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l . INTRODUCTION. 

In this paper we give an explicit construction for the logarithm of 

more dimensional (commutative) formal groups of various kinds. The 

procedure is basically the same as in [3], [4]; cf. also the brief 

indications in [2], part I, II for the more dimensional case. That 

is, we first construct a suitable candidate for a universal formal 

group by giving its logarithm in terms of a functional equation, 

then we prove that the formal group with this logarithm is indeed 

integral and finally we prove universality of this formal group 

by a more dimensional extension of the method which Buhstaber 

and Novikov have used in [1] to prove universality of the formal 

group of complex cobordism. The one dimensional algebraic version 

of this trick has already been used in [3], [4]. 

Thus one avoids Lazard's truly tough (and computational) comparision 

lemma between more dimensional formal groups. Cf. [7]. This lemma now 

appears as a corollary. 

Thus, starting from nothing, one obtains in 10 pages or so (i) a 

proof of the existence of a universal n-dim.ensional formal group1 (ii) 

the structure of the underlying ring and (iii) an explicit description 

of the logarithm of this form.al group, and, if one wishes, the same 

things for p-typical formal groups. 

All formal groups will be commutative. All rings will be commutative 

with unit element. ?l stands for the integers, ?l ( ) for the integers -= = p 
localized at p and B for the rational numbers; ~ denotes the natural 

numbers, !; = { 1, 2, 3,,,,}. If F( X, Y) is a formal group over a ring 

A and ~ : A ~ B a ring homomorphism then F$(X,Y) denotes the formal 

group obtained from F(X,Y) by applying $ to its coefficients. 

2. CONSTRUCTIONS AND STATEMENT OF MAIN THEOREMS. 

2.1. A multiindex ~ = (n1, •.. ,nm) is an m-t~pll.e. of integers.> O. 

Let I l~I I = n 1 + n2 + ••. +nm. We shall only consider multiindices ~ 

with llQll ~ 1. We use ~(i), i = 1, ... , m to denote the multiindex 

((),:. • .r..,.0.1,0.._ •• or;,-O) with 1 in the i-th place. If g is a multiindex 

and i E! then i f.i is the multiindex ig = (in,. ... ,inm). We use~ 



2 

to denote the set of all multiindices ~ with I l~I I .::_ 1 and 

~ #- pr ~ ( i) for all r = 1 ,2, ••• ; i = 1 , •.. , m and prime numbers p € I 
(n) ( ) 2.2. If' g(X) is a. power series over A[IJ1'U2 , •.• ]and n €!then g X 

denotes the power series obtained from g(X) by replacing each Ui with 

ef.1, i = 1, 2, ... 
J. 

2.3. Constructions. 

Choose m €Ji. Let Zl [V]be short for Zl [V.(j,k); i = 1, 2, ..• ; 
.. - :: J. 

j,k = 1, .•• , m]. We write V. for the matrix V.(j,k), X for the column 
J. 1 

vector (.x_, •.. ,X ) and -:f1', n E JN for (Xn1 , ••• ,"J!1}. Choose a prime -, m - m 
number p. With these notations we define the m-tuple of power series 

fv-(X) with coefficients in If[V] by 

(2.3.1) 

and we define 

(2.3.2) 

fv(X) = x + ; Vi f(pi)(xPi) 
i=1 p v 

where h- 1(X) is the inverse m-tuple of power series to h(X); i.e. 

h- 1(h(X)) = X = h(h-1(X)). 

Let ZZ[V;T] be short for ?Z[V.(j,k), T1.(j,K); i = 1,2, •.• ; j,k = 1, ..• ,m]. 
#:" = 1 

We define 

(2.3.3) 

and 

{2.3.4) 

"" 
f'V T(X) = X + E 

, i=l 

i 
T.XP + 

1 

For ea.eh seque.nce ( q 1 , ••• , ~) of powers of prime numbers, qi a power 

of pi' choose an integer n(q1 , ••• ,qt) such that the following congruences 

are satisfied 

n ( q 1 , ••. , <lt) r if p 1 Pr ; Pr+l - mod p 1 = P2 = = 

(2.3.5) 

n(q,, ••• ,'lt) r-1 if p1 '# P2 = Pr ; Pr+1 - 0 mod p2 = ... 
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Let ~[U] be short for ~[U(i,n); g amultiindexwith llgll ~2, 
i = 1, ..• , m]. We also define U(i,~(j) = 0 if i ~ j and U(i,e(i)) = 1. - = 
If q is a power of a prime number inlN, we use U to denote the matrix 

- q 
(U(i,~(j)) ... and if g is a multiindex we use Ud to denote the column 

1,J - = 
n n n 

vector (U( 1~), •• ·~"-U(m,~)). K~nally x= = x1
1 ••• Xmm and if a is 

a vector aX= = (a~X-, ... , amx=). We now define the column m-vectors 

an for all multiindices g with I lgl I ~ 1 as 
= 

(2.3.6) a = 
~ 

n(q1 , ••• ,%) n(~, •.. ,~) 

P1 P2 

where the sum is over all sequences (q1, ••• ,~,a) such that 

' I 

q1 •••• ~g = ~· ~ € U• qi a power of a prime number pi. NB t = 0 is allowed. 

We now define 

(2.3.7) 11J(X} = 

and 

(2.3.8) ~(X) = ~(X), ~(X,Y) = ~(X,Y) 

where cj>: ~[U]-+ ~[:U] is the homomorphism which takes U(i,~(j)) into 

itself for i,j = 1, .•• , m and prime powers q, and which sends U(i,~) 

to zero for all$:! E ~' i = 1, .•. , m, where~=~' {~(i)li=1, •. :,m} 

2.4. Iniegrality Theorem. 

The formal power series FV(X,Y), FV,T(X,Y), Ru(X,Y) and i\i(X,Y) have 

their coeff'icients respectively in ~ [V], ~ [V ;T], ~ [U] and,! [U]. 

2.5. Theorem (Universality of J!u(X,Y)). 

~r(X,Y) is a universal m-dimensional formul group. 

Le. for every m-dimensional commutative formal. group F(X,Y) over a 

ring A there is unique homomorphism cl> : ~ (U] -+ A such that 
' 

~(X,Y) '.~ F(X,Y). 



2.6. Theorem. 

ffu(X,Y) a~d ~(X,Y) are strictly isomorphic over~ [U]. 

2.7. Curves. 
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Let F(X,Y) be an m-dimensional formal group over a ring A. A curve in 

F(X,Y) is a.n m-tuple of power series y(Z) in one indeterminate Z with 

coefficients in A and zero constant terms. Two curves can be added 

by means of F(X,Y) as follows y(Z) +F c(Z) = F(y(Z), c(Z)). Let n E~. 

One now defines a Frobenius operator f in exactly the same way as 
•n 

for one dimensional formal groups. I.e. formally we have that 

(2.7.1) 

where ~ is a primitive n-th root of unity. For a more precise 
n 

definition, cf. [3]. 

2.8. More Dimensional p-typical Formal Groups. 

Choose a prime number p. Let F(X,Y) be a formal group over a ring A. 

A curve y(Z) is said to be p-typical in F if (fFy)(Z) = 0 for all 
•q 

prime numbers q ~ p. We shall say that the formal group F(X,Y) is p-typical 
( ) _ ( Pr 1 prm) { } if all curves of the form y Z - Z , ... ,Z , r. E:N U 0 are 

J. 

p-typical. 

If A is a characteristic zero ring, i.e. A+ A .6a2l.~ is injective, and 

f(X) is a logarithm for F(X,Y) and f(X) is of the form 

00 c. i 

(2.8.1) f(X) = X + L: ~Xp 
i=1 p 1 

for certain matrices ci with coefficients in A, then F(X,Y) is a 

p-typical formal group, as is easily seen. The converse is also true; 

this follows from theorem 2.9 below. 

2.9. Theorem. 

FV(X, Y 1 is a unive·rsal p-typical :formal group (of dimension m) for 

p-typical formal grou~over ~ (p)-algebras or characteristic zero 

rings, 

I.e. for every p-typical formal group G(X,Y) over a ring A which is 

a ZZ (p )-algebra or a characteristic zero ring there is a unique 

homomorphism~: ~[VJ+ A such that Ft(X,Y). = G(X,Y). 
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Let K: ~ [V] -+ ~ [U] be the injective homomorphism defined by - - . 
K(V.(j,k)) = U(j,p1 e(k)), and A: Zl [U]-+ Zl ( )[U] be the localization 

1 • = = p 
homomorphism. 

2. 10. Theorem. 
).k ). 

The formal groups FV (X,Y) and 11j(X,Y) are strictly isomorphic 

(over ~ ( p ) [ U] ) • 

2.11. Corollary. 

Every formal group over a~ (p)-algebra is isomorphic to a p-typical 

formal group. 

2. 12. Theorem. 

The formal groups FV(X,Y) and FV,T(X,Y) are strictly isomorphic over 

7l [V;T] and this isomorphism is universal for strict isomorphisms between -p-typical formal groups over~ (p)-algebras or characteristic zero rings. 

2.13. Curvilinear Formal Groups. 

If~,& are multiindices of length m we define~&= (k 1t 1, .•• , kmim). 

Let~ be the multiindex ~ = (0, ••. ,0). In [7] Lazard defines a formal 

group F(X,Y) over a ring A to be curvilinear (curviligne) if 

< 2 • 13 • 1 > 11 ~I I , 11 £ 11 ~ 1 , ~ a: = Q • ~ 1 (i) = 0 for all 1 = 1, •.. , m 
='= 

where F(X,Y) = (F(1)(X,Y), .•. , F(m)(X,Y) and F(i)(X,Y) = 

X. + Y. + Ea. ( i )":if=y~ 
1 J. ~,£ 

2.14. Let~ [R] be short for Zl [R.(j,k); J. = 2, 3, ... , j = 1, ... , m, 
- .. l 

k = 1, .•. , m]. Let e: Zl (U]-+ Zl [R] be the projectione (U(i, __ d)) = 0 - -. unless~ is of the form d~(j) for some d EJj, d ~ 2, j E {1, ... ,m}, and 

• 1 (U(i,d~(j)) = Rd(i,j). 

Let i: ! [R]-+ ~ [U] be the injection defined by i.(Rd(i,j)) = U(i,d~(j)). 

We define 

(2.14.1) 

2,15. Theorem. 

~(X,Y) is a curvilinear m-dimensional formal group over ,![R] and 

it is universal for curvilinear m~dimensional formal groups. The formal 
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groups H;(x,Y) and HU(X,Y) are strictly isomorphic over~ [U]. 

2.16. Corollary. 

Every formal group over a ring A is strictly isomorphic to a curvilinear 

formal group over A. 

2.17. The formal group HR(X,Y) is the multidimensional analogue of the 

one dimensional universal formal group denoted Ru(X,Y) in [4]. There 1s 

also a multidimensional curvilinear analogue of the universal one 

dimensional formal group FU(X,Y) of [4]. To obtain it choose c(p,i), 

pa prime number, i E!' {1} as in [4] and determine n(i 1, ... ,is) 

for all sequences (i 1 , ... ,is), ij E~' {1} as in [4]. Let d(i 1, ... ,is) = 

( . . ) (. . ) (. ) (. )-1 (. )-1 (. )-1 n 1 1 , ... ,is n 11 , ... ,1s n 16 v 1 1 v 12 ••• v 16 • Now 

define the matrices bi(R) as 

(2.17.1) 
( i 1 ) 

E d(i 1 ,. •. ,i )R. R. 
( . . ) s 11 i2 
l.1·····is 

i = 2, 3, 

( i 1 · · · i s-1 ) 
R. 

1 
s 

where Rk is the matrix (Rk(j,t))j£ and the sum is over all sequences 

(i,, ... ,is)' 1j E,! '- {1}, s ~ 1, such that i 1 , ... , is= i. 

We put 

(2.17.2) 

(2.17.3) 

2 . 18. Theorem. 

CIC> • 

E b. ( R )X1 , 

i=1 l. 
I , the m x m identity matrix m 

FR(X,Y) is an m-dimensional curvilinear formal group over ~ [R] and 

it ls universal form-dimensional curvilinear formal groups. FR(X,Y) 

is strictly isomorphic to HR(X,Y) over 7l [R]. 

2.19. Because the d(i 1 , ... ,i 8 ) in (2.17.1) have been chosen as in [4] 

we find exactly as in [4] the following formula between the R. and 
l 

~heb.(R). 
1 



(2.19.1) E 
djn 
d;t1,n 

(n/d) 
p(n,d)bn/d(R)Rd 

3. PROOF OF THE INTEGRALITY THEOREMS 2.4. 
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3.1. Let g 1 (X) and g2 (X) be m-tuples of power series over ~ (p) [V;W] 

where W is short for an additional set of indeterminates and V is as 

in 2.3. 

Suppose that g.(X) = X + ... 
J 1J = 1, 2, has its coefficients in~ (p)[V;WJ; 

(3.1.1) f. (X) 
J 

~~~~~~~1-~qu_a.!i~n-~~~~· 

= g.(X) + 
J 

co v. ( i) i 
I: ~-p (Xp ) 

p J i=1 

(i) F(X,Y) ~ f~ 1 (f 1 (x) + f 1(Y)) has its coefficients in~ (p)[V;W] 

(ii) There is a h 1(x) with coefficients in~ (p)[V,W] such that 

f 1(h1(x)) = f 2 (X) 

(iii) If h2(X) is of the form h2(X) = X + ... Then f 1(h2(X)) satisfies 

a functional equation of the form 3.1.1. 

The proofs of these facts are completely analogous to the proofs of the 

corresponding lemmas in [3]. 

3.2. Choose numbers n(q1, ... , qt) for all sequences of powers of prime 

numbers (q1 , ••• ,qt) such that (2.3.5) is satisfied. Let 

(3.2.1) 

where q. is a power of the prime number p .. 
l l 

Lemma (i) If p 1 = ... =Pr 1 Pr+ 1 then p~d(q1 , .•• ,~) E ~ 

(ii) d(q 1, ••• ,~) - p~ 1 d(q2 , ... ,~) E ! (p) 
1 
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To prove (ii) we distinguish two cases. If r = 1 then d(q2 , ... ,a.) E zz. 
I; -~p,) 

by (i) and hence d(q1 , ••• ,Clt) - p~ 1 d(q2 , ••• ,Clt) = 
p~ 1(n(q 1 , ••• ,~)-1)d(q2 , •.• ,Clt) E ,i (p,)' because n(q1 ,q2 , •.• ,~) _ 1 mod p 1 

if P 1 :f. p2 • If p 1 = p2 = . . . = Pr :f. Pr+ 1 with r > 11 then 

p~- 1 d(q2 , .•. ,~) Ei by (i) and hence d(q1 , ... ,~) - p~ 1 d(q2 , ... ,qt) = 

p~ 1 (n(q 1 , ••• ,~)-1)d(~, ... ,~) E ~ (p1 ) because n(q1 , ••• ,~) = 1 mod p~ 
in this case. 

3.3. Lemma.. 

The formal power series hu(X) satisfies a functional equation of the 

form 

(3.3.1) 

with ~ (X) = X + •.. E ~ (p) (U][ (X]] for all prime numbers p. 

This follows from (2.3.6) and lemma (3.2) (ii) above.· 

3.4. Proof of Theorem 2.4 (Integrality Theorems) 

By lemma 3.3 and lemma 3.1 (i) we have that !\J(X,Y) lS J.n i (p) [U][ [X, Y]] 

for all prime numben p. Hence ~(X,Y) in ~ [U] [ [X,Y]]. The m-tuple of 

power series ~(X,Y) is obtained by setting certain U(i,~) equal to zero 

in 11J(X,Y), hence also Ru(X,Y) in i [U][[X,Y]]. 

The power series fy(X) and fV,T(X) satisfy by their definition a functional 

equation of type (3.1.1). Moreover the only denominators occurring in 

fv(X) and fV,T(X) are powers of p. Hence FV(X,Y) and FV,T(X,Y) can only 

have denominators which are powers of p. Now apply lemma 3.1 (i) again, 

to conclude that Fy(X,Y) and FV,T(X,Y) are in~ [V][[X,Y]] and 

7l [V;T][[X,Y]] respectively. 
= 

4. A LI~LE BIT OF MULTIDIMENSIONAL BINOMIAL · 

COEFFICIENT ARITHMETIC. 

4.1. Let~ be a multiindex of length m. Recall that 11~1 I= n 1+ ... 

ni E~ U {O}. We write~< n if ki < ni, i = 1, •.• , m and~< g if 

~ .s ~and 11~11 < llgll· If~~~ we define 

+ n ' m 
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(4.1.1) 

We also define v(g) = 1 unless n 1s of the form g = pr~(j) for some 

r EJN, j E {1, ... ,m}, and prime number p, then v(pr~(j)) = p. Then 

one has that 

(4.1.2) 

where 0 stands for the multi index ( 0 ,0, ... ,o) . • 
This is clear if g is of the form g = n ~(j). And if g 1s such that at 

least two different ni are > 0, let i 1 be the smallest number such that 

ni., # 0. Take~= ni ~(i 1 ). Then(~)= 1. 
-, 1 = 

4.2. Let n EJN, n > 2. Choose A 1 , 
~ n, ... ' A such that n,n-1 

An,1(~) + + An,n-1(n~1) = v(n). If g is of the form n = n e(j), 

then if~<~< g, ~ = k ~(j) for some 0 < k < n. We put A(g,~) =A n,k 

for all~< k <gin this case. If n is not of the form n ~(j), let i 1 

be the smallest natural number such that n. f O. For these n we take 1, 
A(~.~) = 0 if ~ # (0, ... ,O,n. ,O, ... ,0), ~ < § < @ and ;>..(g,~) = 1 if 1, 
k = (O,O, ... ,O,n. ,o, ... ,O). Then we have of course 

11 

(4.2.1) 

4.3. Lennna. 

Let g be a multiindex, I lg! I > 2. For each ~ < ~ < g let X(k) be an 

indeterminate and let X(~) = x(;;-~). Then every X(~) can be written as 

an integral linear combination of the expressions 

(4.2.2) 

(4.2.3) 



where the A(g,~) are as above 

Proof. If g is of the form g = n ~(j), this the binomial coefficient 

lemma of [4] section 4. If g is not of the form n ~(j) let i be the 

smallest natural number such that n. ~ 0. Then (4.2.2) is equal to 
]. 

X(n.e(i)) 
1= 

10 

For all 0 < k < ni take~= k ~(i), ¥: = (ni-k}~(i), ~ = g - ~-~·Then 

X(~+£) = X(ni~(i)), X(£+m) = x(~) = X(k~(i)) and(£"(>= 1, so that 

we have written all X(ke(i)) with 0 < k < n. as linear combinations 
1 

of (4.2.2) and (4.2.3). Now let J = (j 1 , ••• , jm) be a multiindex 

with ~ < J < ~ , o < Ji. ' n L a.ncL ~ :1: J I it) • 
Take~= ji~i' £ = J, - ~' i = I,! - ~ - £· Then (~~£) = 1, xq~+£) = X(j) 

X(£+;) = X(},~) = X(ji~i). So that we can write all X(~) with ~· < ~ < ~ 

such that j. < n. as linear combinations of (4.2.2) and (4.2.3). But 
1 . J. 

if ~ < J < ~ either J or g - ~ has its i-th component ?itA.~e~ than O 

and X(J) = X(g-J). 
q.e.d. 

5. PROOF OF THE UNIVERSALITY THEOREMS. 

5.1. Let n E Ji· We write hu(n) (X) and liu(n) (X,Y) for the m-tuples 

of formal power series obtained from hU(X) and Ru(X,Y) by substituting 

O for all U(i,a) with I l~I I > n. Then we have 

(5.1.1) hu(X) = hu(n)(X) + rn+ 1(X) mod (total degree n+2) 

where rn+l(X) is the following m-tuple of homogeneous forms of degree 

n + 1 in x, ' ... ' xm 

(5.1.2) 

where the notation is as in (2.3). This follows immediately from (2.3.6). 

It follows that we have for llu(X,Y) that 
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mod (total degree n+2) 

where r 1 is as in 5.1.2. 
n+ 

5.2. Let 

(5.2.1) Hu(X,Y) = (Ru(l)(X,Y), ... 'Ru(m)(X,Y)) 

and write 

(5.2.2) llu(i)(X,Y) = X. + Y. + E e (i)X~Y~ 
2 1 I I ~ II , I I .& 11~1 ~ ,£ 

Let for all ~with 11~1 I > 2 

(5.2.3) 

where the A(~,~) are as in 4.2. 

LeIJIIlla. The y(i,~) are a polynomial basis for ?l [U]. 

I.e. every element of Jli. [U] can we written uniquely as a polynomial 

in the y(i,g). 

This follows from (5.1.3) together with (4.2.1). 

5.3. Proof of Theorem 2.5 (Universality of Ru(X,Y)) 

Let G(X,Y) be a connnutative m-dimensional formal group over a ring A. 

Write G(X,Y) = (G(i)(X,Y), ... , G(m)(X,Y)) and let 

(5.3.1) G(i)(X,Y) = X. + Y. + 
l l 

E (i)X~Y£ 
11~11,l l&l 1~1~'£ - -

Now define the homomorphism <j> : 7l [U] -i- A by the requirement that =-

(5.3.2) <j>(y(i,~)) = 

This is a well defined homomorphism because of' lemma 5.2. /\.nd cc.:rt..niriJy 

cl> is the only possible homomorphism such that ~(X,Y) = G( X ,Y). H 



These fi i.i j;.rt. ~n . °lfJ;/nr.i 
J ' i •, 

fl'.I /irrr,("J ;~ - /4 . ·, tM 
. I ' ' 

. I •• /> I 

pm/( I/.• J}Jc'l 11 :u r· "i' c ( CJc)_,"r.,~" 
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······ f " ). ffll . ')' Jc11111• •i7<:" . .::· (,1 ,. /lfllf1; .,(, ) 

. :'.._' .. .'. ···--- ._) 

remains, therefore, to prove that ~(e (i)) = 
~,£ 

~ 1 (i) for all 
='= 

~,£with 11~11,11~11~1. The case 11~+£11=2 follows directly 

from (5.3.2) because both G(X,Y) and l\J(X,Y) are commutative, i.e. 

ek 1 (i) = e1 k(i) and ak 1 (i) = a1 k(i). 
='= ='= ='= ='= 

Associativity of 11J(X,Y) and G(X,Y) means that the coefficients 

ek .e.(i), ~ 1 (i) must satisfy some universal relations. These 
='= ='= 

are easily seen to be of the form 

(5.3.3) 

where the P are certain universal polynomials in the e 
~,£,m,1 g,~ 

(resp. ag,~) wi~h I lg+~I I < ~+~+m. Now use induction on I 1~+£1 I and 

lemma 4.3 to prove that ~(ek 1(i)) = ~ 1(i) for all ~,£,i. 
='= ='= 

q.e.d. 

5.4. Corollary. (Lazard's comparison lemma, cf [6]). 

Let F(X,Y), G(X,Y) be two m-dimensional formal groups over a ring A, 

and suppose that F(X,Y) : G(X,Y) mod (total degree n). Then there 

is an m-tuple of homogeneous forms r of degree n with coefficients 

in A and a m x m matrix M with coefficients in A such that 

(5.4.1) F(X,Y) - G(X,Y) - r(X) + r(X+Y) - r(Y) + M(v(n)- 1((X+Y)n-x°-Y0 )) 

mod (degree n+1) 

If one adds the restriction that r(X) may contain no terms of the 

form a"f!!, a EA then the rand Min (5.4.1) are unique. 
J. 

This follows from theorem 2.5 and (5.1.2). 



5.5. Proof of theorem 2.9. Let F(X,Y) be a p-typical formal group 

over A. Then there is a unique homomorphism 

~: ~ [U] +A such that Hi(X,Y) = F(X,Y). We are going to prove that 

~(U(i,~)) = 0 for all multiindices ~which are not of the form pi~(j). 
Suppose we have done this.Then~ factors uniquely through 

~ [U] + ~ [V], U(j,pi~(k))1----r Vi(j,k) and U(i,Q)t-4 0 for all other 
- ~ 

(i,~), to give a homomorphism~: ~[VJ +A such that FV(X,Y) = F(X,Y). 

(This last fact follows irmnediately from a comparision of fV(X) with 

hu(X)). Moreover~ is certainly unique. For otherwise there would be 

two homomorphisms ~ [U] + A (both zero on the U(i,~) with 

d # pr~(j)) taking HU(X,Y) into F(X,Y). 

It therefore only remains to prove that ~(U(i,~)) = 0 if ~ is not 

of the form pr~(j). To prove this we first do two universal calculations-

5.6. Lemma. Let n EJN= and suppose that v(n) i p. Leth (X) and H (X,Y) 
n n 

be the power series over ~[U] and?? [U]respectively,obtained by 

substituting zero for all Ui(j,k) = U(j,i ~(k)) with i < n, v(i) ~ p, 

j, k E {I , ..• ,m}. Then for all prime numbers q f p which divide n we 

have in the group of curves in Hn(X,Y) over 'fl- [U]. 

n/q 
f o.(t) = qV(n)U (')t =q i · ne i 

-J 
mod(degree q n+I) 

where o.(t) is the curve (O, ..• ,O,t,O, ••• ,O) with the tin the i-th 
i 

spot. 

Proof. It follows immediately from the definition of ~(X) in 2.3 above 

that h (o.(t)) is of the form 
n i 

(5.6.1) h co.(t)) 
n i 

~ 

+ u (')t ne i 

n 

because the coefficients of the X for ~ of the form n~(j) do not involve 

any U(i,~) with g = (d 1, .•• ,dm) such that more than one of the dj is 

nonzero. 

The lennna follows immediately from (5.6.I). 

The second universal calculation which we need involves 

lexicosraphic degrees. 

5.7. Lexicographic degree. Let~·~ be two multiindices of length m. 

We shall write n <£ ~ iff (n 1 < k 1J or (n 1=k 1 and n2 < k2) or 

I 



or (n1=k1, ••• ,nm-I =km-I and nm< km). Let g be a multiindex of 

length m, and suppose that at least two of then., j E {I, ••• ,m} 
J 

rp ••. , rn E lN such that 

(i) 

nonzero. Then there exist 
r 1 r 

n = .n1 p + ••• + nmp m is divisible by a prime number different 

are 

from p. 
-(ii) if ~ <i ~ then n < k 

5.8. Lemna. Let n = (n1, ••• ,n) be a multiindex such that at least two 
- m 

of the n. are nonzero. Let h (X) and H (X,Y) be the formal power series 
J D D 

obtained from hu(X) and 11J(X:Y) by substituting zero for all Ui(j,k) = 
U(j,i~(k)) with j,k E {1, ••• ,m} with V(i) :f. p and by also substituting 

zero for all U(j,~), j E {l, ••• ,m} for which g <~ ~· v(g) :f. p and 

lgl > 1. Let r 1, •.• , rm be such that (i) and (ii) of 5.7 hold. Then 

for all prime numbers q dividin~n it follows that 

r r ~ 
m -p 1 p n/q -f (t , ••• ,t ) ~ qU t mod(degree n/q +I) =q n 

Proof. It follows immediately from the definition of ~(X) in 2.3 

above that for ~ <i V and v(~) ~ p 

ak(U) = 0 mod(Ui(j,k), U(i,g)lv(i) :f. p, v(g) 1 p,. g <£ ~' lg! > 1) 
= 

It follows also that 

a (U) -n 
= 

It follows 

(5.8.l) 

u mod(Ui(j,k),U(£,g)!v(i) 
~ 

rl 
that h (tp p 

n ' .•• 't 

r r 
p I p m 

hn (t , ••• , t ) = 

r 
m 

) is of 

,,. p, 

the 

The lemma follows irmnediately from (5.8.1). 

v (g). ,,. p, g <i n, lgl > 

form 

mod(degree n+I) 

I) 

5.9. Proof of theorem 2.9 (conclusion). It is now easy to finish the 

proof of theorem 2.9. We first show with induction that ~(U (j,k)) 0 
n 

for all n fpr which v(n) :f. p. Suppose we have shown this for all r < n, 

for which v(r) :f. p. If v(n) = p the induction step is trivial. If 

v(n) :f. p, let q be a prime number :f. p which divides n. Let i E {1, ••• ,m}. 

Then, by lemma 5.6 (and the functoriality of ~q)' we have in the group 

of curves of G over A 



f o.(t) - qv(n)-I (U . )tn/q 
=q i n~(i) 

mod(degree n/q + I} 

Now by hypothesis f o.(t) = O; hence cj>(U (.)) = 0 because 
=q i n~ i . 

A is a ~ (p)-algebra or a characteristic zero ring. 

Next we show that also cj>(U(i,g)) = 0 for all g = (dJ, ••• ,dn) 

for which two or more of the d. are nonzero. Suppose this is not the 
J 

case. Let ~ be the lexicographically smallest multiindex among these 

for which <P(Ug) ~ O. Choose r 1, ••• , rm such that (i) and (ii) of 5.7 

hold. Let q be a prime number ~ p which divides n. Then we have by 

lemma 5.8 

r I rm 
f (tp , ••• ,tP ) -
=q 

qcj>(U )ti:i/q 
n 

mod(degree n/q+l) 
= 

But, by hypothesis, ~9. of such curves is zero; a contradiction because 

A is a characteristic zero ring or a ~ (p)-algebra. This finishes the 

proof of theorem 2.9. 

6. ISOMORPHISM THEOREMS. 

r-: 1 • Proof of Theorems 2. 6 and 2. 10 and Part of Theorem 2. 12. 

These theorems are proved in the standard way. The logarithms of 

HU(X,Y) and Ru(X,Y) both satisfy functional equations of type (3.1.1) 



for all prime numbers p (both with U . instead of V. ). Now apply 
1 1 

p 

part (ii) of the functional equation lemma to conclude that 

hu 1(f\;(X)) E ~(p)[U][[X]] for all prime numbers p, hence 

h;1(h.U(X)) E ~[U][[X]]. 
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Similary the logarithms of FV(X,Y) and FV,T(X,Y) both satisfy 

functional equations of type (3.1.1) for the fixed prime number p. 

Hence FV(X,Y) and .FV ,T(X,Y) are strictly isomorphic over ,! (p) [V ,T]. 

the only denominators which can occur in f; 1 (fV T(X)) are powers , 
of p. Hence the isomorphism is actually over Zl [V ,T]. 

:s 

Finally the logarithms of F~K(X,Y) and H~(X,Y) also both satisfy 

functional equations of type (3.1.1) for the (fixed) prime number p 
).K A. 

Fv (X,Y) and H{j(X,Y) are (both with U . instead of V. ). Hence 
l. 1 

p 
strictly isomorphic over ~ ( p) [U] . 

6.2. Lemma. 

Let y(Z) and o(Z) be two p-typical curves in a formal group F(X,Y) 

over a ring A, which is either a~ (p)-algebra or a characteristic 

zero ring. Then if y(Z) : o(Z) mod (degree prn), we have 

y(Z) _ o(Z) mod (degree n+1) unless n is a power of the prime p. 

Proof. Let n be not a power of the prime number p. Let q ~ p be a 

prime number dividing n. There is a unique vector a E A such that 

y(Z) - o(Z) + Zna mod(degree n+1) 

Applying ~q to this we find, because !qy(Z) = ~qo(Z), that aq = 0. 

But 

As A is a characteristic 0 ring or a ~ ( \-algebra it follows that a = O p, 

6. 3. Lemma. 

Let a: F(X,Y) + G(X,Y) be an isomorphism of formal groups, and let 

G(X,Y) be a p-typical f·'lrmal group. Then a- 1(y(Z)) is a p-typical 

curve in F(X,Y) for all p-typical curves y(Z) in G(X,Y). 



6.4. Let ~[U;S] be short for~[U(i,~); S(i,g); i = 1, .•. , 

Let d ( q 1 , • . • , <lt ) = n ( q 1 , . • • , <lt ) n ( q2 , . . . , qt ) . . . n ( ~ ) p ~ 1 p; 1 • . • 
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m, 11 gl I ~ 2 J. 
-1 

pt ' 

where the n(q1 , ••. ,<lt) are as in 

(U(i,~(j)) .. , S(i,~(k)) ... 

2.3. Let U ,S denote the matrices 
q q 

- 1 ,J - l ,J 

Let U(i,~(j)) = 0 = S(i,~(j)) if i ~ j and O(i,~(i)) = 1 = S(i,~(i)). 
Finally let Ud, Sd be the column vectors (U(1,g), 

(s(1,~), ... ,=scm:~)). 

We now define for all multiindices ~· I l~I I ~ 1 

(6.4.1) 

( q1 ) 
+ L . d(q1,. .. •<lt)U U 

(q,, •• .,<lt·~) q1 ~ 

11~11=1 

.... ' U(m,g), 

where the sums are over all sequences (q 1, ... ,<4,,~), qi 

pi a prime number, q1 , ... , ~g. = n, 11~11 > 1 . 

(NB t = 0 is allowed). Let 

(6.4.2) 1\J,s(X) = 

6.5. Proposition. 

l\J,s(X,Y) is a formal group over ~[U;S] and it is strictly isomorphic 

over 'll [U,S] to the formal group ~(X,Y) of (2.3.7). 

This is proved in the usua.l way by means of the functional equation 

lemma. The strict isomorphism from l\J(X,Y) to ~ 8 (X,Y) is 

h~:s(\(X)) = a0 , 8 (x). Let aU,S(n)(X) stand for ~he power series 

obtained from a0 , 8(x) by substituting zero for all S(i,g) with I lgl I > n. 



.Then one has immediately from ( 6. 4. 1 ) that 

(6.5.1) mod(degree n+1) 

Using this one proves easily (in the same way as the corresponding 

theorem is proved in the one dimensional case in [4)): 

6.6. Theorem. 

The triple (l\J(X,Y), au,s(X), HU,S(X,Y)) is universal for triples 

consisting of two formal groups and a strict isomorphism between them. 

6. 7. Proof of theorem 2. 12. 

That FV(X,Y) and FV,T(X,Y) are strictly isomorphic has already 

been shown in 6.1 above. Now let (F(X,Y), a(X), G(X,Y)) be a 

triple of two formal groups and a strict. isomorphism over a ring A 

which is a characteristic zero ring or a :rJ. (p)-algebra. By theorem 

6. 6. There is a unique homomorphism cp: Zl [U; S] -+ A such that -Hcp(X,Y) = F(X,Y), cit 8(X) = a(X) and~ T(X,Y) = G(X,Y). We are --u , ' 
going to prove that <P(U(i,g)) = 0 = cp(S(i,g)) for all~. I lgl I > 

which are not of the form pr ~ ( j ) , r E ! , i E { 1 , .•• , m} • We already 

know that cp(U(i,g)) = 0 for these g because of 5.7. (Proof of 

p-typical universality of FV(X,Y)). Suppose that there is@ with, 

I 1@1 I > 1, g not of the form pr~(j) such that cp(S(i,~)) =a 1 0. 

Choose r 1 , ••• , r E JN such that m .... 

(6.7.1) 
r 1 r 

d 1p + ••. + dmp m is not a power of p 

r r r1 r 
(6.7.~) d 1+ m m if g ... + d p < e p + . .. + emp < ~ 1P m 1 i 

r, r 
m 

Let y(Z) be the curve y(Z) = (zP 
' ... , zP ) in G(X,Y). Let 

1jJ : i [V;T] -+ A be the composition of cp: ~ [U;S] -+ A with the 

canonical embedding; [V;T] -+ ~ [U;S ]. Let S(X) = a~ 1,(X), where 
-1 • 

civ,T(X) = fv,T(fv(X)) is the strict isomorphism from 

FV(X,Y) to FV T(X,Y). Then we have two isomorphisms 
' 

F(X,Y) ci(X)-+ G(X,Y) 



and 

(6.7.4) a(X) 
a 

- 8(X) + aX mod( degree >i g) 

By lemma (6.3) the curves a- 1(y(Z)) and e-1(y(Z)) are both 

p-typical in F(X,Y). And from (6.7.4) we see that 

(6.7.5) -1 ( ) -1 ( ) d ( a y Z - 8 y Z - aZ mod degree d+1) 

But this contradicts lemma 6.2 in view of (6.7.1) 

q.e.d. 

7. CURVILINEAR FORMAL GROUPS. 

7.1. Proof of Curvilinearity of ~(X,Y) and FR(X,Y) 

The proofs are identical for these two cas~ More generally 
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let A be a characteristic zero ring and let G(X,Y) be a formal group 

over A with a logarithm of the form 

(7.1.1) 
00 • 

g(X) = X + E a.X1 

i=2 1 

where the ai are m x m matrices with coefficients in A izz::S• Then 

G(X,Y) is a. curvilinear formal group. Indeed, write 

(7.1.2) 
k 1 

G(i)(X,Y) = xi + Yi + L c~,£(i)x=y= 

-

Suppose that there are et,~~ 0 with~·~= 0~dI1!11,11£1 I > 1 

such that ck 1 ~ 0. Choose-a c~ 1 # 0 with ! l~+~I I minim.al. Then looking 
='= k & ~'= 

at the coefficient of X-Y- on both sides of 

g(G(X,Y)) = g(X) + g(Y) 

we· see (7.1.1) that we must have a relr.~ion of the form 

(7.1.3) 
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\ 1.J, .• 1s (- !'!) 
with j 1 = ••• = js,rHer_e ___ t;e multiindices ~i and ,£i must satisfy 

1 < 11 ~. + .& . 11 < 11~+.&11 ' r 1 ~. + . . . + r k;. ,. k ) #f_ l ~ + ••• + "'~ ~ t ::: ,(. • - -1. -l.. - - -i s-1 • "l...: ;s ~ - s = 
J J 1 s 

last two relations imply that k. t. 
~-- =1.=1. 

= 0 for all j = 1, ... , s, buause. ~~:~. These 

Hence 
\.Jhe. J \ h) p• theJ9) J J 

byYinduction~.t. = 0 unless ~i. = 
-1. =1. J 

J J 

0 or t. 
=1. 

J 

= 0. Because 

= j s = j and G( j ) ( X , 0 ) = x., G(j)(O,Y) = Y. the products 
J J 

under the s'l.lm sign on the 

for all t = 1, ••• , s,~i 
t 

right (of 7.1.3) are nonzero if only if 

= ~(jt) = ~(j) and £i =~or vice versa 
t 

but this is impossible because ~-~ = 0 and J Jkl I s > 1 ' 11~1 l ~ 1. 

q.e.d. 

7.2. Comparison lemma for curvilinear formal groups. 

Let F(X,Y), G(X,Y) be curvilinear formal groups over a ring A, and 

suppose that F(X,Y) = G(X,Y) mod degree n. Then there is a unique 

matrix a with coefficients in A such that 

This follows directly from the general comparison lemma 5.4. 

7.3. Integrality of FR(X,Y), ~(X,Y). 

This is proved in the usual way by showing that fR(X), hR(X) satisfy 

functional equationspf the type (3.1.1) and applying the functional 

equation lemma. 

7.4. Universality of FR(X,Y) and ~(X,Y) 

This follows directly from (7.2 ) and the formulae for fR(X) and 

~(X). 

7.5. Proof of Theorems 2.15 and 2.18. 

Most of this has already been proved i I: 7. 1 , 7. 3, 7. 4 above. It 

remains to prove the strict isomorphism statements. These are proved 

in the standard way, i.e. via the functional equation 3.1 (Cf. also 

6. 1 ) • 
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8. CONCLUDING REMARKS. 

The universal more dimensional formal group 11J(X,Y) constructed here 

is the analogue of the one dimensional universal formal group 

Ru(X,Y) of [4]. I do not know of a more dimensional analogue for 

the one dimensional universal formal group FU(X,Y) of [4] except 

the curvilinearly universal formal group FR(X,Y) constructed above. 

There are also more dimensional analogues of the p-typically 

universal one dimensional formal groups F8 (x,Y) of [3]. 

If one ch~oses the n(q1, ···•'lt) of.' (2.3} in the special way 

described in (3] (and [5]) one finds recursion formulae for the U(i,g) 

in terms of the ag(U) similar to the formulae in [3] and [5). 
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CONSTRUCTING FORMAL GROUPS V. 

1 . INTRODUCTION . 

Let R be a local ring with residue field k and maximal ideal l"l"C.. 

One way to try to classify formal group (laws) over R is to try to 

describe all formal group laws over R which reduce modulo m.to ~(X,Y), 

where ~(X,Y) is a pregiven formal group (law) over k. Suppose that 

char(k) = p > 0, then if R is of characteristic zero one speaks of 

liftings of ~ (X, Y) and in case R is of characteristic p also one w.s1.u.U4 

talks about deformations. More precisely one studies liftings (resp. 

deformations) F(X,Y) over A under the equivalence relation: 

F(X,Y) ~ G(X,Y) iff there exists an isomorphism a(X): F(X,Y) + G(X,Y) 

over R such that a(X) = X mod 'M.. In [ 10] Lubin and Tate have shown 

that if k is perfect, if R is complete and Hausdorff in the m.-adic 

topology and if ~(X,Y) is one dimensional and of height h < 00 , then 

the space of all lifts of ~(X,Y) modulo the equivalence relation just 
. . h-1 . h 1 . . described is """ ; i.e. t ere are h- formal moduli. Their methods are 

cohomological in nature, and involve the calculation of a certain special 

second cohomology group especially invented for this purpose. 

Now in [2] part I we described a universal strict isomorphism between 

p-typical formal groups FV(X,Y) ~ FV,T(X,Yl = Fv-(X,Y} over 'll [V;T]. 

The formal group FV T(X,Y} is also p .... typical and hence there exist 
' polynomials v. (in T , ... ,T. ;V1, ... ,v.} such that FV T(X,Y} = Fy-CX,Y) 

i 1 i l. ' ' -

and the homomorphism 7l[V] + 7l[V,T], V.~ V. describes the most general 
l. i 

change of para.meters possible within a given strict isomorphism class 

of formal groups. (This homomorphism V.r-+ v. can also be interpreted 
l l. 

as the map nR: BP*(pt) + BP*(BP) of Brown-Peterson cohomology, cf [1], 

[2] part III, [4] and [8]). In [2] part III we also gave a recursion 

formula for V .. So if this formula is any good it ought to give 
i 

(among other things) a reasonabl~ direct (noncohomological) proof of 

the Lubin-Tate formal moduli theorem. It is one of the purposes of 

the present work to show that this is indeed the case. There are two 

bonusses: first one obtains an explicit parametrization of the moduli 
h-1 space "111. and second it turns out that the proof carries over unchanged 

(except for the occasional replacing of p by q or TI) to the case of 

formal A-modules. 
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The last section of this note uses the formulas for V. to give a new 
l. 

proof of Lazard's classification theorem for one dimensional formal 

group laws over algebraically closed fields [9]. Here it is perhaps 

interesting to note that the congruence formula which makes things 

work (formula (6.3.2}) translates into the fundamental lemma 1.9 of 

[7] (sometimes known as the Budweiser lemmal when one interpretes 

Zl [V] + :ll [V;T] as T\R: BP*(pt} + BP*(BP}. 

And, again there is a bonus and one obtains also the corresponding 

classification result for formal A-modules. 

The phrase "formal group" will from n~w be used as an abbreviation of 

"one dimensional commutative f'ormal group law". Standard notations: 

JN = { 1 , 2, 3, ..• } ; :ll : the integers, Q: the rational numbers. 

2. RESUME OF SOME FORMULAS OF [2] PARTS I AND III 

(cf. also [4] l. 

Let Zl [V], Zl [V;T] be short for Zl [VJ,V2 , ... J, :ll [Vl'V2 , •.• ; T_l'T2 , ... ]. 

Let a (Vl, a (V,T) be the polynomials in:Q[V], :Q[V;T] defined recursively 
n n 

by 

(2 .1} 

(2.2} 

(2. 3) 

(2.4) 

(2.5) 

pa (V) = 
n 

n n-i 
L. a . (V)V~ 

. n-i i. 
i=o 

n i. 

a (V) = .1 
0 

a ( V, T l = r a. ( V} ~ . , a ( Y, T) = 1 and T = J n . J. n-1 o o 
i=o 

oo n 

fv(X} = r an(v):XP 
n=o 

00 

r 
n=o 

n 
a (V,T}Xp 

n 

F V ( X 'y } = f' ~ 1 ( f' V ( X} + f V ( y )} ' F'v ' T ( X 'y } = f; ~ T ( f V' T ( X) + f V ' T ( y ) ) 

aV,T(X) = f~~T(fv(X}} 

Then FV(X,Y), FV,T(X,Y), <lV,T(X) have their coefficients in Zl [V;T], 

FV(X,Y) is a universal p-typical formal group and 

aV,T(X): FV(X,Y) + FV,T(X,Y) is a universal strict isomorphism of 

p-typical fromal groups. The formal group FV T(X,Y} is also p-typical and 
' hence there are uni~ue polynomials V. in v1, ..• , V.; T1, ... , T. with 

J. . l. J. 

coefftVients in Zl such that Fv ,T(X,Y) = FV(X,Y) (and fv(X) = fv ,T(X)). 

We hay~ (cf. [2] part III, (5.3.1)). 



(2.6) 

V + pT + 
n n 

n-1 

+ L: an-k(V} 
k=1 

n-k n-j n-k n-i 
( p p ~"P -p L: V. T . -'l'·; V. ) 

. . k J. J J J. . J.+J= 
i ,j~1 

i j 
+ L: (V. T1? -T. V~ ) 
.. J.J Jl. i+J=n 
i ,j~1 

3 

and modulo the ideal generated by the elements T.T., i,J EJN and the 
1. J 

elements pT., i = 1,2, •.. we have 
J. 

(2.7} 

where the sum is over all sequences (s 3 ,.,.,st,i,j) such that 

sk, i , j , t E JN, s 1 + • . . + s t +i + j = n. 

3. STATEMENT OF THE FORMAL MODULI THEOREM. 

3.1. The settins. Let R be a local ring with residue field k 

and maximal ideal m which is complete and Hausdorff in the nt-adic 

topology. Let \P(X,Y) be a formal group over k of height h < oo, We 

assume that k has characteristic p > 0 (the other case being absolutely 

trivial because every formal group over ai.;Q-algebra is strictly 

isomorphic to an additive one}. Let F(X,Y}, G(X,Y) over R be two li~s 

of \P(X,Y). Then we shall say that F(X,Y) and G(X,Y) are *-isomorphic 

([10]} if there exists an isomorphism a(X}: F(X,Y) + G(X,Y) such that 

a(Xl = X mod m and we shall say that F(X,Y} and G(X,Yl are strictly 

*-isomorphic if there is a *-isomorphism a(X) such that also a(X} = X 

mod(degree 2). 

3.2, We can just as well assume that IP (X,Y} is p ..... typical because every 

formal group over a 7l (p )-algebra is strictly isomorphic to ! p-typical 

one (~f] part I, corollary 2.11}. Indeed if a(X}: \P(X,Y}-+ \P(X,Y} is 

a str}tt isomorphism and ~(X) E R[[X]] is any power series such that 
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d'(x} = X mod degree 2 and d'(x) reduces to a(Xl mod 'Pt then d'(x} sets up a 
.... 

bijective correspondence between lifts of 4>(X,Y) and lifts of 4>(X,Y) which 

respects *-isomorphism and strict *-isomorphism. 

3.3. Let therefore 4>(X,Y) be p-typical of height h. Then there are unique 

elements v 1 ,v2 , ••• Ek such that 4>(X,Y} = Fv(X,Y}, where v = (v1 ,v2 , ••• ) 

and because 4>(X,Y) is of height h we have v1 = v2 = ... = vh_1 = o, 
vh ~ O. (This follows from [2] part I, formula (4.4.51; in fact this 

formula shows that 

4>(X,Y} i! X + Y + vhC h (X,Yl mod(degree ph+l} 
p 

1 h h h 
where C h (X ,Y} = p- (XP +yP -(X+Ylp } E :?Z. [X,Y]. Now choose arbitrary 

p 

elements ~i E R, i = h, h+l, , .. such that <J>(vi} = Vi where <Ji: R -+ k is 

the natural projection. For each h- tuple of elements s = (s 1 , ••• ,shl, 

sj E'lfl. let· Fv(s)(X,Y) be the formal group obtained from FV(X,Yl by the 

substitutions 

v. 1--+ s. J = 1 , . . ,. ' h-l 
J J 

'V 
Vhi-+ vh + sh 

'V v ....... v. J. = h+J, h+2, ... 
J. 1 

The formal groups F'V (X,Y} are all lifts of 4>(X,Y} (because the 
v(s) 

coefficients of F V (X, Y) are polynomials with coefi'icients. in :?Z. in the 

v1,v2, ... ). 

3.4. Theorem (Formal moduli theorem). With the notations and assumptions 

of (3.1} and 3~3 above we have 

(i) For every lift F(X,Y) of 4>(X,Y) there is a unique h-tuple 

s = (s 1, ••• ,sh), sj € m such that F(X,Y} is strictly *-isomorphic 

to F'\J (X,Y) (and the F"" (X,Y) are a].l lii'ts of 4>(X,Y) l. 
v(s) v(s) 

(ii) For every lift F(X,Y) of 4>(X,Y) there is a unique h-tuple 

s = (s 1,, •• ,sh), ·sj €111. with sh = 0 such that F(X,Y) is 

*~isomorphic to F'V (X,Y}, 
! v(sl 
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4. PROOF OF THEOREM 3.4. 

4.1. First stev. Let F(X,Y) be a formal group over R which lifts ~(X,Y).. 

As a first step we show that F(X,Y) is strictly *-isomorphic to a 

p-typical formal group which lifts ~(X,Y}. This is almost a triviality. 

Indeed let F8 (X,Y2 over 7'l [s2 ,s3 , ..• ] be the formal group law of [2] 

part I formula (2.2.6), (2.2.3) with logarithm f 8 (x). Tl).is formal group 

is universal for formal groups over 7l (p)-algebras. Let Sv,s(X) = f~ 1 (f8 (X)) 
where we have identified V. with S . , i = 1, 2, Then Sy 8 (x) is a 

1. 1. ' p 

strict isomorphism F8 (X,Y) -+ FV(X,Y) over 7'l [S] which gives us a functorial 

way of making formal groups p-typical. Viz. let G(X,Y) be any formal 

group over B; let <P : 7'l [S] -+ B such that G(X,Y) = F~(X,Y) let 

S(X) = st s(X) then G(X,Y} = SG(S- 1 (X) ,s-1 (Y)) is p-typical. This method ' 
' has obviously the property that if H(X,Y) = G(X,Y), w: B-+ C then 

~ (X,Y) = G~ (X,Y). (by the uniqueness part of the universality property 

of F8 (X,Y)). Also G(X,Y) is p-typical if and only if ~(Si)= 0 for all i 

which are not a power of p ([2] part I, proof of theorem 2.8 in section 6.6) 

~nd because fS(X) = fy(X) mod(Si; i not a power of p) we also have 

G(X,Y) = G(X,Y) if G(X,Y) is p-typical, because then S(X) = X. 

Now let F(X,Y) over R be a lift of @(X,Y), then by functoriality 
.... .... 
F(X,Y) li:ts W(X,Y} and by the rem:ark just made the isomorphism 

F(X,Y)-+ F(X,Y} reduces to X modm. if ~(X,Y) is p-typical, i.e . ... 
F(X,Y) -+ F (X,Y) is a strict *-isomorphism. 

4.2. Second step. Now let F(X,Y) over R be a p-typical lift of w(X,Y). 

Then F(X,Y) = Fw(X,Y} for a certain sequence of elements w = (w 3,w2 , ... ) or41 
Because F (X,Y) and F (X,Y} both reduce to W(X,Y) mod'l'1t we have that 

w ~(o) 

(4.2.1) 
'\, . 

w. :: v. mod m , i = h, h+ 1 , ... 
1. 1. 

Inductively we are now going to construct sequences of elements of R 

and power series S (X) E R[[X]] such that 
n 



(4.2.2} Sn(X}: Fv(n)(X,Y) + Fv(n+l )(X,Y) is a strict isomorphism 

(4.2.3) 

(4.2.4) v(1} = w; vi (n) - ~i mod wl1for1 = h+l, h+2, ..• 

(4.2.5) v. (n \ :: v. (n+1) mod m.n for i = 1 h 1 l 1 ' .•• , 

First assume that h > 1. Suppose we have already found v.(n} and 
1 

6 

Bn_ 1 (X} (one takes S0 (X) = X). Now define elements ti(n) with induction 

with respect to i by means of the formula 

1 

(4.2.6} ti(n) = vh(n)-P (vi+h(n)-~i+h-t 1 (n)vi+h- 1 (n)p - ... -

i-1 
ti_ 1 (n)vh+J(nlp } 

(a formula which is clearly suggested by formula (2.7) above). Note 

that this is welldefined because vh(nl = vh(1) mod'l'll so that vh(n) 

is invertible because vh(1) is invertible. Induction with respect to 

i gives us 

t.(n) E 111.n, i = J, 2, ... 
1 

Now let t(n) = (tJ(nl, t 2 (n}, ... } and let 

S (X) =a ( } t( l(Xl, v. (n+1) = V. (v(n} ,t(nl n vn, n 1 1 

\~ 
Then because V :: V mod(T 1 , ••• ,T ), cf e.g. (2.71,andYa_V_ -T((XX) - X n n n , 
mod(T 1,T2 , ... }(because fV,T(X} = fv(X}_modJ~,T2 , ... } W5' have 

----==----- - / 
S (X) = X mod itln 

n 

v. ( n+ 1 l .= v. ( n} mod .ttf, 1 = J , 2, ... 
1 1 

which takes care of (4.2.3) and (4.2.5) and also of (4.2.2) because 

av(n) t(nl(X} is a strict isomorphism Fv(n)(X,Y) + Fv(n),t(n)(X,Y}. 
It re~a.ins to check that (4.2.41 holds (with n+1 instead of nl which 
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follows from (4.2.6} combined with (2,7} because v 1 (n}t j (n) E ln.n+l 

as h > 

In the case that h = 1 one cannot neglect the sum term in (2.7} 

but this does not matter precisely because h = 1. One proceeds in 

the same way except that formula (4.2.6} is replaced by 

(4.2.7) 

i -1 S1 St S1 
+ v,(n)-p (I:(-1)tv,(n)(p-1) (p + .•• +p -t).;,> 1-1 (n). 

1+ -s, 
Ost 1 j 

·'Vj_+1:s - ..• -s (n)(-t.vl (n))}. 
1 t J 

Now consider the composed isomorphisms 

Because of (4.2.3) and the completeness of R these converge to an 

isomorphism 

and because of (4.2.4) we have that v.(oo}: ~-mod rnn for all n if 

l 1 ~ " i >hand hence because R is Hausdorff v.( 00 ) = v .• This proves (together 1 1 . . 

with step 1) that every li~ of ~(X,Yl is strictly *-isomorphic to a 

formal group of the form F~ (X,Y). 
v(s) 

4.3. Third step. 

To finish the proof of part (i) of the theorem it only remains to prove 

that two formal groupsF~ (X,Y) and F~ (X,Y} are strictly 
v(s) vls') 

•-isomorphic if and only if they are equal (i ,e. s=s 1 ). So suppose that 

F (X,Y) and F~ (X,Y) are strictly *-isomorphic. By the universality 
~(s) v(s') 

of the isomorphism av T(X) ([2) part I, theorem 2.12) this means that 
' there are t 1,t2 , ... ER such that the isomorphism is equal to 
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a"" ( X )_ = a (X ) 
v(s},t 

n 
Now aV,T(X). .= X + TnXP mod(TJ , ... ,Tn-l; degree pn+l )_. So as a(X} 

is a *-isomorphism we must have t. E m. for all i E JN. Now suppose 
l 

that a(X) ~ X and let n,r EJN be such that 

(4.3.1) 
t. E 

l 

r+1 
m , 1 = 1 E _r , r+J 

1 , ••• , n- ; t .. • 'II'!. ; n 

r t . E m for J = n+ 1 , n+2, 
J 

'\, '\, '\, 
We have that vn+h' the (n+h}-th element of v(s') is equal to Vn+h(v(s),t) 

for all n Ei~, and formula (2.7) combined with (4.3.11 gives 

r+1 
mod nt 

which is· a contradiction, so that indeed a(X} = X, This concludes the 

proof of part ( i }_ of theorem 3. 4. 

4.4. Proof of the second part 2£_ theorem 3.4. To prove the second 

part of theorem 3 .4 we need to use more general isomorphisms then the 

strict isomorphisms a t(X). The isomorphism y(X} = (J+T 1-1x applied v, 0 

to_ ~~T~~,Y} ___ ~-F~~~hanges FV(X,Y} to a p-typical formal group 
law F~(X,Y) with V equal to 

V n 

(4.4.1) 

(simply because the logarithm of (1+T )- 1FV((:J+T )X,(HT }Y} is 
0 0 0 

( 1+T }-1 fv( ( J+T }X)), Now let I be the ideal generated by all elements 
0 0 0 

T.T., i,j = 0,1,2, .• , and all elements pT., i = O,J,2,, .. 
1 J 1 

Then we find 

(4.4.2) TV mod I 
o n o 

Of course for all this to make sense we must be working over a ring 

with T in it and such that moreover ( 1+T 1-1 exists. 
0 0 

One takes e.g. the ring ZZ.[IT ]][V;T]. The proof of the second part of 
0 

theoref 3.4 now proceeds exactly as the proof of the first part; i.e. 
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...... ..... ...... ..... 

::e constru:t ~eque~ces of elements ... v(n) = lv1(n)!v2(n), ... ), v(1) = w, 

vi (n+1) = Vi(v(n),t(n}) where now t(n) = (t0 (n),tJ(nl, ... } and power 

series $ (X) = ~.... ... where~ = (l+T )-Ja (X}, such that 
n v(n),t(n} .V,T o V,T 

... 
(4.4.3) Bn (X); F... (X, Yl + F.... (X,Y) is an isomorphism 

v(nl v(n+ll 

(4.4.4} 

... 
(4.4.5} v( 1} 

... 
(4.4.6} v. (n} 

1 

n 
X mod 111 

.... 
- "' n = w; vi(n) = v. mod 'Ill 

1 

... 
v. (n+1) mod n for - 'm 

l. 

for l. = h,h+.:l, ... 

l. = l , ... ' h..-1 

(Note the three small changes with respect to (4.2.2} - (4.2.5}. The 
.... 

formulae for the t. (n) are 
1 

where the ti (n) are as in (4.2.6} (resp. 4.2.7}) if h > l (resp. h=.l) 

The remainder of the proof is exactly as before. 

5, FORMAL MODULI FOR FORMAL A-MODULES. 

5,1. Formal A-modules. 

Let A be a ring. A formal A-module over an A-algebra R is a :formal group ~ 
F(X,Y) over R together with a ring homomorphism pF; A+ EndR(F), such 

that pF(a}(X) .:: aX mod(degree 2).. 

A homomorphism of formal A-modules over R is a homomorphism 

.a(X): F(X,Yl + G(X,Y} of formal groups over R such that 

commutes for all a E A. (If R is of characteristic zero this condition 

is automatically fulfilled, but if R is of characteristic p > 0 there 

are i~1 general many homomorphisms of formal groups which are not 

homomorphisms of formal A-modules). 
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5.2. From now on suppose that A is a discrete valuation ring with 

residue field k of q elements, q = pr, p = char(kl > 0. The ring 

A itself maybe of characteristic p or 0. (The hypothesis "k is finite" 

is no great restriction; if k is infinite all form.al A-modules are 
.... 

isomorphic to G(X,Y) = X + Y with the obvious formal A-module structure 

(cf. [6]}). 

Choose a uniformizing element TI of A. We define (almost exactly as in 

section 2 above) 

(5.2.1) 

(5.2.2) 

(5.2.3) 

(5.2.4) 

(5.2.5) 

(5.2.6) 

A 
nan (V) = 

n n-i 
}:; a.A • (v)v9-

. n-1 i i=o 
A n A i 

a (V,T) = r a.(V}Tq. 
n i=o l. n-1 

A a (V) = 1 
0 

A 
, a (V,Tl = 1 

0 

A A -1 A A 
fv,T(X,Y) = (fV,T) (fv,T(X) + fv,T(Y)), 

P~ T(a) = (f~ T)- 1 (af~ T(X)) , . ' 

Then (~(X,,Y), p~) and (~,T(X,Y), P~,T(X}} are "A-typical" formal 

A-modules over A[V] and A[V,T] and they are strictly isomorphic (as 

formal A-modules) via n~,T(X). The integrality statements on which these 

assertions rest are proved in [2] pa.rt VIII. Moreover there exists a 

universal formal A-module ~(X,Y) over A[s2 ,s3 , ... ] which is strictly 

isomorphic to F!:V(X,Y) (where we identif'y v. with S . ) and this 
l. l. 

isomorphism gives us a functorial way of making q formal A-modules 

A-typical (compare. the first step of the proof of theorem 3.4 above; 

i.e. section 4.1). Finally the isomorphism aV,T(X} is universal for 

strict isomorphisms between A-typical formal A-modules over A-algebras 

R. These statements are also proved in [2] part VIII, albeit under 

some extra (totally unnecessary} hypotheses. 
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A less restrictive treatment will be found in [5], chapter IV, sections 

21.4, 21.5 and 21.7. 

We have now all the ingredients to state and prove the analogue for formal 

A-modules of theorem 3.4 except the notion of height. 

5.3. ! height of formal A-modules. I.et F(X,Y) be an A-typical formal 

A-module over a field i (where A is as above in 5.2); i.e. F(X,Y} = ~(X,Y} 
v 

for a suitable sequence v = (v1,v2 , ... ) of elements of i. We define 

A-height(~(X,Y)) =index of first v. F O. For arbitrary formal v i 

A-modules over i there is a strictly isomorphic A-typical formal 
~ ~ 

A-module F(X,Y) over i and we define A-height (F(X,Y)l = A-height(F(X,Y}). 

This is welldefined. From the structure of f~(X) one sees that if 

v 1 = .•. = vh-l = 0 then p!(n)(X) = vhXqh mod(degree qh+1), which gives 

"s an alternative definition of A-height. If A is the ring of integers 

of a finite extension K of~ and [K:~] = n, then A-height (F(X,Y)) = h-1 

height (F(X,Y)) which is also clear because in that case 

mod(degree qeh+1) if p =Tieu, u a unit in A. (If A is of characteristic 

p > 0 then F(X,Y) always has infinite height as a formal group, but 

may very well have finite height as a formal A-module}. 

We now state the analogue for form.al A-modules of part (iil of theorem 3.4. 

5 , 4 • Theorem. (Formal moduli .f2!. formal A-module 1. I.et ~ ( X, Y 1 be an 

A-typical formal A-module over a field i (as i must be an A-algebra R. is an 

extension field of k). I.et R be a local A-algebra with residue field 

R. and maximal ideal mwhich is complete and Hausdorff in the 1".-adic 

topology. 2-. I.et ~(X,Y) be of A-height h < ()() and let 

v 1 = ... = vh~ 1 = O, 0 ~ vh, vh+1 , ••• E i be such that ~(X,Y) = r!<x,Y) 
"' "' E . . and choose elements vh, vh+l' ... R which are lifts of vh, vh+l'"'" 

For each h - 1 tuple s = (s1, .•• ,sh 1 ) of elements of TI'\ let -?- (X,Y) 
- · ~(s l 

be the formal A-module over R obtained by substituting s. for V., 
i i 

i = 1, ••• , h-1 and ~ .• for v., j = h,h+l, •.. in ~V(X~Y}. Then every lift 
J J 

F(X,Y) over R of ~(X,Y) is *-isomorphic (as formal A-modules) to exactly 

one of the ~ (X,Y) (and the ~ (X;Y) are all lifts of ~(X,Y)). 
~(s) ' v(s) 
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5,5, On !:E.;:_ proof of theorem 5.4. By and large one obtains a proof 

of theorem 5.4 by copying the proof of theorem 3.4 while observing 

the following transcribing rule 11p 's in exponents become q' s and 

p 1s on line or in denominators become TI 1s w. 

There is one small difference: the somewhat obnoxious sum term in 

the analogue of formula (2.7} disappears. (This term can be nonzero mod 

(T.T., T., i,j EJN) only if p = q and A is unramified; i.e. this term 
l J J_ 

contributes something only in the case that F(X,Y} is a formal A-module 

over nothing larger than 2Z ). So the p~oof actually simplifies somewhat. 
p 

6. LAZARD 18 CLASSIFICATION THEOREM AND ITS 

FORMAL A-MODULE ANALOGUE 

The classification theorem alluded to in the title of this section is; 

6.1. Theorem. ([ ]). Let K be a separably closed field of characteristic 

p > 0. Then the one dimensional formal groups over K are classified 

by their heights. 

6.2. Start of the proof. Let Fh(X,Y) over K be the formal group obtained 

by substituting Vi = 0 for i ~ h, Vh = 1 in the universal p-typical 

formal group law FV(X,Y). This gives a formal group law of height h over K 

for each h €JN, and these are (by the definition of height) pairwise 

nonisomorphic and also nonisomorphic to the additive formal group 
.... 
G (A,Y) over K. 

a 
Now assume that F(X,Y) has infinite height; as F(X,Y) is strictly 

isomorphic to a p-typical formal group 

for a suitable sequence of elements v 

we can assume that F(X,Y) = F (X,Y) 
v 

= (v1 ,v2 , ... ) in K. The height of 

F (X,Y) is equal to the first index i such that v. # O, hence v. = 0 all i 
v J_ l 

as F (X,Y) has infinite height, hence F (X,Y} = e (X,Y). 
v v a 

So it only remains to show that a formal group of height h < oo over K 

is isomorphic to Fh(X,Y). To prove this we use two congruence formulas 

for the polynomials Vn in v1 , ••• , Vn; T1 , . . . , T . 
n 

6.3. Lemma. Fix h EJN, then we have for every n EJN 

(6.3.1} 

(6.3.21 V- V T vP 
n+h - n+h ~ n h 

n h 

+ vhir; mod(V1 ' ... ,vh-J ,vh+1 ' ... ,vn+h-1' 

TJ '• .• ,Tn-1 'p) 
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6.4. Remark. Formula (6.3.2) translates into the Budweiser lemma if 

one interpretes V. 1-+ V. as the right unit homomorphism 
J. J. 

nR: BP*(pt) ~ BP*(BP) of the Hopf algebra of homology operations of 

Brown-Peterson cohomology. Cf. [7] lemma 1,9 and [4], [2] part III. 

6.5. Proof of lemma 6,3. We work in:Q.[V;T]. First of all we have directly 

from the defining formulas (2.1} 

(6.5.1) 

which by (2.2) gives us that 

(6.5,2) 

a (v} = -1v + T mod(V1 , ••• ,v 1 ) n p n n n-

and as by the definition of the V. we have 
J. 

n-J 

a (Vl 
n 

-1 
- p v n 

(6,5.3) -p ( -p -pa (V,T} =a J(V,T}VJ + .. , + a 1 V,T)V 1 + V 
n ~ ~j n 

we see that (6.3.1) follows immediately from (6.5,1), (6.5.2) (and (6.5.3)}. 

To prove (6.3.2) we use formula (2.6) above. We proceed by induction on n 

(keeping h fixed). The case n = 0 is taken care of by (6.3.1). 

By induction hypothesis we therefore have 

Letnbe the ideal (v1, •.. ,vh_ 1,vh+l'''''vn+h-J'Tl, •.• ,Tn-J) in 'ZZ[V,T]. 

We now deal with the various terms appearing in formula (2.6} separately. 
J. 

(a) The terms v.TI? , i,j > 1, i + j = n +h. These are all zero modar. unless 
J. J - h 

i = h (and hen~e j=n) which gives us a term vhi:r! 
(b) The terms T.V~J, i,j > 1, i + j = n +h. These are zero mod (en. ,p) 

J J. - n 
unless j = h, i = n which gives a term - TnV~ . (Here (6.5.4) is used). 

Let ai be the ideal 01.Q[V;T] c IQ[V;T]. We shall use the notation 

b(V,T) = O mod(il.,p) to mean that b(V,T) E ii+ p?Z[V,T]. 



n-k n-k 
(c) The ter.ms an-k(V)(V~ -V~ ), 

hypothesis (6.5.4} we have that 
n-k n-k 

14 

k = 1, ... , n-1. By the induction 

vk = vk mod (at,p) for these k and 

( 1 n-ku 
\__rnoJ. ( n, p ) , 

.. ~----~"" 

_ h_e_n~~ ~-~----=_v_i_J which implies that the terms under consideration 

are :: 0 mod (ii ,p) because pn-ka k(V) E Zl [V;T]. 
n-

(d) 
n-k n-j 

The terms a k(V)V~ Ti? , k = 1, ... , n-1, i + j = k, i,j _> 1. 
n- J. J 

There are all zero mod ii because for these i and j either V. € 01. or 
l. 

T. € 0\.. 
J n-k n-i 

(e) The terms a k(v)rrl? v~ 
n- J l. 

, k = 1 , •.• , n-1 , i + j = k, i, j .:_ 1 • 

For these i and j we have T. 
J 

and 

Eat unless j .:_ n which means that i < h 
-pn-i _ ( n-k+1 

so that V. :: 0 mod ( ot,p) V. = 0 mod Di ,p ) so that all 
l. l. 

these terms are zero mod (Oi.,p). 

Putting all this together we find 

h 

v = v h + vh'.rPn n+h n+ 

n 
- T vP mod( 0\ ,p) 

n h 

which by sublemma 6.6 below means that (6.3.2) holds. 

6.6. Sublemma. Let b(V,T) E Zl[V,T] and suppose that b(V,T) Eot+ pZl[V,T]. 
nm 

Write b(V,T) as a sum of monomials b(V,T) = r c V-T-. Then 
g.~ 

Proof. 

b(V,T) E Oi + pZZ [V ,T] means that for all g,i;g at least one of the following ,- -
hold 

(i) c = 0 mod p, nm 
---=-~ 

(ii) v. jv- for some i E {1, ... ,h-1, h+1, ... , h+n-1}, 
1. 

(iii) T-ITS for some j E {1,2, ... ,n-1} . .Andthis in turn implies that 
J 

b(V,T) En+ pZZ[V;T) because the c are integral. 
g,~ 

6,7. Proof of theorem§..:..:!_ (conclusion). 

We must show that if F(X,Y) = Fv(X,Y), v = (v1,v2 , ... ), v 1 = ... = vh-l = O, 

vh F O then F(X,Y) is isomorphic to Fh(X,Y). We are now going to construct 

sequences of elements v(n) = (v 1(n}, v2 (n), ... ) of elements of K with 

v(1) = v and power series 6 (X) such that 
n 

(6.7.1) vi(n) = 0 for i = 1, ... , h-1, ... , h+n-1; vh(n) 1 0 
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Sn(X) is a strict isomorphism Fv(n}(X,Y) + Fv(n+l)(X,Y) 

(6.7.3) 8 (X} = X mod(degree pnl 
n 

Suppose we have already found v. (nl, i = 1, 2, ... for a certain n €JN. 
i 

(Take v( 1 )=v). Take t. (n) = 0 for i = 1, ... , n-:l ,n+1,n+2, ... and 
i 

choose tn(n) such that 

= 0 

(such a tn(n) exists in K because K is separably closed and vh(n) f; 0), 

Now let 

then (6.7.2) and (6.7.3) are clear because aV,T(X).:: X mod(T1, ... ,Tn-J' 

degree pn) and (6.7.1) (with n+1 instead of n) follows from (6.7.4} 

and (6.3.2). Now consider the composed isomorphisms 

These converge to an isomorphism S(X}: F (X,Y) + F ( )(X,Y) because of v . v 00 

(6,7,3) and because of (6.7,1) we have that y. ( 00 ) =a for i r hand 
l 

vh(00 ) # Q, Now let y(X) = a- 1x where a is a (ph-1)-th root of vh(oo). 

Then y(X) is an isomorphism Fv(oo)(X,Y) + Fh(X,Y), which concludes the 

proof of theorem 6.1. 

The formal A-module analogue of theorem 6.1 is 

6.8. Theorem. Let A be a discrete valuation field with residue field of 

q elements and let K be a separably closed extension field of k. Then 

the formal A-modules over K are classified by their A-height. 

The proof of this theorem is obtained from the proof given above for 

Lazard1s theorem by the transcribing rule mentioned in 5.5 above. For 
n h 

example (6.3.21 becomes Vn+h = Vn+h - TnV~ + VhT~ 

mod(V 1, ... ,vh_ 1,vh+l'''"'Vn+h-l'T1, ... ,Tn-J'TI) where TI is a uniformizing 

element of A. 
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ABSTRACT. 

Let ~!A be the catev,ory of finite dimensional commutaLive for"'Jal 

gro11ps ovP.r a ring A. To A one :;ssnr:iates a certain. in general 

noncomrnutative, rin6 Cart (A). C•nc then defines a functor G .... lC(G) whit h 

assigns to a formal group law Git•> group of curves which is a modull· 

over Cart (A). Theorems 2 and 3 o 1· [ 1] now say that G .... ©<c) is an 

equivalence of categories of ~[A with a certain full subcate~ory of 

Cart (A)-modules. In this pnper Wl' give a new proof of theorem 3 of [ l], 

C:util,r's third theorem, "71iich ;isserts that every Cart(A)-module of n 

certain type comes from a fonnal group law over A. This proof is based 

on the constructions of part IV of this series of pnpers [3]. 
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l • INTRODUCTION AND STATEMENT QF THE TiiEORE.l.f. 

From now on formal group means finite dimensional fonnal group law 

over A. We take the naive or power series point of view; i.e. an 

m-dimensional formal group over A is simply an m-tuple of power series 

G(XtY) in 2m variables x1, ••• , Xm; Y1, ••• , Ym such that 

G(X,O). x, G(O,Y). Y, G(X,G(Y,Z)) a G(G(X,Y),Z), G(X,Y) a G(Y~X). 

J. J. Curves. A curve (over A) in a formal group G over A. is an m-tuple 

of power series y(t) • (y1 (t), ... , ym(t}) in one var~e t, such that 

y(O) • 0. Two curves y(t}, &(t) can be added by means of the formula 

y(t) +G &(t) • G(y(t), o(t)}. This turns the set of all curves into an 

abelian group @(G).We use fj1(G) to denote the subgroup of all curves y(t) 

such that y(t} = 0 mod tn, n • 1,2, •.•• This defines a filtration 

~G) • ©f <G) ~~(G) ~ ..• and ©J(G) is complete in the topology defined 

by this filtration. 

1.2. The Operators. <a>, V ,f . In addition to the topological group 
•n •n 

structure on ©(G) one has a number of operators which are compatible 

with this structure. Viz.: 

for all a E A, <a>y(t) = y(at) 
n for a 11 n • l , 2 , ••• , V y ( t) = y ( t ) 

=n 

The definition of the third kind of operator, the Frobenius operators 

!n• needs a bit more care. Formally one has 

l/n n 1/n for all n • 1,2, ... , f y(t) a y(~ t ) +G ... +Gy(~ 0t ) .::n n 

where ~ is a primitive n-th root of unity. For a more precise definition n 
cf. [3] part IV or [5]. There are various relations among these operators. 

They are 

(I. 3) 

<a><b> • <ab>, <l> • v1 "" f 1 = identity operator, 

v v - v f f - f ::i:r-t•n -in' =1= 0 :~n' 

'\ 1. <a>V • V <a >,f <a> • <a >f 
_,, •'1. •'t. """°L 

if (n,~) = 1, then f~V • V f 
• •""O =n=·"t.' 

f V • n, i.e. f V y(t) • y(t) +G y(t) +G ... +Gy(t) •n•n n n 
co 

<a+b> • ~ V r (a,b)f , 
n=l •n n •n 

(n factors), 

where the rn(z 1,z2) are the polynomials with coefficients in ll defined l:y 
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(I. 4) 

1.5. A ~-basis for (QXG). Let o.(t) denote the curve (O, ... ,O,t,O, ...• O) 
1 

in G, where t is in the i-th spot. It imnediatcly follows from F(X,Y) :: X + Y 

mod(degree 2) that every curve in G can be uniquely written as a convergent 

sum 

(J .6) y .. 
n 
L: L: vk<a. >o. 

.. lk l i=] ks] 

It follows,cf. (1.3) and also section 2 below, that we know the 

structure of !Q<G) as a topological group with operators <a>, f .v 
•n·"'n 

if we know ali the expressions 

CXl m 
(I. 7) f o. -=-n i 

L: V <c(n,s) .. > 6. 
=s Ji J 

s= I j=l 

The "structure coefficients" c(n,s) .. , n.s E lN, i,j E {J, ... ,m} are 
Jl 

far from independant.They satisfy certain relations which come from 

f f - f •n•r ==nr 

I. 8. Reduced Cart (A)-modules. If @CG) is the module of curves of a fonr:t: 

group G, then ©(G) has the following properties 

(i) 

(ii) 

There are subgroups ©0 , closed under the operators <a>, V ; =r 
©is complere in the topology defined by the ©11 and rtJ1 is the snial lest 

closed subgroup of© which contains all the ¥~with r ~ n. 

The operators <a>, ~n' ~n are all continuous and satisfy the relation~ 

( l . 3) • 

(iii) There are elements 6 1 , ... , cm E ©such that every element "( E ~)can he 

uniquely written as a convergent sum 

m 
y = L z v <a. >o. 

s= l j .. I = 5 J s J 

In general we shall call a topological abelian group© with operator:; 

<a>, ::n'!n such that (i), (ii), (iii) hold a reduced Cart(A)-module. ~---~ 

(Here Cart(A) stands for the set of all formal expressions L: f .<a .. >y., 
- l 1.J - J 

with for every j only finitely many i such that a .. • 0. These expressions 
lJ 

can be added and multiplied by means of the calculation rules (J.3) to 

' 

' 

form a (topological) ring of operators, cf. [4]). 

I I ,l/. l [ h C.Jt fA rt:dfec/ a v= - hM~ ') A XI: c-/ eiewie .. i 5 1lll~ V.Wl" i.ii) Mil;j IN v J ( 
-·-- ·------ ---------··--·-----
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1.9. CartieT'a third theorem. Let© be a reduced Cart(A)-module with 

?-basis o1 , .•• , om. There there exists an .-dimensional formal group law 

G over A such that @<G) ::! @as Cart(A)""lll.odulea with o. corresponding 
l 

to the i-tb element oi(t) of the canonical j.-basis of @(G) described in 

J.5. 

<f This is theorm 3 of [l]. Cartier never published his proofs of the 

theorems of [1]. Proofs can be found in f5]; these are outlined in [4]. 

In [2] there is a proof of Cartier's third theorem. for the case that A 

is torsion free. This proof breaks down if A has additive torsion. 

The remainclei of this paper mainly concerns still another proof 

of Cartier's third theorem based on the constructions of the earlier 

parts of these series of papers. This proof also provides a link between 

these constructions and the "intertwined function pair" considerations 

of [ 2]. 

2. CONSTRUCTION OF A UNIVERSAL CURVE MODULE. 

Choose m €'.N and choose a set of elements 61, .•• , 6m. Let ~C be the ring 

!:C • 7l [C(n,r). -lr €JN, n €'.N' {I}, i,j € {l, ..• ,m}] of polynomials 
1,J 

in the indeterminates C(n,r) ..• For convenience we also introduce 
1,J 

C (l , l ) • • • O if i .; j , C ( l , J ) • • • l , C (l , r) . . • 0 for a 11 r € lN ' { 1 } , 1,J l,l i,J 
i,j € {l, .•• ,m}. 

Now consider the set @of all formal expressions 

co m 
"' (2.1) I: I: v <a .>o. a s,j € Le 

s•l j•l •s s,J J 

We now introduce the defining relations 

co m 
(2. 2) f o. • I: I: V <C(n,s) .. > o. 

•n l s= 1 j"' 1 =s Ji J 

for all n € :N. One can now use the calculation rules (l .3) with the 

exception of the rule f f • f , and the defining relations (2.2) to 
•n=r =nr 

add expressions of the form (2.1) and to define f of such an expression, mr 
r E :N. 

To do this we start by showing how to rewrite any sum of the fonn 

(2.3) 
oo m 
I: I: L. v <a . >o. 

s•l j=l t •s s,J,t J 
a . E f;c s ,J. t 



in the form (2.1). Here for each s E "N, j € {1 7 ••• ,m} the index t 

runs over some finite index set which may depend ons and j. 

5 

For each n € ::N, let A(n) be the number of prime factors of n, 

i.e. A(l) • 0 and if n • 

then A(n) • r 1+ ••• +rt. 

r 
t Pt ,p. a prime number, r. E ~. 

l l 

One now proceeds as follows 

r v <a • >o. - r •s a,J,t J s,j,t j,t 
<a . >~.+ t E V <a . > b. 

l,J,t J -s>Z j,t •s s,J,t J -
E t V <a . > l 

•a s,J, t J s>2 j,t 

where bi,j • ri(al,j,l'al,j. 2, ... ) with rl'r2 , ... the polynomials ink 
variables defined by 

(2.4) Zn 
l + • • • + n•.1,2, ... 

(Cf. (J .4); of course k may depend on j). Now use (2.2) to rewrite 

(2.3) further as 

E<b 1 .>o. + i: r v.<b •. > ~i: Y~<c{i,t)k3.>ok j ,) J j i>2 •l l,J N,k ~ 

+ r r v <a . >o. - r <b1 .>o. 
s>2 j,t •s s,J,t J j ,J J 

l: r £ 
C(i,£.)k .>ck + r E V <a . >6. + r v. i<b .. 

•s S,J,t J j,k i>2 £ •1 l,J ,J s>2 j,t 

"' t.: <b 1 . >o . + r i: E v <b' . >o . 
J ,J J A(s)>l j t =s s,J,t J 

'v for certain well determined b 1 • E Le. And of course the summation set 
s,J, t 

for t for a given s,j will now in general be different than the one in 

(2.3). For each s EN with .A(s)" > 1 (i.e. s > 2) write s = p s' where s 
p8 is the first prune number dividing s. We find an expression 

( 2. 5) i:<b .>o. + 
j 1 , J J 

I: 
.A(r)=I 

v ( r v <a' . >6 . ) =r . =s r,s,J,t J 
S,J,t 

where now tbe summation se.~ fort m;1y also depend on r. Now repeat the 



procedure given above for each of the interior sums 

r v <a' . >o. . •s r.s,J,t J s,J, t 

to obtain au expression 

6 

1:<b1 .>6. + 1: 
j ,J l l(r)•J 

v t<b] .>6. •r . r, d J 
J 

+ E Y <a" . >6.) 
• t •s r,s,J,t J 

s,J • 

Now apply the same procedure to the interior sums in the third 

summand, .•. ,etc., .•• After k steps we thus obtain algorithmically 

the coefficients x . in 
S,J 

(2.6.) 1: V <a . >6. • 
, •s S,J,t J s,3,t 

r v <x .>o. 
•s s,J J s,j 

for alls with l(s) ~ k-1. 

(2.1) 

We now proceed to define f of an expression (2.1). Write 
•n 

f C L v <a .>o.l • 
•n .•s s,J J 

s,J 
I: dV /df /d<a .>c. . •s •n s,J J s,J 

n/d 
• E dV /d<a .>£ /do . . •s s,J •n J s,J 

- n/d I: dV /d<a .>V <C(n/d,r)k .>rk . •s S,J •r . ,J . 
s,J,r,k 

"" "Ln/d • I . ... i· r dY r1,..,<a_ .c(nd.i:)k "'-'k 
. k -'1.-yu s,J ,J s,J,r, 

whert! d = (s,n). This is a sum of the type (2.J'\, which tl:.'n i:; put i1:to 

tht• form (2.1) by the algorithmic procedure Ollt: ined ibove. 

To complete this picture WE' als') defi:1.~ 

V ( 'I"' V "a ->;.:· • ) = "" ': ·a -. ~ •r ".=s"ol s J vJ '·. =rs' s, i'\·: 
S,J '- S,J 

s 
<a> ( L: V <a .>8 . ) ~ V <a· :.i ,, : • 

. =s s,J J .. ==s· ',J 'J 
S,J ::.,.] . ·, 

\~e. ,.. ;:' ~J~i:~~il) 
We hnve now defined a topolc.·gical abelian ®)with operators'-;!>-· 

~n' !n for all a E le, n E :N. (The topology is Lhe obvious one). ~:.ite 

that~ is definitely not a Cart(lc) module. F•>r one thing it is not .it 
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all clear that f is additive and obviously f f x f does not hold 
•n sn•m •nm 

in general. Before discussing the relations one must introduce to ma~e 

a variant of~ a Cart(LC) module over some quotient ring Le of ic we 

note a homogeneity property. First make tc into a graded ring by giving 

C(n,r) .. degree nr - 1 for all n,r E N, i,j E { 1 •••. ,m}. We then have 
l., J 

2.8. J,~. Suppose that in the sum (2.3) each a . is homogeneou!'i 
s ,J. t 

of degree ks - 1 for some k E Ii independant of s, j, t. Then the x . 
s ,J 

in (2.6) are homogeneous of degree ks - I. 

Proof. To prove this by induction it suffices to show that under the 

hypot lies is stated the b 1 . and a' . of (2. S) are respectively of 
,J r,s,J,t 

degree k - l and krs - l respectively. Now b 1 . 
,J .. a · 1 + al · 2 + I,J, ,J, 

which is homogeneous of degree k - 1. As to th~ 

of two types, viz. 1°) a' . =a . which 
r,s,J,t rs,J,t 

homogeneous of degree krs - I, and 2°) a' . 
r,s,J,t 

a' . , they are 
r,s,J,t 

by hypothesis is 

""b .. ,C(i,.Ok .,, 
l ,J ,J 

with ill "' rs. Now from (2.4) we see that ri (Z 1 , .•. ,Zk) is homogeneous 

of degree i (if each Z. is given degree I) so that b •. ,= r.(a ., 1 ,a 1 ., 2 , .. ·) 
1 l,J l. l,J, ,j, 

is homogeneous of degree i(k-1). It follows that a' ... b: .,C(i,Q)k ., 
r,s,J,t l..J ,J 

is homogeneous of degree £i(k-1) + i£-1 = Q.ik - 1 = krs - I. This proves 

the lemma. 

2.9. Corollary. Let F f 00. • f ( E - •n=-N l =n . 
s,J 

where the y 0 • • are calculated 
n,N,s,J,1 

homogeneous of degree n£s - I . 

V <C(i,s) .. >o.) = E V <y 0 •• >o. 
=s J,l. J .=s n,.1..,s.J,1 J s. J . 
as in (2.7). Then y n •• is n,N,S,J,l 

Proof. In this particular case of (2.7) we have a . = cr:£,s) ... 
S,J J ,1 

Thus 

rn/d 
a . C(n/d,r)k . 

s ,J ,J 

-1 - I 
is homogeneous of degree d rn(~s-1) + d nr-1 = 

-I -1 
d rn£s - l = (d rs)nQ. - I and the corollary follows by lemma 2.8. 

2. 10. Lemma. If 2. > I then y 0 •• :: nC(Q.,nt) .. mod(decomposables) --- Il,N,t,l 7 J l.,J 

(Here (decomposables) stands for the ideal of 'tC generated by all products 

of the form C(n,r) .. c(s,t)k 0 with n,s EN'{!}, r,t E l'I, 
. l.,J 'N 

i,j,k,Q. E {l, •. .,m}). 

Proof. From (2.7) we have 

nr/d r. v <y c •• >o. = r. . Yrs/dd < C(i,s)J.,i C(n/d,r)k,J. > ak 
.=t n,A.,t,],l J k t,J s,r,J, 



when• d • (s,n) in th·· sum 0n tht• right. Choose a f ixt•d t t:; N. By the 

rN•ff it ing procedure di scussE•d in t ht.: beginning of this sel'.t i(•n a summ.md 
-I in thl' sum on the right can contribute toy n •• iff d rs < t. 

n,~ .. t,J,1 
Moreover, if this contribution is t,'.' Le nonzero modulo decomposablt'S 

we must in addition h;ive d '* nr, d- 1n ... l, r •I, k • j (because .t >I). 

It follovs that s is a multiple of n and s < tn so that the only 

contributions to y 11 •• , which are possibly nonzero modulo n,A..,t,J,l. 
decomposables, come frum 

t 
E v n-".'.C(S>.,an) .. >a. 

a=l :a J,l. J 

However n < C(9,.,an) .. > = <nC(R.,an) .. > + (terms which are zero mod11lo 
J,l J,l 

decomposables). The lemma follows. 

2. 1 I Remark. By definition one has y •• = y 1 .. • C(n,s) .. 
J,n,s,J,l n, ,s,J,l. J,1 

so that lemma 2. l 0 does not hold for .~ .. I. 

3. THE UNIVERSAL RING LC. 

Let Le be the quotient ring of ~C obtained by factoring out the idedl 

generated by the homogeneous polynomials 

(3. l) C(nR,,t) .. - y 0 t .. , n,t,t E ~. i.j E {J, ... ,m} 
J1 n, ..... , ,J,1 

3.2. Theorem. Le ~ 'll [T(n) .. J n = 2,3, .. ., i,j E: {1 .- .. ,m}] as a 
1,J 

gradPd ring, with degree:(T(n) .. ) • n - I. 
l.,] 

Proof. The ring Le is graded because the polynomials (3. l) are homogenL:ous 

by corollary 2.8. Let L~t) be its homogeneous sunnnand of degree t - I 

and 1 et M(t) be the subrnodulf' of L~t) generated by the decomposah I cs. 

Then L (t) /M(t) is generated (as an abelinn group) hy the C(s,r) with c 
sr = t. Now by lemma 2.10 and the defining relations (cf. (3.J)) 1,..·e se.:' 

that modulo decomposahlC's 

C(rs,t) .. - rC(s,rt) .. 
l,J l,J 

f o r a 1 1 i , j E { I , • • . , m}, s E 1N '- { I } , r E JN • lt f o 11 ()W::; t ha t i f s 1 ~ T' o t 

a primt' number, s 1 1, and p is a prim8 number dividing s, then 

(3. j) C(s,r) .. 
l,J 

-I -I 
- p sC(p,p sr) .. 

; l • J 



It readily follows that L~t) /M(t) is the abelian group generated by 
-l 

the C(p,p t) .. , where p runs through all prime divisors of t, 
1,j 

subject to the relations 

(3 .4) -1 
qC(p,p t) .. 

l,J 

-l _ pC(q,q t) .. 
1,J 

for all prime number divisors p and q of t. If t is a power of a prime 

number p, t • pr, this means that L~t)/M(t) is a free abelian group 
2 of rank m generated by the classes of 

-J 
the T(t) .. "" C(p,p t) ... If 

l,J 1,J 
t is not a power of a prime number let P(t) be the set of prime numbers 

dividing t. Choose JJ (p) E 'll such that 

(3. 5) E pJJ (p) == I 
pEP ( t) 

Let 

-] 
T(t) .. ., E µ(p)C(p,p t) .. 

1,J pEP(t) 1,J 

It then follows from (3.3) and (3.4) that L(t) /M(t) is the free abelian 
2 c 

group of rank m generated by the classes of the T(t) ... This proves 
1,J 

the theorem. 

3.6. Remark. (Construction of a "universal Cart(LC)-module" (continued)) 

Let ©1c be the set of all expressions E V <a .>o. with a . E Le. Now 
,as S,J J S,J 

s,J 

calculate sums and !rY' <a>y, ~ry for y E ©c as in section 2. Then (g,l 
is in fact a Cart(LC) module. One has of course f f 0 0. = f 0 6. by the 

=n=~ t =nx. t 

relations defining Le. And, using this, one can now prove directly that 

the <a>, f , V are additive and that all the relations (1.3) hold. 
=n en 

This also follows from the isomorphism result below, cf. remark 4. 7. 

4. PROOF OF CARTIER'S THIRD THEOREM. 

Let F(X,Y) be any m-dimensiona] formal group law over a ring A. 

Let o1 (t), •.. , om(t) be the standat·d y-basis for rg):F). Then we have 

unique expressions, cf. (1.7), 

oo m 
f 6 • ( t) = E Z V < c ( n , s ) . . >y . ( t ) 
=n 1 s• 1 j = 1 = s J , 1 J 

Now define~: ~C +A by ~(C(n,s)i,j) c(n,s) ... 
1,J 
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Because f f~Y.(t) .. f .• y.(t) in C(F) for all m,r...i it follows that :llin•"" l •tn l. 

'\, for all s,1,n E :ll, i,j E {l, •.• ,m}. Therefore n. induces .a homomorphi&m 
of rings np; Le ~ A. We can in particular apply this to the case 
F (X, Y) • FR (X, Y), the universal curvilinea:r m-dimensional formal group 

law over ll [R] • ll {R (i,j)/n E: N '- {11, i,j E {l, ... ,m}J of [3] , part l\'. n 
This gives us a homomorphism. 

(4. l) : L~ -+ ll [R] 
\,,; 

4. 2 . Theorem. The homcmv rph ism . l) is an isomorphism of graded 

rings. 

R•~call that 

(4. 3) b (R) "" n 

rithm ~1f F,,(X,Y) • be equal to fR(X) 
K 

n=i 
H)\ 

where Ric is the matrix (~(j,£))j,t and the sum is over all sequ~ntl~ 

(i 1 .... ,i8 ), ij €~'{I}, s 2_ I, i 1i 2 ... i 8 ·.n. Here the d(i 1, .. ,i,," 
are certain welldetermined coefficients, and R ~J) is the matd x obt a ill•' 

l 
from R. by raising each of its entri~s to the power j. Cf. [3], part L\. 1 

section 2. Then hn(R) is homogeneous of dE.'gre~ n - l if Rk(j.~: 1s ;•:\". ,., 
degrt·e k - I. Lt't 61 (t), ... , om(t) be the standard ~-basis for SO 

and let 

(4.4) 

Now f., 
!\ 

( t) 

f . (t) = 
=p l 

l: v <c( p. s) : . > 6 . ( t) 
.=s J•1 J S,J 

sun1), by 1'.1e definition of logarithm. If follows that fR(f '((t)) == r. p: .l 
. : p i"' !',. 



(4. 5) p b (R) 
pn 

n/d 
Z bn/d(R)c(p,d) 

d\n 

l J 

(This formula provides the link with the "intertwined function pair" 

considerations of [2]). 

With induction it follows from (4.5) that the c(p,s) E 7l {R] are 

homogeneous of degree ps - l (, that is to say the entries of these 
-J 

mxm matrices are homogeneous of degree ps~Jl. Now bpn(R) = p Rpn 

modulo decomposables if n is a power of p and b (R) = R modulo pn pn 
decomposables if n is not a power of a prime number_ cf (4,3) and use 

that d(i 1) • p-1 if i 1 is a power of a prime number p and d(i 1) = 1 

if i 1 is not a power of a prime number, cf. {3], part IY, section 2. 

It follows that ric satisfies 

r-1 nc ( c ( p , p ) . . ) -
l.J 

R (i,j) 
r 

p 

nc(C(p,s) .. ) = pR (i,j) 
1.,J ps 

mod(decomposables) 

mod(decomposables) 

if s is not a power of p. Hence nc(T r(i,j}) 
p 

_ R (i,j) mod(decomposables), 
r 

p 

and if s is not a power of a prime number 

'I(' (T . ( i 'j)) = ric ( ': ]J ( p) c ( µ, p- I s).. ) .:: 1-r, is) u ( p) pR s ( i, j) = F.~ ( i . i) 
, s pE p ( s ) lJ l"- \. - ' 

m(1dtJ llJ(decomposahl.es). Here t'(s) and the ll(p) arP as in (1. 5). It f,"! lcn ... ~) 

t hat q, is indeed an isomorphism (homogeneous of degree z~ro). 
(. 

4.6. P100£ of Cartier 1s third_~_heor~'_'.11_· Let !.f) be a reduced Cart(A) n<l'dll1l. 

1.e. f) is a topologica1 abeli.in group such that the properties o[ 1 .8 

liolJ. Let 61 , •.. ,am be a V.,.·-basis for rt\ Then every f '~·can be 
v =n 1 

uniqm·ly written as a convergent sum (cf. (1.7)), 

f 6. = ::sn i 

00 Ill 

2: 1 v <c(n,s) .. >o. 
=s J,i J s=l j==J 

c(n,s) .. EA 
J ' l 

'\, 
..... A by n ( c ( n, s) . . ) 

J' l 
c ( n, s ) . . . Because f f n 

.J, 1 =n ;.. 

in llwc have that 
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'v rv n ( c ( nY., s i • . ) _, n ( y ,, . . ) 
],l n,~,s,J,l 

for ~ll n,i,s,j,i so that~ fa~torizes through Le to define a 
-I 

homomorphism n: Le, + A. Now let <jJ: 'll [R] ~ A be equal to <jJ "" nn , . c 
wherf.• nc is the isomorphism of theorem 4.2. Then F(X,Y) D ~,.FR(X,Y) 

is a formal group law over A such that @):F) ::::: ©as a topological 

group with operators. The isomorphism is given by 6. (t)r-+- 6., where 
1 1 

61 (t) •.•• , om(t) is the standard y-basis of cgxF), 

4.7. Remark. The module @b of 3.6 above is the module of curves of the 
-1 

formal group law (nc ),.FR(X,Y) over Le. 

5. THE LOCAL CASE. 

Choose a prime number p and suppose that A is a 'll (p)-algebra. 

Then the formal groups G over A can be classified by a much smaller 

group of curves 1~ (G) c ©<c), with a much simpler ring of oper.1 tors. 
p 

In detail ~(G) = {y(t) € ©CG) I! y(t2.,• 0 for all prime numbers q ; p}. 

The operators on ©. (G) are the"·vt:--£1 a~d <a>, a € A, i € ~ U { O}. The 
p •p •p 

topological group of np~typical curves ~G) has filtration subgroups 

'f)_(n) (G) • ©. (G) n (gf (G) and is complete in the topology defined by 
p p 

this filtration. One shows that the topological groups with operators 

thus obtained satisfy 

@l (G) is a complete Hausdorff topological group with operators 
i p 

f , <a> which satisfy analogous relations (I .3) obtained by setting 
=p 

~n = 0 = Ik for all k,n E: JN which are not a power of p. 

(ii) The topology of ©p(G) is defined by the i:iubgroups©~n)(G) = ¥~(G) 
(iii) Therl! are elements oi (t), i = 1, .. ., m E @fG) such that every 

curve y(t) E © (G) can be written as a unique convergent sum 
p 

y = 
oo m 
E E v0 <a .>~. =p n,1 1 

n=o j=I 

(To prove (iii) one uses Corollary (2.11) of [3] part IV to reduce to 

the cnse that G is a p-typical formal group and in that case the standard 

basis curves 6.(t) = (0, ... ,O,t,O, ... ,O) are p-typical and satisfy (iii)). 
1 • 

Inversely, the local version of Cartiers third theorem says that 

every filtered topological group© ::i @1. ::::> ttJ ::l ••• with operators ¥p•bp• 
<a> such that '(i), (ii), and (iii) hold comes from a formal 1 group ovL•r A. 



13 

The proof of this is a triviality, given the con~truction of the 

m-dimcnsional p-typical universal formal group FV(X,Y) of [3], part IV. 

Let 6i(t) be the i-th standard curve over 'll [V] • "ll [V0 (i,j)\n E Jil, 

i,j, E {l, ... ,m}] in ©<Fv). Then one calculates as in section 4 above 

eo m 
(5. l ) f 6.(t). 

•p 1 
t L Yn<V +](j,i)>o.(t) 

. 1•p n J n•o J• 

where one uses that the logarithm fv(X) of FV(X,Y) satisfies 

00 

n==o 

n 
a (V)Xp 

n 

-
n-1 

pa (V) •a (V)V(p )+ ..• +a (V)V(p) + V n n-1 ] I · n-1 n 

cf. r 3]' parts II and IV. I t1ri'iJ fv lXJ le l, .. t~ :;.-&., tf [s 1) dmi asc.e·d:ain Hl(.,t ti1< ii .. '.b'"' 

Now let ©he any topological grou1> with operators f V <a>. :-1 E ;\ 
"'P' =p' 

such that (i) - (iii) hold. Choose o1, ... , om such that (iii) holds 

and let 

(5. 2) 
cie m 

f 6. "' i: l: v0 <a .. >o. 
=p 1 n•o j•l •p n,J,1 J 

Define~; i'l {V] ~A by ~(Vn+J (j,i)} • an,j,i" Then ~*FY(X,Y) is a formal 

group law over A such that ~p(~*FV) =@.as topological groups with 

operators. The isomorphism is aiven by o. (t) t-+ o., where 6. (t) is the 
l 1 l 

curve (O •... O>t,O, ••. ,0) in@($ FV). This follows from (S.2) as compared e 
p * 

to (5 .1). 
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IrnMARKS FOR THE TYPESETTER. 

- double black undl'rline: bolf;ice (.except for the standard boldface 

symbols ~ , ~. ~. which are typed in as shown; besides these three 

only f and V occur boldface). 

encircled in black: script (Only C and M occur as script letters) 

- greek letters have been typed in, the only ones occurring are 

>., µ, y, o, c/l, n. 

- no fraktur letters occur. 

-- The ~~p~J '.)c l1p~ { lv'htLh CICc,v.·1~ ,'.) chi ,; le/," <l'IJ & /-1YJ ''e{ '· 

t w tk iJ;x{)('J;l't fa clvJ i1,·,J Uv)l1 /tn11 1 /"one "} 
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Constructing Formal Groups VII. 

I. Introduction 

The first result of this paper says that we know an m-dimensional 

formal group over a characteristic zero ring A (i.e. A--+ A 8 ~ is 

injective) if we know i~ over each A 9 ~(p) and inversely that one can 

~pecify these "local" formal groups arbitrarily (up to isomorphism). If 

A is the ring of integers of a finite extension K of g (or a ring of 

1. 

1"- integers) then there is a refinement where the place of the A 8 ~(p) t 

is taken by A , the rings of integers of the local completions K of K v v 

for each nonarchimedean valuation v of K. 

These results are usefull e.g. to construct a formal group law 

over a global ring of integers A which over each localization A is 
v 

isomorphic to a (twisted) Lubin-Tate formal group law. Cf. [4] and [2], 

chapter IV, sections 25.8 and 25.9. 

Now let F(X,Y) and G(X,Y) be two one dimensional formal groups 

over Z (or Z() or any ring in between), then a result due to Honda 
=p = p 

and Hill ([5],[6]) says that F(X,Y) and G(X,Y) are isomorphic over ~p if 

and only if their reductions mod pare isomorphic over ~/(p). In section 

4 below we give a new proof of this result based on the universal 

isomorphism ~V T(X) of [I], part I, and the formulas which were also 
' 

usefull in [1 ], part III, cf. also [4],for the study of BP cohomology 

operations. (The relevant formulas are recalled in section 3 below). 

There is a bonus: the same proof works to give the corresponding result 

for formal A-modules where A is a discrete valuation ring with finite 



residue field both in the case that A is of characteristic zero (where 

the result is due to Lubin [7]) and the case that A is of characteristic 

p>O (cf. [1] part VIII, [2] chapter IV, section 22.2). 

Finally section 5 below gives two counter examples in dimensions 

l and 2 respectively which are designed to show that these reduction-

isomorphism results do not easily generalize. 

2. Local-global results 

2.1. We shall use rather freely some notations and results from 

the earlier papers of this series, especially from [J] part IV. In 

particular ~(X,Y) over ~[U] = ~[ •.. , U(i,~), •.• ] is them-dimensional 

universal formal group law constructed in [l] part IV, section 2.3.; 

FV(X,Y) over ~[VJ is the universal p-typical m-dimensional formal group 

constructed in the same place, and aV,T(X}: FV(X,Y}-----+ FV,T(X,Y) is the 

universal isomorphism between p-typical formal group laws of (1], part 

IV theorem 2.12. 



The local-global results of the title of this se~on are now 

1.2 Theorem. Let A be a characteristic zero ring. 

(i) If F(X,Y) and G(X,Y) are two formal group laws over A then 

they are strictly isomorphic over A if and only if they are 

strictly isomorphic over A ~ 7.l ( ) for all prime numbers p. = p 

3. 

(ii) Suppose we have given for every prime number p an m-dimensional 

formal group F(p)(X,Y) ov~r A & fl. (p)" Then there exist an 

m-dimensional form.al group law F(X,Y) over A which is strictly 

isomorphic over A & ?f (p) to F(p)(X,Y) for every prime number p. 

l.3 , Theorem. Let A be the ring of integers of a number field K. 

For each nonarchimedean valuation v let A be the ring of integers 
v 

of the local completion Kv of K. 

(i) If F(X,Y) and G(X,Y) are two formal group laws over A then they 

are strictly isomorphic over A if and only if they are stric~_ly 

isomorphic over A for all nonarchimedean valuations v of K. v 
(ii) Suppose we have given for every nonarchimedea.n valuation van 

m-dimensional formal group law F( )(XwY) ov.er A . Then there exists . v . v 
an m-dimensional formal group law F(X,Y) over A which is strict1y · 

isomorphic to FtrfX,Y) over Av for all nonarchimedean valuations v. 

1.4 . Proof .of theorem 1.1. 

(i) Tlie m-dimensional formal group laws F(X,Y) and G(X·,Y) are strictly 

isomorphic if and only if the power series g- 1(f(X) has its 

coefficients in A, where f(X) and g(X} are the logarithms of 

F(X,Y), G(X,Y). This is the case if and only if 

g- 1(f(X)) E A~~ (_p)[[X]] for all prime numbers p beca.u~e A 
·~ of cha.1a.cbt1ishc: i.ew. 



(ii) 

\i~,-~ 
Because A ® ~ (p) ~ a. Vwe can assume that all the 

F(p)(X,Y} are p-typical formal group laws. Let vp = (v1,p,vc;p, ... ) 

be a sequence of m x m matrices such that F(p)(X,Y) = Fv (X,Y), 
p 

where F (X,Y) is the formal group law obtained from the 
v . 

p 

universal p-typical formal group law FV(X,Y) 

by substituting v. for V. , i E W. 

over ~ [VJ 

J;p l. = 
Up to strict isomorphism we can assume that the matrices v. 

J. ,p 

have their coefficients in A and not just in A~ 7l ( )" Indeed ::::: p 
suppose that i is ttle smallest natural number such that 

v. ·;1,.. Amxm. Then there exists a t. E A .® 7Zv mxm) and a v. E Amxm 
J.,p ~ l. ==\p i,p 

-such that +pt .. v. = v. 
J. ,p J. ,p J. 

(Let -1 (.... ) (n,p) = 1 ' v. E: Am:xrn' v. = n v. , 
l. ,p 1 ,p l. ,p 

such that + rn = take v. = t. = ps 1 ; 
J. ,p rv. ' 

J. ,p J. 

Applying the isomorphism a v t (X) to F (X,Y) 
v p' p p 

t =·(t 1't 2, ... ), t = 0 if i :f J. t p p, p' p,J p ,i 

isomorphic formal group law F (X,Y) with v. = 
J 

- -v. = v .. · 
1 p,i 

v 

take r ,s E 'l2 = 
-1 sv. ) . -n 

J. ,p 

with 

= t. we find an 
J. 

v . for J < i, 
p ,J 

Now let HU(X,Y) be the universal m-dimensional formal group law 

over ~ [U]. Substitute U i = vp,i for all prime number pqwers 
p 

p1 and U(i,g) = 0 for all g not of the form pi~(j). Let F(X~Y) 

be the formal group law over A thus obtained. Then F(X,Y) is 

strictly isomorphic to Fv (X,Y) over A® ~ (p) because for 
p . 

each prime number p l\J(X,Y) is strictly isomorphic to FV(X,Y) 

over ~(p)[U] if one identifies Vi with U i' J. = 1, 2, 
p 

( cf [1 ] , pa:tl: .N. theo1em %.. lo) 

15. Remark. 

Part (ii) of theorem 1.2 ~if A is not necessarily 

of characteristic zero; in fact this hypothesiis was not used in 
i the proof of part (ii) given above, 



To prove theorem 2 3 we need the strong approximation 

theorem of' algebraic number theory. For the convenience of the reader 

we state it here explicitly in the form in which we shall use it. 

2 6. Strong approximation theorem. Let 1" be a finite set 

of nonarchimedean valuation on a number field K with ring of integers 

A and for each v E 'J", let av be an element of ~, the completion · 

of' K with respec;t to v. For each v E 1" choose an r v E ~. Then there 

exists an a E K such that v(a-av) ~ rv for all v € 1' and v(a} > 0 

for all v J ~ • (Note that i£ a E A , the ring of integers of' K , ,. v v v 
for all v € l" then a E A). 

2·1 • P;roof' of theorem 2 3 

(i) trivial, all pa1~ lO of 2.. • .,. 

(ii) As in 2..~ we can assume tha.;t tMe F(v)(X,Y) are all 

p-typical formal group laws. We are going to obtain F(X,Y) by 

substituting inductively suitable values for the u(t,g) in 

the universal for.mal group law Bu(X,Y) over ~ [U]. Suppose we 

have already found elements a( i ,n) E A for I~ I .::_ n and power 

series a.(v){X) such that moJ [ de171ee n J 

(2.7.1} 

.where F(n)(X,Y) is the formal group law obtained by substituting 

a(i,n) for U(i,n) for lnl < n and U(i,n) = o for lnl > n. - . - - - --
By the comparison lemma { [1]. pa:tl: Ii, Col. S". 4 ) there exist 

m-tuplcs of homogeneous forms r(v)(X) and an m x m matrices M(v) 

such that the differences (2..'.f•1) are mod. (dept.e. nt"i) eiu.a.l to 

.. 
If n is.a not a power of a prime number, then v(n) = 1, take 

a(i,g) = o for all n with lnl = n and let a.( ) +l(X) = - - - v ,n 

a.(v),n(X) + f(v)(X) + M(v)r; Then (1 .. 7.1) holds with n + 1 instead 

of n. Now suppose that n = p for a prime number p and r E: ~. Then 

v(n) = p.le~T'be the set of all valuations v"dividing" p (i.e. for 

which v(p) > 0). By the strong approximation theorem 1. 6 there 
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exists a matrix a with coefficients in A such that a - M(v) mod(pAv) 

for all v ET" . Let N(v) = p-1(M(v)-a). Now we take 

a{i,n~(j)) = 

and 

a .. for i = 
lJ 

1 ~ .• , , m; J = J ' ••• ' m 

then (11 t) holds with n + 1 ipstead of n for all v. To see this use 

e.g. formula 

the proof. 

{ l ) 6) cf [1), pa.ii: lZ , By induction this completes 



3. The more dimensional isomorphism formula. 

3.J. Let FV(X,Y) be the universal p-typical m-dimensional formal 

group law of [1] part IV and aV,T(X): FV(X,Y) --+ FV,T(X,Y) be the 
-. 

universal isomorphism of [l], part IV, theorem 2.12. Let the logarithms 

of FV(X,Y), FV,T(X,Y) be respectively. 

(3.l.l.) 
00 

r 
n=O 

n 
a (V) xP 
n 

:[ 
n=O 

n 
a (V,T)Xp 

n 

In [l] part III we derived a most usefull little formula for a (V,T) 
n 

for the one dimensional case (m=l), which was also rather important in 

[1] part V. Argueing exactly as in [1] part III, proposition 5.2 we find 

the following more dimensional version of this formula. 

pa (V,T) 
n 

(3.l.2.) 

n 
+I: :L 

k=2 i+j=k 
i,j~l 

n-i 
pT +£a .(V T)v~P } + 

n . n-i ' i. 
i.= l 



e. 

where M{~} is the matrix obtained from a matrix M by raising each of 

the entries of M to the q-th power. 

The formal group law FV T(X,Y) is p-typical, hence there are , 
unique polynomials Vi E ~[V;T] such that FV T(X,Y) = F_(X,Y). These 

• v 
polynomials v. then satisfy 

l. 

(3. 1. 3.) pa (V,T) 
n 

b~ the more dimensional version of formula (4.3.l ) of [l] part I, 

which is proved in exactly the same way starting from the funciional 

equation of fv(X) i.e. 

By combining formulas (3.1.2.} and (3.J.3.) one obtains a formula 

for T in terms of a.(V,T}, a.(V}, T., V. and V. with i<nwhich turns 
n l. l. l. i l. 

out to be usable. Cf. sections 4,5 below. 



4. The Z -Z/(p) theorem. -- =p .. 

The theorem is 

4.1. Theorem ([5],[6]) . Let F(X,Y) and G(X,Y) be two one 

dimensional formal groups over Z (or Z( , or any ring in between). 
•p = P1. 

Then F(X,Y) and G(X,Y) are strictly isomorphic over ~p (or ~(p} or .•. ) 

if and only if their reductions modulo pare isomorphic over ~/(p). 

The proof of this theorem is in several steps. Let A be Z , Z( , 
=p = PL 

or any ring in between. 

4.2. Proposition. Let v = (vJ,v2 , ... ), v = (v1 ,v2 , ... ) be two 

sequences of elements of A. Then the one dimensional formal groups 

Fv(X,Y) and F~(X,Y) are isomorphic over A if and only if vi = vi mod p 

for all i E ~ and the~ they are strictly isomorphic. 

Proof. First suppose that v. = v. mod p for all i EN. Put 
1. l. = 

(4.2.1.) 
_1 n n-i n-i n n-k n-j n-k n-i 

t = p r: a . (v1? -v1? )+I: I: a k(v~ tl? -tl? v~ ) 
n i=l n-i 1. 1. k=2 i+j=k n- 1. J J 1. 

where a.Q. = ai(v) and ai = ai(v) are the coefficients of the logarithms 

of F-(X,Y) and F (X,Y) respectively. 
v v 

This determines t inductively. And by (3.J.2.), (3.1.3.} we have that 
n 

V (v,t) = v so that a (X) will be a strict isomorphism over A of 
n n v,t 

F (X,Y) ----+ F-(X,Y) = F (X,Y) provided we can show that the t. are v v v,t 1. 

in A (and not just in A 8 ~). But v. = v. mod p and assuming with induction 
1. • 1. 

that t 1, ••• ,tn-l €A we have also 
1. • 

p pJ v.t. e t.v. mod p. It follows that 
1. J J 1. 
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n-i 
~P v. 

l 

n-1 n-k n-j 
= v~ mod (Pn-i+l), v~ t~ 

l. l J 

n-k n-i = t~ v~ mod (pn-k+I) 
J J. 

n-k n-i so that indeed t E A because p a k E A, p a . E A. Inversely n n- n-i 

suppose that a(X): F (X,Y)----+ F~(X,Y) is an isomorphism over A. We v v 

can write a(X) = S(X)oy(X) where S(X) is a strict isomorphism and 

y(X) = uX for some invertible element u of A. Let G(X,Y) be equal to 

-1 -1 -1 uF (u X,u Y). Then the logarithm of G(X,Y) is equal to uf (u X) so v v . 

that G(X, Y) = F"'(X Y) with ";. equal to v ' J. 

i -(p -1) 
v. = u v. 

l. l. 

(This follows immediately from formula (4.1.2.) of [1] part I for a (V)). 
n 

-(pLl) ,..., r. Now u = 1 mod p. So it suffices to show that v. = v mod p. 
1 - i 

I.e. we are reduced to the case that a(X) is a strict isomorphism. But 

then by the universality of the strict isomorphism av T(X) there are 
' 

t 1,t2 , ... EA such that Vn(v,t) = ~n' i.e. there are t 1,t2 , ... EA su~h 

that (4.2.1.) holds. And this shows inductively that v = v mod (p) 
n n 

(Take i=n in the first sum of (4.2.J.) to isolate the term p- 1 (~ -v )). 
n n 

4.3. Proof of theorem 4.1. Let F (X,Y), G(X,Y) be two formal groups 

over A such that their reductions F(X,Y), G(X,Y) are isomorphic over ~/(p). 

-J Let a(X) be any lift of this isomorphism and let H(X,Y) =a G(Cl.X,aY). 

Then H(X,Y) reduces to F(X,Y)_ modulo p and we must show that F(X,Y) and 

H(X,Y) are isomorphic, i.e. we are reduced to the case that F(X,Y) = G(X,Yl 

Let F8 (X,Y) be the one dimensional formal group law over ~(p)[S] which is 



jl 

universal for one dimensional formal group laws over ~(p)-algebras 
.... ,.. .... 

(Cf. [1] part I, theorem 2.5). Lets= (s2,s3 , ..• )_, s = (s2,s3 , ..• ) 

be such that F(X,Y) = F (X,Y), G(X,Y) = F .... (X,Y}. Then by the uniqueness 
s ' 

part of the universality property of FS(X,Y) we have F(X,Y) = G(X,Y) 

. .... 
if and only if s. as. mod p. Now by [1] part I, theorem 2.10, F (X,Y) .. ]. s 

and Fs(X,Y) are strictly isomorphic to the p-typical formal group laws 

F (X,Y), Fn(X,Y) with v. = s.,v. 
v v l. p.i = s .. Hence v. = v mod p so that 

1. l. . p 1. 

Fv(X,Y) and F9 (X,Y) are strictly isomorphic by proposition 4.2. This 

proves that F(X,Y) and G(X,Y) are isomorphic over A if their reductions 

are isomorphic. So it only remains to show that this implies that F(X,Y) 

and G(X,Y) are also strictly isomorphic. Both F(X,Y), G(X,Y) are strictly 

isomorphic to p-typical formal groups so we can assume that they are 

p-typical. Then an isomorphism a(X) again decomposes into a strict one 

and one of the form y(X) = uX, u E A*. So it only remains to show that if 

-l -1 
H(X,Y) = uF (u X,u Y) for some u E A* then H(X,Y) and F (X,Y) are 

v v 

strictly isomorphic. As before we then have H(X,Y) = p ..... (X,Y) with 
• v 

,,..., -(pl.-1) ,..,. 
v. = u v. so that v. = v. mod p and another application of 

]. 1. 1. 1. 

proposition 4.2. shows that H(X,Y) and F (X,Y) are indeed strictly 
v 

isomorphic. This concludes the proof of the theorem. 

4.4. Corollary. Two p-typical formal group laws over ~/(p) are 

isomorphic if and only if they are identical. (NB this does not mean that 

all isomorphisms are equal to the identity). 

Proof. Let ~(X): F(X,Y) ~ G(X,Y) be an isomorphism. Let 

F(X,Y),G(X,Y) be two p-typical lifts of F(X,Y), G(X,Y). Then F(X,Y} and 

G(X,Y) are (strictly) isomorphic by theorem 4.1. which by proposition 

4.2. implies that their reductions are equal. 



11 

5 • Two examp le s_. 

We conclude with two counter examples to imaginable generalizations 

of theorem 4.1. 

5'. 1. Example. Let W (l9) = ~3 ( i], i 2 = -1 be the ring of integers of 
30!» - -

the unramified extension of degree 2 of ~3 • Consider the sequence~ of . 
\an el) \.. o~e d~rrtc;i11ll"'"-i,, 

element~ v= (O,i,o,o,~ .. ) and v = (3i,i,o,o, ... ),Yconsider th~ orm.al grou~ 

laws Fv(X,Y), Fv(X,Y) over ~3Ci]. The reductions mod 3 ~f these formal 

group laws over ~9 are equal. We show that Fv(X,Y) and Fv(X,Y) are not 

isomorphic over ~3[i]. 
. 2 

IndP.ed suppose that a(X) = uX+u2X + •.• were an isomorphism. As usual 

we break up a(X) into a composite. 

F (X,Y) -~>- G(X,Y) - T_{X,Y) 
v B{X) y (X) v 

where a(X) = uX and y(X) is a strict isomorphism. Then G(X,Y) ~ u FJu-1X,u- 1Y). 

so that lo~ G(X) = u log F(u-1X) ·which means that G(X,Y) = Fv(~:Y) with 



... 

~ .,. -A. ) ( ) . . . . l 
• ,11 :i ,o.n, ... NPW y X 1.r; " 1;t~:rict 1somorplnsm between p-ty-p1ce.. 

f1 I f!roup laws. By the universalit~y or the stric-t isomorphism "'v ,r(X) 
• 

t. h !'"! means t.hR.t -there must be elements t 1, t 2 , ..• in ~ (i] such that 

( X) = f ... t ( X). Accordin~ to ( 3 1 1) A.l'IJ ( l i 3 ) tibov'e this means that we 
v, 

must hA.ve 

l "". t = i 1 
and (iooking at the coefficients of x21 ) 

CID 

where f-(X) = .r0 v 1= 

must have 

-3 
( !i.1.1 ) - v2 a., 

3 

... t3 t -9 
v, 2 - 2v1 

+ ------
3 

- - -Substituting the known values of v1,v2 ,v3 , ... 

- 1 - A -8, 
Now a,=·3 v 1 = i, and v2 = u · i 

-3 -3 
- - v - v 

- 1 = v 2 mod 3 so that a 1 _g = a 2 _g mod 

-9 9 (~ 1 [i] ). Further v 1 = (3i) a 0 
3 ~~--·· 

mod (3 ~3[i]) so that' 3~ a2v1. 0 mod 

(~~[il). Hence it follows from ( S.1 1) that we must have 

(5'.1.l) 



~ -8. 1 ) However t 1=i and v2=u l: i mod 3 vhich contradicts , 5".,1.2 · 

~.2, l_!xample. Now let Fy(X,Y) over ~[VJ be the two dimensional 

universal p-typical formal group, et• [:l.J , pa.ii= I2: 

two sequences of 2x2 matrices 

v = 10) 00 00 00 ((oo, <01), <oo>, <oo), ··· } 

• Consider the 

and let F (X,Y) and F-(X,Y) be the formal group laws over __ z which are 
v v 

/j 

obtained by substituting v.(j,k) and v.(.jJc) for V.(j,k) in FV(X,Y), i=1,2~ •.. ; 
1 l 1 

.i,k=1,2. Then Fv(X,Y) = Fv-(X,Y) over E. We show that F (X,Y) and F-(X,Y) Iii"•:: 
-p v v 

not isomorphic over Z . Note that F (X,Y) and F-(X,Y) are both of height 3, 
-p v v 

hence in particular or finite height. 

Suppose that a(X) : Fv(X,Y) ----+ Fv(X,Y) is an isomorphism, As usual 

ve decowpose a(X) into an isomorphism 8(X)=u- 1X: Fv(X,Y) ~ G(X,Y) and 

a. strict isomorphism -y(X); G(X,Y) ~ F-(X,Y). Here u i~nvertible (ovPf' 
v ~ 

~p) 2x2 matrix. The logarithm of G(X,Y) is equal to 

As a rule G(X,Y) is not a p-typical formal group law. However, b1 [1], pa1t y 

~heo'tem 1.10 G(X, Y) is strictly isomorphic to a p-typical formal group law whosr 

lop:arithm is obtained from logG(X) by simply striking out all terms in log 
G 

which shouldn't be there for a p-typical formal group law. ~is means 

that G(X,Y) is strictly isomorphic to the p-typical formal group law G(X,Y) 

with lop:arithm 



(5'.21} 

..,.~ 1 

wher~ f (X)= .E1a.(v)Xp 
v i= l 

0 ·nd U {pi}l.S th t . b . d f b .. ~ e m~ r1x o ta1ne . rem u y ra1s1ng 
1 

each of its entries to the power pi and where, as usunl xP 
i i 

columnvector (X~ , X~ ). 

denotes the_ 

Cor1rpOsinp: the strict isomorphism G(X,Y) -·-~ G(X,Y) with the strict 

isomorphism Y(X): G(X,Y) --~ Fv(X,Y) we find a strict isomorphism 6(X}: 

G(X,Y) +-- F,;;;:(X,Y)._By the universality of the strict isomorphism aV T(X) , 
( 2 dimensional case ; c~. [1] , pa.it [[ ) this means that these must be 2Y2 

matrices t 1 ,t2 , .. ~ with coefficients in ~p such that 

where v = (v 1 ,v2 , ••. ) is a sequence of matrices such that Fv(X,Y)=G(X,Y). 

(Such a seauence of matrices exists because G(X,Y) is p-typical). From 

's l .. i) 

l.>'l 3) 

and ( S 11) 

we see that 

v 1 -1 ( ) { p} l)" = u a 1 v u · = -1 v 1 { p} 
u -u 

p 

gives us that ( cf fo1mu{1.t-'~ (3 i i.J j (3 i 3f above 



v 
_, + t 
p 1 

-v, 
= -· :p 

{5,2.4) 

S (bd ec) • N {p } uppose that u= ow u s u mod p and by 

Tllod P. Using this in ( S. 2 3) we find that u must satisfy. 

( 1 0) (b c) (b c} ( 1 0) 
0 0 d e - d e 0 0 mod P 

This gives us 

c d 0 mod p 

so that u is of the form 

u = ( b P'i') 
pz e 

Subst~tuting this in 
2 ! 5" 2. 3 ) gives that modulo (p ) 

v1 = det(u)- 1 ( _;z ~PY)(~ O wp pPyP) - l bp-1 O ) 
0 pPzP ep = -pze-lbp-l 0 

' ' 

2 b1 ( 5'.2 ·3} 
2.. 

( ~ ~) i which gives mod p for pv2 Wlm~ p a,_lvJ :: 

:i..:· 

o)( ll) 
1 

:J (• -n){1 ll'-1 

-1 
" de~ Lu.) p pP2z.P'J. eP2. - ( _, if-1 pv1 - -pz. b 0 -pe z. 



th 
.... 

:J 

so that we find 

~ a (0 0) 
v2 0 1 mod p , v1 • (01 oo) mod p 

This means that 

( S.2.. 5") 

and hence 

1s.2.6) 

Usin~ ( 5'.2. 5" J and { S'.2. 6) ' in the second line of ( s.::i.. it) · 

we;must have 

(s.2.1) 

- -1 c- .... ) -1 ( 1 :p) -1 (1 +py 0 ) (-y 1 ) 
But t 1 - "P v ,-v 1 = P P o - P pz o - ·1-i o 

P-1 -1 p-1 
where z,y E ~ are such that b = 1 + py, - pzc b = pz. -p , 

so that modulo -P 



- { ~ ~) mod p 

t v ... {p} ... t "' 
1 1 = 1v1 

which is a contradiction with (5.11) • This proves tha.t the two 

2-dimensional formal group laws Fv(X,Y), Fv(X,Y) over gp are not 

isomorphic. 
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