fg? vf.: , k=1, .., n=1, i+ j =k, i,j > 1.
For these i and j we have T. € 0t unless j > n which means that 1 < h
_ _n-1 Ry
so that V., = 0 mod (e¢,p) and v? = 0 mod (a,p" ") so that all
i
these terms are zero mod (& ,p)-

Putting all this together we find

h n
= - P m
Vn+h - Vn~i'h + Vhfo Tth mod (i ,p)

which by sublemma 6.6 below means that (6.3.2) holds.

~—

6.6. Sublemma. Let b(V,T) € Z [V,T] and suppose that b(V,T) € ot + pz [V,T].
m

[[=]

Proof. Write b(V,T) as a sum of monomials b(V,T) = L c, mV T . Then
n,o

b(V,T) € 0v + pZ [V,T] means that for all n,m at least one of the following
hold
(i) e = 0 mod p,

b

=]
s

\.\_fg_h N
(ii) ViIV for some i € {1,...,h=1, h+1, ..., h+n-1},
(i1i) leTB for some j € {1,2,...,n~1}. And this in turn implies that

b(V,T) € 0v + pZ [V;T] because the ¢ are integral.

9

g

6.7. Proof of theorem 6.1 (conclusion).

We must show that if F(X,Y) = Fv(X,Y), v = (v],vg,...), V= e =V
vy # 0 then F(X,Y) is isomorphic to Fh(X,Y). We are now going to construct
sequences of elements v(n) = (v1(n), vz(n),...) of elements of K with

v(1) = v and power series Bn(X) such that

(6.7.1) vi(n) =0 fori=1, ..., h=1, ..., h+n-1; vh(n) #0

=O,
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(6.7.2) | B,(X) is a strict isomorphism Fv(n)(X,Y) + Fv(n+])(X,Y)

(6.7.3) Bn(X) = X mod(degree o)

Suppose we have already found vi(n), i=1,2,... for a certain n € IN.
(Teke v(1)=v). Take ti(n) =0 fori=1, ..., n=1,n+1,n+2,... and
choose tn(n) such that

: n h
6.7.5) v () -t vy @P ¢ v )t (@) =0

(such a tn(n).exists in K because K is separably closed and vh(n) #0).
Now let '

vi(m#1) = 7, (v(nd,e(n)), B0 =) o) (X)
then (6.7.2) and (6.7.3) are clear because Qy T(X) = X mod(T],...,Tn_],
degree p") and (6.7.1) (with n+1 instead of n) follows from (6.7.4)

and (6.3.2). Now consider the composed isomorphisms

FV(X,Y) > )(X,Y) > ... Fv(n)(x,y)

Fv(2
These converge to an isomorphism R(X): FV(X,Y) - Fv(m)(X,Y) because of
(6.7.3) and because of (6.7.1) we have that vi(W) =Q for i # h and
vh(w) # 0. Now let Y(X) = a”'X where a is a (ph~1)—th root of vh(w).
Then Y(X) is an isomorphism Fv(w)(X,Y) - Fh(X,Y), which concludes the

proof of theorem 6.1.
The formal A-module analogue of theorem 6.1 is

6.8. Theorem. Let A be a discrete valuation field with residue field of
q elements and let K be a separably closed extension field of k. Then

the formal A-modules over K are classified by their A-height.

The proof of this theorem is obtained from the proof given above for
Lazard's theorem by the transcribing rule mentioned in 5.5 above. For

n h
- R q
example (6.3.2) becomes Vn+h = Vn+h Tth + Vth

T m) where T is a uniformizing

mod(Vl,...,V v TooeeesT oo

h—1’vh+]""9 n+h-1°
element of A.
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ABSTRACT.

Let 9£A be the cateyory of finite dimensiconal commutative formal
groups over a ring A. To A one (ssociates a certain, in general
nonconmutative, ring Cart(A). One then defines a functor G ~ C(G) which
assigns to a formal group law G its group of curves which is a module
over Cart(A). Theorems 2 and 3 of [1] now say that G +(:XG) is an
equivalence of categories of Gf

=A
Cart{(A)-modules. In this paper we give a new proof of theorem 3 of [1],

with a certain full subcategory of

Cartier's third theorem, which asserts that every Cart(A)-module of a
certain type comes from a formal group law over A. This proof is based

on the constructions of part IV of this series of papers [3].



1. INTRODUCTION AND STATEMENT OF THE THEOREM.

From now on formal group means finite dimensional formal group law
over A. We take the naive or power series point of view; i.e. an
mdimensional formal group over A is simply an m-tuple of power se;ies
G(X,Y) in 2m variables Xip oo X5 Yo eeey X such that
G(X,0) = X, G(0,Y) = Y, G(X,G(Y,Z)) = G(G(X,Y),Z), G(X,Y) = G(Y,X).
1.1. Curves. A curve (over A) in a formal group G over A is an m-tuple
of power series Y(t) = (Y](t), ey Ym(t)) in one'varﬂﬂgﬂe t, such that
Y(0) = 0. Two curves y(t), &(t) can be added by means of the formula
y(t) *c 8§(t) = G(y(t), 8(t)). This turns the set of all curves into an
abelian group €(G). We use GP(G) to denote the subgroup of all curves Y(t)
such that y(t) = 0 mod tn, na=1,2, ... . This defines a filtration
exe) = @J(G) o @z(G) S... and ©(G) is complete in the topology defined
by this filtration.

}.2. The Operators. <a>, gn’in' In addition to the topological group
structure on ©(G) one has a number of operators which are compatible

with this structure. Viz.:

for all a € A, <a>y(t) = y(at)
for all n= 1,2, ..., Xnv(t) = Y(tn)

The definition of the third kind of operator, the Frobenius operators
gn’ needs a bit more care. Formally omne has

1/n 1/n

for all n = 1,2,... , £ y(t) = v(g t

n

where Cn is a primitive n-th root of unity. For a more precise definition

cf. [3] part IV or [5]. There are various relations among these operators.

They are

<a><b> = <ab>, <1> = V] = fl = identity operator,

Engn = ¥1n’ £1£n = £1n’

1 b
<a>\_l__‘ = ¥1<a ),.f‘1<a> = <3 >=f'1

(1.3) if (n,n) = 1, then gizn = Engﬂ’

,f.n\_ln = n,mi.e. fnvny(r.) = y(t) *c v(t) +G...+Gy(t) (n factors),

<a+b> = I V.r (a,b)f ,
nﬂl =N N =1

where the rn(Zl,Zz) are the polynomials with coefficients in Z defined by



n/d
(1.4) r (2,,2,) = T dr,(2,,2))
dln

1.5. A Y-basis for CXG). Let §, (t) denote the curve (0,...,0,t,0,...,0)

in G, where t is in the i-th Spot. It immediately follows from F(X Y) = X + Y

mod (degree 2) that every curve in G can be uniquely written as a convergent

sSum
n (e 43

(1.6) y= I I Y<a, >3,
i=] k=g N B

It follows,cf. (1.3) and also section 2 below, that we know the

structure of C(C) as a topological group with operators <a>, £n’¥

if we know all the expressions ‘
© m

(1.7) gnGi = T )X v <c(n s) Gj
s=1 j=1

The "structure coefficients" c(n, s)J , n,s €N, i,j € {1,...,m} are

far from independant.They satisfy certain relations which come from

ff =f£ .
=n=r =nr

1.8. Reduced Cart(A)-modules. If @KG) is the module of curves of a formui

group G, then Q(G) has the following properties

(i) There are subgroups @", closed under the operators <a>, gr;
© is complete in the topology defined by the @P and @f is the smallest
closed subgroup of () which contains all the ¥ (© with r > .

(ii) The operators <a>, £n’ ¥n are all continuous and satisfy the relations !
(1.3)

(1ii) There are elements 61, cee, 6m € © such that every'element vy € () can bu

uniquely written as a convergent sum

[s ]

o
Y= L I ¥s<a.s>5.
s=1 j=1 is 7]

In general we shall call a topological abelian group C)with operators

<a>, V. f such that (i), (ii), (iii) hold a reduced Cart(A)-module. «

~.

(Here Cart(A) stands for the set of all formal expressions I £ <alJ XJ '\\
with for every j only finitely many i such that aij = 0. These expressions E

can be added and multiplied by means of the calculation rules (1.3) to

form a (topological) ring of operators, cf. [4]).

’

/ma(.;

- j;(t 0{ f’{é’me».ls Juch r/%ul' (‘a“) /""//'5 o colled dvg




1.9. Cartier's third theorem. Let ) be a reduced Cart(A)-module with

V-basis 61, vees 6m' There there exists an m—dimensional formal group law
G over A such that ©(G) =~ € as Cart(A)-modules with ‘Si corrasponding
to the i-th element §,(t) of the canonical Y-basis of ©(G) described in
1.5.
This is theorem 3 of [1]. Cartier never published his proofs of the
theorems of [1]. Proofs can be found in [5]; these are outlined in [4].
In [2] there is a proof of Cartier's third theorem for the case that A
is torsion free. This proof breaks down if A has additive torsion.

The remainder of this paper mainly concerns still another proof
of Cartier's third theorem based on the constructions of the earlier
parts of these series of papers. This proof also provides a link between

these constructions and the "intertwined function pair'" considerations
of [2].

2. CONSTRUCTION OF A UNIVERSAL CURVE MODULE.
Choose m € N and choose a set of elements Gl, ceey Gm. Let %C be the ring
%'C = ZZ [C(n,r)i’jlr EN, n €N~ {1}, i, € {1,...,m}] of polynomials

in the indeterminates C(n,r)i 5 For convenience we also introduce

>
C(],l)i’j - 0 if i # j, C(l,l)i’i =1, C(l,r)i’j = 0 for all r€ N ~ {1},
i,j€ {1,...,m}.

Now consider the set ) of all formal expressionms

oo m n
.1 V <a .>§. a . L
(2 ) sfl JE] =S 8,] 5] S,] € C

We now introduce the defining relations

© m
(2.2) f §. = SEI jil Xs<c(n’s)ji > 5j
for all m € N. One can now use the calculation rules (1.3) with the
exception of the rule £n£r = gnr’ and the defining relations (2.2) to
add expressions of the form (2.1) and to define £r of such an expression,
r € N.

To do this we start by showing how to rewrite any sum of the form

®© m

(2.3) I3 Zyc<a . > a €l

s=1 j=1 ¢ s,35t 7] s,j,t 7 °C



in the form (2.1). Here for each s € N, j € {1,...,m} the index t
runs over some finite index set which may depend on s and j.
For each n € N, let A(n) be the number of prime factors of n,

r. r r
i.e. A(1) = 0 and if n = Py Py - ptt »P; 8 prime mumber, r. € N,

then A(n) = r,+ ...+ r_. One now proceeds as follows

1 t
I V<a . >.= I <a_ ., > T I V<a . .>
8,j,t =8 8,],t ] it 1,i,t 2 j,t 8 78,j,t°
(-]

=L % V.<b, )8, + & I V<a . >b
j oim1 TF M 82 j,t B S1t J

vhere bi,j - ri(a],j,]’al,j,Z"") with TisTosens the polynomials in k
variables defined by

/,
(2.4) z? *ovzl- d? drd(zl,...,zk)“fd, n=1,2,...
n

(C£. (1.4); of course k may depend on j). Now use (2.2) to rewrite
(2.3) further as

I<b, >8. + L L V.<b, .> I V,<C(i,R),.>8
j ]’J J j i—>—2 1 19.] 9.,k 2‘ kJ k

+ L I Y<a_ . > =L <b .>6
s:z j,t S’JQ J j ’J J

2 . .
+ Z I I Vi2<bi,j C(l,z)k’j>6 + I L V<a ., >§.

ik i>2 27 Kooesp g0 7S St

~
for certain well determined b; 3.t € LC. And of course the summation set
2d?
for t for a given s,j will now in general be different than the omne in
(2.3). For each s € N with A(s)-i 1 (i.e. s 2_2) write s = pqs' where

P is the first prime number dividing s. We find an expression

(2.5) I<b. .>8. + L V(s Vv <a' >§.)
j

1,1 3 A(r)=1 =Y s,i,t =S r,S,],t ]

where now the summation set for t may also depend on r., Now repeat the



procedure given above for each of the interior sums

z ¥s<a' . t>6.
8§,j,t Te8,], ]

to obtain an expression

2:<b1 S8, + L grz<br] S8, o+ z 2: I Yy <a" .t>5.)
i ‘:J ] A(r)=] j 5453 ] A(r)=2 . S Ir,s,], ]

S’Jnt
Now apply the same procedure to the interior sums in the third

summand, ..., etc., ... After k steps we thus obtain algoritimically

the coefficients x . in
v

(2.6.) I y<a_ . > = L Y<x 56
S,j’t s]s ] s’j ’J J

for all s with A(s) < k-1.

We now proceed to define £n of an expression (2.1). Write

(2.7) gn(szj¥s<as,j>dj) - X.d-s/d-n/d >65
’
n/d
z dy /d< s J>£n/d j
$,]
n/d

= ? _s/d<a >y <C(n/d r) k
§,]1,T,k

= v <a ((n/d 1)
T ik

where d = (s,n). This is a sum of the type (2.3), whith then is put iuto
the form (2.1) by the algorithmic procedure out!ined ibove.

To complete this picture we also definc

=r —s S, ] CL =15 s,
s’ J J s".]
S
Via >§.) = v Veaa .~y
<3>(Z s, ] SJ % iy . P
5,1 S, . R
Cse. oo ubhitin
We have now defined a topological abelian (&)with operators | s,

v f for all a€ ?(P n€ N. (The topology is the obvious one). Note
3n :

that ﬁ)ls definitely not a Cart(y ) module. For one thing it is not at



all clear that £ 1is additive and obviously £ f = f does not hold
= =n=m =1m
in general. Before discussing the relations one must introduce to make

a variant on@ a Cart(LC) module over some quotient ring L, of %C we

note a homogeneity property. First make %C into a graded ring by giving

C(n,r)i f degree nr ~ 1 for all n,r € N, i,j € {1,...,m}. We then have

2.8. lLemma. Suppose that in the sum (2.3) each a_ . _ is homogeneous
v Jy
of degree ks ~ 1 for some k € N independant of s,j,t. Then the x
: ?
in (2.6) are homogeneous of degree ks - 1.

Proof. To prove this by induction it suffices to show that under the

hypothesis stated the b, . and a' . of (2.5) are respectively of
1,3 r,s,],t

degrec k -~ 1 and krs - 1 respectively. Now b, . = a_ . + a, . +

i ‘ P y 1,3 1,3,1 1,3,2 _
which is homogeneous of degree k - 1. As to the a; s,5,t° they are ,

Lt ¢ I )

t iz, 1° ' _ - ) . .

of two types, viz ) ar,s,J,t ars,J,t which by hypothesis 1is

- o ' 3 1
homogeneous of degree krs 1, and 27) ar,s,j,t bi,j'c(l’l)k,j"
with i2 = rs. Now from (2.4) we see that ri(Z],...,Zk) is homogeneous

of degree i (if each Zi is given degree 1) so that bi K = ri(a

9

TETTELIIIPIL)

. . g .
h -1). ! ., = b . ), .
is homogeneous of degree i(k-1). It follows that ar,s,;,t bl,J'C(l’ )k,j'

is homogeneous of degree f£i(k-1) + if-1 = fik - 1 = krs = 1. This proves

the lemma.

R < . .0, = .. .

2.9. Corollary. Let in£261 gn(st ¥S C(!Z.,s)J’l GJ) Szj¥s<yn,£,s,3,x>dj
Ed »

where the y . . are calculated as in (2.7). Then y is

n’z’S’J’l

homogeneous of degree nls - 1. Q

n,2,s,3,1

Proof. In this particular case of (2.7) we have aS ; = C(l,s)j i Thus

L ]
. - -1
azngdc(n/d,r)k 3 is homogeneous of degree d ]rn(Qs—l) +d nr-l =
bl »

d*]rnls -1 = (d-lrs)nl -1 and the corollary follows by lemma 2.8.

2.10. Lemma. If £ > 1 then Yo t.i f = nC(Q,,nt)i i mod (decomposables)
> ’ Ll L

. . .
(Here (decomposables) stands for the ideal of LC generated by all products
of the form C(n,r); J.C(s,t)k g with n,s € N ~ {1}, r,t € W,

) b ’
i,j,k,2 € {1,...,m}).

Proof. From (2.7) we have

nr/d

L v< A
=L J,1

t,]

>, = I ¥

. .>0. d < C(R
yn’i’t’J’l J s,r,j,k rs/d @)

C(n/d,r)k’j > 6k



R

where d = (s,n) in the sum on the right. Choose a fixed t € N. By the
rewriting procedure discussed in the beginning of this section a summand
in the sum on the right can contribute to y . . 1Aff d’,rs < t.

) ) ) n,2,t,j,1 -
Moreover, if this contribution is to be nonzero modulo decomposables

. - -1 .

we must in addition haved =nr, d n =1, r = |, k = j (because £ > 1).
It follows that s is a multiple of n and s < tn so that the only

contributions to y ., which are possibly nonzero modulo

n,%,t,j,1
decomposables, come from

t

I V n<C(%,an). .>4.
a=] 3 j»i ]

However n < C(Q.,an)j i> = <nC(£,an)j i> + (terms which are zero modulo
s t]

decomposables). The lemma follows.

2.11 Remark. By definition one has Y ns 5.1 = Yoi1s 5i = C(n,s)j i
LIRA g I I ] EIREE B N ’

so that lemma 2.10 does not hold for & = 1.
3. THE UNIVERSAL RING LC.
. . Y . . .
Let LC be the quotient ring of LC obtained by factoring out the ideal

generated by the homogeneous polynomials

(3.1) Clng,e)

- yn)k’t’j,i ¢ n,!l,,c €N’ l’J € {]s'~~,m}

3.2. Theorem. LC = Z![T(n)i jl n=2,3, ...; i,j € {1,...,m}] as a
bl
graded ring, with degree:(T(n)i j) =0 - 1.
’
Proof. The ring LC is graded because the polynomials (3.1) are homogencous

by corollary 2.8. Let Lét>

and let M(t) be the submodule of Lét) generated by the decomposables.
Lét)/M(t)

be its homogeneous summand of degree t - 1
Then is generated (as an abelian group) by the C(s,r) with
st = t. Now by lemma 2.10 and the defining relations (cf. (3.1)) we sce

that modulo decomposables

C(rs,t)i’j = rC(s,rr_)i ;

s

for all 1,5 € {1,...,m}, s€ N~ {1}, r € N. It follows that if s is nrot

a prime number, s ¥ 1, and p is a prime number dividing s, then

it

-1 -
(3.3) C(s,r)i ; p sC(p,p ]sr).

i,]



It readily follows that Lét)lu(t) is the abelian group generated by
the C(p,p.]t)i 3 where p runs through all prime divisors of t,
»

subject to the relations

-1 - -1
(3.4) aCp,p t); 5 = pC(q,q t)i'j
for all prime number divisors p and q of t. If t is a power of a prime
mmber p, t = pr, this means that Lét)/M(t) is a free abelian group

. .. If
1,]

t is not a power of a prime number let P(t) be the set of prime numbers

of rank m2 generated by the classes of the T(t),i ;= C(p,pﬂlt)
?
dividing t. Choose u(p) € Z such that

(3.5) z pu(p) =1
pEP(t)

Let

T, o= I w@I®p 6
’ pEP(t) ]
' (t) , (t) .
It then follows from (3.3) and (3.4) that LC /M is the free abelian
group of rank m2 generated by the classes of the T(t)i i This proves

the theorem.

3.6. Remark. (Construction of a "universal Cart(LC)~modu1e" (continued))

Let @% be the set of all expressions I ¥ <a_ j>6j with a_ , € L.. Now

5,3 > s,3 - €
calculate sums and £ry, <a>vy, Xry for v € @% as in section 2. Then @%

is in fact a Cart(L.) module. One has of course £ £ 8. = f §. by the

C =n=L 1 =nl 1
relations defining LC. And, using this, one can now prove directly that
the <a>, gn’ Zn are additive and that all the relatiomns (1.3) hold.

This also follows from the isomorphism result below, cf. remark 4.7.

4. PROOF OF CARTIER'S THIRD THEOREM.

Let F(X,Y) be any m—dimensional formal group law over a ring A.
Let Gl(t), ey Gm(t) be the standard V-basis for @XF). Then we have

unique expressioms, cf. (1.7),

© m
L0 = I L gy, o (0

L v
Now define n: %C + A by n(C(n,s)i’j) = c(n,s)i 5

b



Because f le (t) = Vi (£) in C(F) for all m,%,1 it follows that

N
nly ) = c:(l:u'n’.,n)j,1

n,2,s,],1
for all s,2,n €N, i,j € {1,...,m}. Therefore & induces a hamemorphisnm
of rings et LC =+ A. We can in particular apply this to the case

F(X,Y) = FR(X,Y}, the universal curvilinear m-dimensional formal group
law over Z [R] = ﬂ[Rn(i,j)]nE N~ {1}, 1,5 € {1,...,m}] of [3], part IV.
This gives us a homomorphism.
.1 Ne? Lo ™ Z [R]

4.2. Theorem.The homemurphism ¢ of (4.1) is an isomorphism of graded

rings.
=N

Proof. Let fR(X). the logarithm of FR(X,Y), be equal to fR(X) = 3 nn(R)hn

n=i
Recall that
(il) (i]...is_l\

(4.3) bRy = d{(i,,...,1 )R, R, ... R. .

n . . 1 s771 71 1

(1],...,1 ) 1 "2 s

5
bl(R) = Im

where Ry is the matrix (Rk(j,i))j’ and the sum is over all sequencus
(il""’i ), i EZN ~ {1}, s >, 1 2 v is = n. Here the d(x Soad )}

are certain welldetermlned coeff1c1ents, and R(J) is the matrix obtained
from Ri by raising each of its entries to the power j. . [31, part iv.
section 2. Then bn(R) is homogeneous of degrec n - 1 if Rk(j,ﬁ; Is niven
degrve k - 1. Let él(t), ceey Sm(t) be the standard V-basis for éka‘
and let

(4.4) 5 bi(t} = SLjES <c(p,.‘:)j,i > éj(t)

Now £ (y(t) +. &(t)) = £ _(y(£)) + £ (&(t)) (ordinary coefficientwise
R FR R R

v
sum), by the definition of logarithm. If follows that fR(gpy(t)) = I pr

) .
. i
i=1

1
t



1]

if fR(Y(t)) = 7 zitl, z; EiQ[R]m. Applying fR to (4.4) it follows that

4.5) b (R = E b, Riclp,d)™

din

(This formula provides the link with the "intertwined function pair"
considerations of [2]).
With induction it follows from (4.5) that the c(p,s) € Z [R] are

homogeneous of degree ps -~ 1 (, that is to say the entries of these

mxm matrices are homogeneous of degree ps<l). Now bpn(R) = p-]an
modulo decomposables if n is a power of p and bpn(R) = an modulo

decomposables if n is not a power of a prime number, cf (4,3) and use

-1

that d(i]) = p if i, is a power of a prime number p and d(il) = 1

1

if i, is not a power of a prime number, cf. [3], part IV, section 2.

It follows that Ne satisfies

1

nC(C(p,pr_ )..) =R r(i,j) mod (decomposables)

1
] P

nC(C(p’S)i,j) = pRpS(l,J) mod (decomposables)

if s is not a power of p. Hence nC(T r(i,j)} = R r(i,j) mod (decomposables),
p p
and if s is not a power of a prime number

'a(.(Tg(i.j)) = n.C ¢ }l(P)C(P,P—IS),,)E z u(p)pR_(i.3) = F _(i. D)
o PEP () ' pEer(s) ‘ A

modulo(decomposables). Here Pfs) and the pu(p) are as in (3.5). It 7ollows

that N is indeed an isomorphism (homogeneous of degree zero).

4.6. Proof of Cartier's third theorem. Let@D be a reduced Cart(A) module,

i.e. ) is a topological abelian group such that the properties of 1.8
hold, Let §., ..., 8§ be a V-basis for @l Then every f §. can be
1 m = =n 1

uniquely written as a convergent sum (cf. (1.7)),

© @
£fS8. = % I V. <cln,s). .>8. c(n,s); . € A
n i =1 j=1 =g 3,173 ii
Now def ine %: f - A by %(C(n s). .) = c(n,s). .. Because £ f = f
C *TA,1 73,1 =n =ng

1n @)wc have that



Vv N
n(c(n¥,s). .) = n( ..
(c( ],1) nyn’ﬁ’s’hl)

. . Y . .
for all n,%,s,j,1 so that n fartorizes through L. to define a

homomorphism n: LC + A. Now let ¢: Z [R] » A becequal to ¢ = nn;],
where Ne is the isomorphism of theorem 4.2. Then F(X,Y) = ¢*FR(X,Y)
is a formal group law over A such that @RF) = (G as a topological

group with operators. The isomorphism is given by 6i(t)f—* Gi’ where

Gl(t), s Gm(t) is the standard V-basis of (CXF).

4.7. Remark. The module(@é of 3.6 above is the module of curves of the
formal group law (n-c.]),,FR(X,Y) over LC.
5. THE LOCAL CASE.

Choose a prime number p and suppose that A is a Zi(p)—algebra.
Then the formal groups G over A can be classified by a much smaller
group of curves € (G) < €(G), with a much simpler ring of operators.
In detail @%(G) = {y(t) € GG |f Y(t) = 0 for all prime numbers q # p}.
The operators on C)(G) are the Vp £; and <a>, a € A, 1 €N Uy {0}. The
topological group of pvtyplcal curves @XG) has filtration subgroups
Qﬂn)(C) = C)(G) n CP (G) and is complete in the topology defined by
th1s flltratlon. One shows that the topological groups with operators
thus obtained satisfy
(%) ‘@%(G) is a complete Hausdorff topological group with operators
z;, g;, <a> which satisfy analogous relations (1.3) obtained by setting
V =0-= f for all k,n € W which are not a power of p.

(1i) The topology of C)(G) is defined by the QubgroupsC§ )

= YOK6)

(i1i) There are elements ﬁl(t), i=1, ..., m€ C(G) such that every

curve y(t) € C%(G) can be written as a unique convergent sum

© m
Yy= ¥ I ¥n<a >4,
n=o j=
(To prove (iii) one uses Corollary (2.11) of [3] part IV to reduce to
the case that G is a p-typical formal group and in that case the standard
basis curves Gi(t) = (0,...,0,t,0,...,0) are p-typical and satisfy (iii)).
Inversely, the local version of Cartiers third theorem says that
. . 1 .

every filtered topological group € o @)‘:>Cf D... with operators Zp,gv,

<a> such that (i), (ii), and (iii) hold comes from a formal' group over A.
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The proof of this is a triviality, given the construction of the
m-dimensional p-typical universal formal group Fv(X,Y) of [3], part IV.
Let fSi(t) be the i-th standard curve over Z [V] = 2 [Vn(i,j)ln € N,

i,i, € {1,...,m}] in CKFV). Then one calculates as in section 4 above

© m
(5.1) £68.(0) = T YRV (1), (1)
p1 n=o j=1F e J

where one uses that the logarithm fV(X) of FV(X,Y) satisfies

o ‘./‘ T -
n f th o o
£.(X) = I a (V)XP \:” e sudo i o
\Y n Scinic o
n=0 ~ ‘
—_— . !
pa(v) =a (V)V(pn“])+ + a (V)V(p) +V - ‘- X
n n—1 1 U 1 "n-1 n Y

i
i

cf. [3], parts I1I and IV, (Gpfy b W) fe buth Sl of [s1) and ascerbain hur ae itisV

Now let @D be any topological group with operators Ep’ Xp’ <a>, a € A
such that (i) - (iii) hold. Choose 61, vy 5m such that (iii) holds
and let

oo m
(5.2) £8.,= L I Yi<a . .>8,
P nmo ja1 TP Medsi ]

Define ¢: Z [V] - A by ¢(Vn+](3,1)) = an,j,i' Then ¢*FY(X,Y) is a formal

group law over A such that @%(¢*FV) = €) as topological groups with

operators. The isomorphism is given by Si(t)k+ Gi, where Si(t) is the

curve (0,...0,t,0,...,0) in @p(¢*FV)' This follows from (5.2) as compared .
to (5.1).
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REMARKS FFOR THE TYPESE'TTER.

- double black underline: bolface (except for the standard boldface
symbols Z , N, }, which are typed in as shown; besides these three
onlyvf and V occur boldface).

- encircled in black: script (Only C and M occur as script letters)

- greek letters have been typed in, the only ones occurring are
A, W, Y, 6, 9, N

- no fraktur letters occur.
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Constructing Formal Groups VII.

1. Introduction

The first result of this paper says that we know an m~dimensional
formal group over a characteristic zero ring A (i.e. A— A 8 Q is
injective) if we know ik over each A @ é(P) and inversely that one can
gpecify these '"'local" formal groups arbitrarily (up to isomorphism). If
A is the ring of integers of a finite extension K of Q (or a ring of
T - integer;) then there is a refinement where the place of the A 8 é(P)
is taken by AV’ the rings of integers of the local completions Kv of K
for each nonarchimedean valuation v of K.

These results are usefull e.g. to construct a formal group law
over a global ring of integers A which over each localization Av is
isomorphic to a (twisted) Lubin-Tate formal group law. Cf. [4] and [2],
chapter IV, sections 25.8 and 25.9.

Now let F(X,Y) and G(X,Y) be two one dimensional formal groups
over ép (or é(p) or any ring in between), then a result due to Honda
and Hill ([5],[6]) says that F(X,Y) and G(X,Y) are isomorphic over éP if
and only if their reductions mod p are isomorphic over é/(p). In section
4 below we give a new proof of this result based on the universal

isomorphism o T(X) of [1], part I, and the formulas which were also

v,
usefull in [1 ], part III, cf. also [4], for the study of BP cohomology
operations. (The relevant formulas are recalled in section 3 below).

There is a bonus: the same proof works to give the corresponding result

for formal A-modules where A is a discrete valuation ring with finite



[

residue field both in the case that A is of characteristic zero (Qhere
the result is due to Lubin [7]) and the case that A is of characteristic
p>0 (cf. [1] part VIII, [2] chapter IV, section 22.2).

Finally section 5 below gives two counter examples in dimensions
1 and 2 respectively which are designed to show that these reduction-

isomorphism results do not easily generalize.

2. Local-global results

2.1. We shall use rather freely some notations and results from
the earlier papers of this series, especially from [1] part IV. In
particular HU(X,Y) over z[U] = z[..., U(i,n),...] is the m-dimensional
universal formal group law constructed in [1] part IV, section 2.3.:¢
FV(X,Y) over Z[V] is the universal p-typical m-dimensional formal group
constructed in the same place, and o, (X): F_(X,Y) —= F_ . (X,Y) is the

V,T ' V,T
universal isomorphism between p-typical formal group laws of [1], part

IV theorem 2.12.



The

(1)

(ii)

For

\k/‘,

local-global results of the title of this secion are now

2.2 Theorem. Let A be a characteristic zero ring.

If F(X,Y) and G(X,Y) are two formal group laws over A then
théy are strictly isomorphic over A if and only if they are
strictly isomorphic over A 8 Z (p) for all prime numbers p.
Suppose we have given for every prime number p an m~dimensional
formal group F(p)(X,Y) over A R Z (p)° Then there exist an
m-dimensional formal group law F(X,Y) over A which is strictly

isomorphic over A 8 Z (p) to F(p)(X,Y) for every prime number p.

2.3 , Theorem. Let A be the ring of integers of a number field K.

each nonarchimedean valuation v let AV be the ring of integers

of the local completion Kv of X. .

(i)

(ii)

(1)

If F(X,Y) and G(X,Y) are two formal group laws over A then they
are strictly isomorphic over A if and only if they are strict‘ly )
isomorphic over AV for all nonarchimedean valuations v of K.

Suppose we have given for every nonarchimedean valuation v an
m-dimensional formal group law F(V)(X,Y) over Av. Then there exists
an m-dimensional formal group law F(X,Y) over A which is strictly -

isomorphic to F(v)(X,Y) over A for all nonarchimedean valuations v.

.

ey . Proof .of theorem 21.2.

The m-dimensional formal group laws F(X,Y) and G(X,Y) are strictly
isomorphic if and only if the power series g_1(f(X) has its
coefficients in A, where £(X) and g(X) are the logarithms of
F(X,Y), G(X,Y). This is the case if and only if
g_](f‘(x)) €EARZ (p)[[X]] for all prime numbers p  becaus¢ A
» of chatacketiskic zetw. | ‘



@ a&jcbm )

(i1) Because A 8 Z (p) »a we can assume that all the

F(p)(X,Y) are p-typical formal group laws, Let v, = (vw,vap,...

be a sequence of m x m matrices such that F(p)(X,Y) = FVP(X,Y)a
~ where Fo (X,Y) is the formal group law obtained from the
P - -
universal p-typical formal group law FV(X,Y) over Z [V]
by substituting vi,P for Vi’ i€ W. .

Up to strict isomorphism we can assume that the matrices A
s

have their coefficients in A and not just in A R /4 (p)" Indeed

suppose that 1 is tHe smallest natural number such that
V. k A" Then there exists a t. € A & Z( and a v. €A
i,p i =(p) i,p

2

ch that v. = v. _ + pt..
su 1,p VlaP P 1
—_ ~-1/a - -~ mxm —
(Let Vip="h (vi,p)’ (n,p) =1, vi,pE AT, take r,s€ Z
such that ps + rn = 1; take v. _ =r%. _, t. = - ls%. ).
1,p 1,p 1 1,p
Applying the isomorphism o, 4 (X) to Fv (X,Y) with
PP P
tp ='(tp,1’tp,2"")’ tp,j =0 if 1 # j, tp,i = t; we find an
isomorphic formal group law F_(X,Y) with ;;j = V53 for j < i,
v y
V. =V ..
i D,i

Now let HU(X,Y) be the universal m-dimensional formal group law
over Z [U]. Substitute U ;= v ; for all prime number powers

- p ’ .
p' and U(i,n) = O for all u not of the form p'e(j). Let F(X,Y)
be the formal group law over A thus obtained. Then F(X,Y) is

strictly isomorphic to F. (X,Y) over A 8 Z (p) because for
D .

each prime number p H.U(X,Y) is strictly isomorphic to FV(X,Y)

over Z (P)[U] if one identifies Vi with U i i=1,2, ...

D
(¢t [11,part I, theowem 2.10)

2 5. Remark.
Part (ii) of theorem 3,2 (&lso\holds/if A is not necessarily

of characteristic zero; in fact this hypothesis was not used in

the ?proof of part (ii) given above,
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To prove theorem 2 3 we need the strong approximation
theorem of algebraic number theory., For the convenience of the reader

we state it here explicitly in the form in which we shall use it.

26. Strong approximation theorem. Let T be a finite set

of nonarchimedean valuation on a number field K with ring of integers
A and for each v € T~ let a, be an element of Kv, the completion -
of K with respect to v. For each v € T choose an r. € . Then there
exists an a € K such that v(a—-av)_ >r for all V€ T’ and v(a) 3_ 0
for all v¢7" . (Note that if a, € Av’ the ring of integers of K »
for all v €T then a € A).

2.%. Proof of theorem M?_. 3

(i) trivial, an patk () of 2.4,

(ii) As in 2.4 we can assume that tHe F(v)(X,Y) are all
p-typical formal group laws. We are going to obtain F(X,Y) by
substituting inductively suitable values for the U(L ,g) in
the universal formal group law H.U(X,Y) over Z [U]. Suppose we
have already found elements a(i,n) € A for |n| < n and power

series oe(v)(X) such that med (clefi"lt’e n)

(231 F (61 = oy ((Froylag (e (1)) =0

where F(n)(X,Y) is the formal group law obtained by substituting

a{i,n) for U(i,n) for |n| < n and U(i,n) = 0 for |n| > n.

By the comparison lemma ( [1], pait I¥, cot. S-4 ) there exist
m-tuples of homogeneous forms F(v)(X) and an m x m matrices M(v)

such that the differences (2.3:1) are mod (de?iu’. n+1) equat tbo
Py Q0 + Ty (¥) = Ty M<V)(\)(n)—1(Xn+Yn—(X+Y)n))

If n is.a not a power of a prime number, then v(n) = 1, take

(v),n+3(x) -
() n(X) + I'(v)(X) + M(V)Xn. Then (2.%.1) holds with n + 1 instead

a(i,n) = 0 for all p with lp_:l = n and let o

of n. Now suppose that n = p~ for a prime number p and ré€& . Then
v(n) = p.ltTbe the set of all valuations v"dividing" p (i.e. for
which v(p) > 0). By the strong approximation theorem 2. 6 there
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exists a matrix a with coefficients in A such that a = M(v) mod(pAv)

for all vET . Let N(v) = p‘1(M(v)—a). Now we take
a(i,ng(j)) = 8 ; fori=1, ..., my J=1, ..., m
and

(x) = a %y, WX+ T 2(x + N xn for veT -

%(v),n+1

a(V),l’H'T(X)' - o‘(v),n(x) + F( ) (X) +p ]M Xn + ax" for v T

[

then (2 % 1) holds with n + 1 instead of n for all v. To see this use
e.g. formula (236) ¢f [1], part I . By induction this completes
the proof. - 7



3. The more dimensional isomorphism formula.

3.1. Let FV(X,Y) be the universal p-typical m—dimensional formal

group law of [1] part IV and g (X): FV(X,Y) —_— FV T(X,Y) be the
b

V,T
universal isomorphism of f]], part IV, theorem 2.12. Let the logarithms

of FV(X,Y), FV,T(X’Y) be respectively.

n n
(3.1.1.) £ = £ amx , £, X = £ a@,mnxP
v - n v,T — n
n=0 n=0
In [1] part III we derived a most usefull little formula for an(V,T)
for the one dimensional case (m=1), which was also rather important in
[1] part V. Argueing exactly as in [1] part III, proposition 5.2 we find

the following more dimensional version of this formula.

n ’ n . l n i( i ) i
(3.].2-)

n n-k n-j n-k n-i
+3 o a_ P ple et T
k=2 i+j=k 1 h| j i
j
i,j2l



where M{g} is the matrix obtained from a matrix M by raising each of

the entries of M to the gq-th power.

The formal group law F (X,Y) is p-typical, hence there are

V,T
unique polynomials v, € Z[V;T] such that FV T(X,Y) = F_(X,Y). These
- ’ v
polynomials A then satisfy
(3.1.3.) a (V,T) = a__ (V T)G{Pn—]}+ va (v,T)VPI T,
e PaL iy n-1"" 1 PR A

57 the more dimensional version of formula (4.3.1 ) of [1] part I,

which is proved in exactly the same way starting from the functional

equation of fV(X) i.e.

g ! {pi} Pi
£,00 = X+i=]p v.eP ol )

By combining formulas (3.1.2.) and (3.1.3.) one obtains a formula
for Tn in terms of ai(V,T), ai(V), Ti’ Vi and Vi with j<nwhich turns

out to be usable. Cf. sections 4,5 below.
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4. The é

p—é/(p) theorem.

The theorem is

4.1. Theorem ([5],[6]) . Let F(X,Y) and G(X,Y) be two one
dimensional formal groups over gp (orx é(p) or any ring in between).
Then F(X,Y) and G(X,Y) are strictly isomorphic over ép (or é(p) or ...)

if and only if their reductions modulo p are isomorphic over Z/(p).

The proof of this theorem is in several steps. Let A be gp’ é(pl
or any ring in between.
4.2, Proposition. Let v = (VJ’VZ"")’ $ = (91,62,...) be two

sequences of elements of A. Then the one dimensional formal groups
FV(X,Y) and FQ(X,Y) are isomorphic over A if and only if Vi E‘Gi mod p
for all i € N and then they are strictly isomorphic.

Proof. First suppose that v, = Gi mod p for all i € N. Put

-1 n~-i n-i p n~-k n-j n-k n-~i
(4.2.1.) t =p ¥ da _.00% —=F H+x oz a P B2 LB P
=1 * * k=2 i+j=k MEOL 13

where 32 = al(G) and a, = az(v) are the coefficients of the logarithms
of FG(X,Y) and FV(X,Y) respectively.

This determines t, inductively. And by (3.1.2.), (3.1.3.) we have that

V (v,t) = Gn so that o, t(X) will be a strict isomorphism over A of
n s

F (X,Y) — F.(X,Y) = F (X,Y) provided we can show that the t. are
v v v,t i

in A (and not just in A 8 Q). But v, = Gi mod p and assuming with induction
i .

J

that t,,...,t € A we have also vit? tjv? mod p. It follows that

i

1’ n-1



n—-i n-i s n~k _n-j n-k _n-i -
= v? mod (Pn l+]), VP tj = t? v? mod (pn k+1)

iA

so that indeed tn € A because pn—ka K € A, pn_ a_; € A. Inversely

n-

suppose that o(X): Fv(X,Y) — FG(X,Y) is an isomorphism over A. We
can write a(X) = B(X)oy(X) where B(X) is a strict isomorphism and
Y(X) = uX for some invertible element u of A. Let G(X,Y) be equal to
qu(u—IX,uﬁlY). Then the logarithm of G(X,Y) is equal to ufv(u-JX) so
that G(X,Y) = F~(X,Y) with V. equal to

i
v, =u (p —l)v.
i i

(This follows immediately from formula (4.1.2.) of [1] part I for an(V)).

“(Pi“l) = . . ~ A
Now u = | mod p. So it suffices to show that vy =V mod p.

I.e. we are reduced to the case that o(X) is a strict isomorphism. But

then by the universality of the strict isomorphism o (X) there are

v,T

t],tz,... € A such that Vn(v,t) = Gn’ i.e. there are t)»t . € A such

2’
that (4.2.1.) holds. And this shows inductively that ;n = v, mod (p)

(Take i=n in the first sum of (4.2.1.) to isoclate the term pﬁl(;n-vn)).

4.3. Proof of theorem 4.1. Let F (X,Y), G(X,Y) be two formal groups

over A such that their reductions F(X,Y), E(X,Y) are isomorphic over g/(p).
Let a(X) be any lift of this isomorphism and let H(X,Y) = a_lG(uX,aY).

Then H(X,Y) reduces to ?(X,Y) modulo p and we must show that F(X,Y) and
H(X,Y) are isomorphic, i.e. we are reduced to the case that f(X,Y) = G(X,)

Let FS(X,Y) be the one dimensional formal group law over é(p)[S] which is



i1

universal for one dimensional formal group laws over g(p)—algebras

-~

(C£. [1] part I, theorem 2.5). Let s = (s2,53,...1, s = (;2,

~

53,...)

be such that F(X,Y) = FS(X,Y), G(X,Y) = FE(X,Y). Then by the uniqueness
part of the universality property of FS(X,Y) we have F(X,Y) = G(X,Y)

if and only if s, = ;i mod p. Now by [1] part I, theorem'Z.]O, FS(X,Y)
and Fg(X,Y) are strictly isomorphic to the p—-typical formal group laws
FV(X,Y), FQ(X,Y) with v, = 53’61 = 3 i Hence vi = Vi mod p so that
FV(X,Y) and FG(X,Y) are strictly iso;orphic by proposition 4.2. This
proves that F(X,Y) and G(X,Y) are isomorphic over A if their reductions
are isomorphic. So it only remains to show that this implies that F(X,Y)
and G(X,Y) are also strictly isomorphic. Both F(X,Y), G(X,Y) are strictly
isomorphic to p-typical formal groups so we can assume that they are
p-typical. Then an isomorphism a(X) again decomposes into a strict ome
and one of the form y(X) = uX, u € A¥, So it only remains to show that if
H(X,Y) = qu(u-JX,unlY) for some u € A* then H(X,Y) and FV(X,Y) are
strictly %somorphic. As before we then have H(X,Y) = E;(X,Y) with

~
V.

i
= u—(p ‘l)v.
i i

SO that?;i = vi mod p and another application of
proposition 4.2. shows that H(X,Y) and FV(X,Y) are indeed strictly

isomorphic. This concludes the proof of the theorem.

4.4. Corollary. Two p-typical formal group laws over Z/(p) are
isomorphic if and only if they are identical. (NB this does not mean that
all isomorphisms are equal to the identity).

Proof. Let E(X): f(X,Y) —_— E(X,Y) be an isomorphism. Let
F(X,Y),G(X,Y) be two p-typical lifts of F(X,Y), G(X,Y). Then F(X,Y) and
G(X,Y) are (strictly) isomorphic by theorem 4.1. which by proposition

4.2. implies that their reductions are equal.
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5. Two examples,

We conclude with two counter examples to imaginable generalizations

of theorem 4.1.

5.1. FExample. Let W‘»(Eg) = 53[1], i2 = -1 be the ring of integers of
3o = 2
the unramified extension of degree 2 of Q.. Consider the sequences of J
_ and) one_dimensionat
elements v= (0,i,0,0,...) and v = (3i,i,0,0,...)}ybonsider theYTormal groun

laws F_(X,Y), Fz(X,Y) over Z [i]. The reductions mod 3 of these formal

3

group laws over F_ are equal. We show that FV(X,Y) and F;(X,Y) are mnot

9

isomorphic over 53[i].

.~ Indeed suppose that a(X) = uX+u2X2+... were an isomorphism. As usual

we break up a(X) into a composite.

F_(X,Y) > G(X,Y) — F(X,Y)
v v

B(X) ¥ (X)

where g(X) = uX and y(X) is a strict isomorphism. Then G(X,Y) = u Eju_1x,u"‘Y).

-1 . .
so that log .(X) = u log F(u X) ~which means that G(X,Y) = FG(X,Y) with
iz

G



-

Vo= f“,wwgi.ﬂ,ﬁ,.@g). Now v(X) i5 « strict isomorphism between p-typical
formnl group laws. By the universality of the strict isomorphism oy T(X)
’

thin means that-there must be elements t ,t,,... in Z [i] such that

27"

r;(x) = fs (X). According to {31 2) and (3.1 3) above this means that we

»t

must have

27)

7 73 A 3 9 5. w37 -3
-_3. +§.~2~—+§——l=—~3-+§-~2-+§. .._1..’..._1..(11 i1 )
3 1 3 2 3 13 23 3 3
00 -6 et -t
g2 ” P2 T T e,
) 3 3 3
@ 31 - — -—
where f;(X) = i£0 aiX . Substituting the known values of v1,v2,v3,...
T a0y e, deen $1=3i, GJ=o, 62=i, 92=u' i, §3=?3=o we find that we
must have
9
-3 - =3 .9 ~3
(5.1.1) 2, Yo+ a, Vi = 8, E Vot - B2 ty
3 3 3 3
-1 - 8. _ . _ - - V-
Nowea,=— v, =i, and V. =u-1 = 1 =v, mod 3 so that a, 2 = a, 2 mod
13 1 s 2 2 1 — 2 =—
29 _ (aiy9 3, 11 N
(2,[1]1). Further v = (31)” = 0 mod (37Z,[1]) so that' 3" 'a,v; = 0 mod

(Z,[11). Hence it follows from (5.1 1) that we must have

(5.1-2) %87 - .93

ot > = 0 mod (3§3{i})
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However t1=i and §2=u'81 = i mod 3 which contradicts ! 5.1.2).

5.2.  Example. Now let FV(X,Y) over Z[V] be the two dimensicnal
universal p-typical formal group, c$.L[i1. pait I - . Consider the

two sequences of 2x2 matrices -

(0 ANy GOy (35 -o )

<i

(G € 0 s

and let FV(X,Y) and F;(X,Y) be the formal group laws over Z which are
obtained by substituting vi(j#) and Gi(jk) for Vi(j,k) in FV(X,Y), i=1,2,...:
j,k=1,2. Then ?v(X,Y) = F;(X,Y) over gp' We show that FV(X,Y) and F;(X,Y) aie
not isomorphic over gp' Note that FV(X,Y) and F;(X,Y) are both of height 3,
hence in particular of finite height.

Suprose that o(X) : FV(X,Y) — F;(X,X) is an isomorphism, As usual
ve decompose a(X) into an isomorphism B(X)=u"'X: F (X,Y) — G(X,Y) end
& strict isomorphism v(X): G(X,Y) —> F;(X,Y). Here u ii‘irvertible (over

@

gn) 2x2 matrix. The logarithm of G(X,Y) is equal to

1

LogG(X) =u fv(ux)

As a rule G(X,Y)Ais not a p~typical formal group law. However, b? [1], pait ¥
theorem 2.10 G(X,Y) is strictly isomorphic to a p-typical formal group law whose

logarithm is obtained from logG(X) by simply striking éut ell terma in lomG{hﬁ
vhich shouldn't be there for a p-typical formal group law. ¥his means

that G(X,Y) is strictly isomorphic to the p-typical formal group law G(x,Y)

with logarithm



'y

2 2
{5.21) loga(X) =X + u'1a1(v) ul PP+ u"1ae(v)u{p ke v L.

oo i i
where fv(x)z i§1ai (v)Xp and u tp }is the matrix obtained from u by raising
. i
each of its entries to the power pl and where, as usual XP denotes the,

columnvector (.XI:I, Xgl). .
Comp®sing the strict isomorphism G(X,Y) —-— G(X,Y) with the strict
isomorphism Y(X): G(X,Y) —= F;(X,Y) we find a strict isomorphism §(X):
5(X,Y) S F;;(X,Y).__By the universality of the strict isomorphism aV,T(X)
(? dimensional case ; ¢f. [1] ,pait @ ) this means that these must be 2x2

matrices t,,t with coefficients in Z_ such that

prees
(5.2.2) f‘.,’t(x) = f;;(X)

vhere ¥ = (‘71,9 .) is a sequence of matrices such that FG(X,Y)=6(X,Y).

2,-0

(Such a sequence of matrices exists because G(X,Y) is p-typical). From

(s2.1) we see that

g v
RIS (v)u{p} S | u{p}
° ’ e
[52.3) to}
s s {pt =
mv1v21 +2=ya (V)u{pz}
o P 2"

and (S522) gives us that (cf formufas (312),(313) above



¢ 7
1 =
RS T
(5.2.4) -
e g AR AR RSt
2, (v) Y ottt gyt P

Suppose that u= (2 :). Now u{p}s u mod p and by (5.2 4) 515 51

mod p. Using this in (5.2.3) we find that u must satisfy.

G EH=C9 (Y map

-

This gives us
czd=0 modp

so that u is of the form

= b pY:
u= (g, .

Substituting this in (523 ) gives that modulo (p2)

s -1{ e -py][10 bP ppyP - bp‘1 0
¥, = det(u) z 1o
-pz b 00/ |pP2? e? _pze” bY ' 0
2 . ‘ 1'( ,(°)
which gives mod p for PV, L? (5.2.3) udmg  p ale s opl?

-

. 2 2 ﬁki 0|
.1 (€& -P? 1 o\ /b #E?P - b .
G = bl b)lo p/\pPF o i

©
R
1l

-pz



xS
v}

e -py\ B o) [oP T 0
-1 -
z (eb) 2 2
-z b [ \0 peP pe 2P "1 o

2
0 peP T

soc that we find

4
This means that
-~ s" -~ “‘
(5.2.5) v, Ry, mod p, ¥, = v, mod p
and hence .
Ap) o -{pl 2
[5.2.6) -v1p = v1p mod p

Using (525) and (5.2 6) ' in the second line of (5.2.4)°

we must have

(o}

- =
t1v1 0 mod o

(5.2.%) 01t{1p}

S P _1(19)_ _1(1 +p§ O\ _ [-F 1
But t, = v (v,-¥)=p p O p 2 0 A
vhere z,§ € gp are such that b

so that modulo p

16
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)

SRS ) SN _(1 o)(—;? 15(-9 )

T FV % F 1o of Visz ol o mod P

Py 2o o _ [T, 1) (1 o) _ (-

SV E %Yy 20422 o) lo of Tlicz of medP
which is a contradiction with (3.2.7) . This proves that the two
2-dimensional formal group laws FV(X,Y), F;(X,Y) over gp are not

isomorphic.

17'
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