
ECONOMETRIC INSTITUTE 

ON IDENTIFICATION AND THE 
GEOMETRY OF THE SPACE OF 

LINEAR SYSTEMS 

M. HAZEWINKEL 

( REPRINT SERIES no. 245) 

fhis article appeared in "Lecture Notes in Control and 

Information Science", 16 (1979) (Springer Verlag, Berlin) 

ERASMUS UNIVERSITY ROTTERDAM. 

P.O. BOX 1738, ROTTERDAM, THE NETHERLANDS 



ON IDENTII"ICA'l'ION AND THE GEOMETRY OF THE SPACE 

OF LINEAR SYSTEMS 

Michiel Hazewinkel 

Dept. Math. Econometric Inst. 

Erasmus Univ. Rotterda~ 

50, Burg. Oudlaan 

ROTTERDAM, The Netherlands 

1 . INTRODUCTION AND MOTIVATION 

Let 

(I. I) 

Fx + Gu 

y = F..x y = Hx 
t t 

be a continuCJus time or discrete time linear dynamical system of state space 

dimension n, with m inputs and with p outputs. (So that x E JF_n, u E JR.m, y E: I!l.p). 

Here _the matrices F ,G,H are supposed to be independant of time. We use L 
m,n.p 

2 =1Rmn+np+n to denote the space of all such systems, and we let 

Leo (resp. Lcr , resp. Lco,cr) denote the open and dense subspaces of all 
m,n,p m,n,p m,n,p 

completely observable (resp. completely reachable, resp. completely observable 

and completely reachable} systems. Base chan~e in state space induces an action 

of GLn' the group of real invertible n x n matrices on L , ~iz. 
m,.n,p 

s -1 -1 
(F ,G,H) ~ (SFS ,SG,HS ) , and two systems in L which are related in this 

m,n,p 

way are indistinguisable from the point of view of their input-output behaviour. 

Inversely, if (F ,G,H), (F ,G,H) are two systems in L •.;-ith the same input-
m,n,p 

output behavio·.ir and at least one of chem is er and co then they are 

GL0 -equivalen: (i.e. there is an SE GL such that (F,G,H) = ~F,G,H) 5). This 
n 

makes the space of orbits Mr:o,cr 
m,n,p 

Lco,cr/GL iroportant in identification of 
m,n,p n 

systems theory, essentially because the input-output data of a given black be:{ 

give zero infonnation concerning a basis Eor stat:e space. More precisely suppose 

we have given a black-box which is to be m~deiled by means of a linear dyna.:!lical 

system. Then the input-output data give us (r,opefully) a point of ~co,cr 
m,n,p 

(for some more remarks concerning this cf. below in l.lfJ). As more and more 

input-output data come in we find a sequence of points in Mco,cr representing ··m,n,p 
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better· and better n-dimensional linear dynamical system approximations of the 

given black box. If this sequence approaches a limit we have found the best 

linear dynamical system model (of dimension n) of our black box. We hav.:> then 

"identified" the black box. The same picture is relevant if we are dealing 

with a slowly time varying linear dynamical system. (In pra~tice of co~rse it 

is often desirable to have a concrete representation in terms of triples of 

matrices of our sequence of systems; this is where the matter of continuous 

canonical forms comes in). Unfortunately the space Mco,cr is never compact; 
m,n,p 

i.e. a sequence of points in Mco,cr 
m,n,p may fail to converge. There are holes in 

Mco,cr. To illustrate what kinds of 
m,n,p 

holes there are we offer the following 

three 2-dimensional, 

I . 2 . Example . 

input-I output examples. 

I 
1), ha• (a,O). The resu!t of starting 

in x0 = 0 at time t = 0 with the input function u(t) is then 

(I .3) y(t) 
t 
l (l+t-T)aet-tu(T)dt 
0 

Taking e.g. u(t) = l for 0 < t < T and u(t) = 0 for t > T we see that the 

family of systems (F 8 ,ga,ha)a does not have any reasonable limiting input-output 

behaviour as a ~ 00 • Such a family C3n hardly represent a sequence of better and 

better approxunations to any (physical or economical) black box. 

1.4. Example. 

ga = (a) F = <ol 
I ' a 

I -I 
1L ha= (a ,0), 0 <a E: JR.. In this 

example the result of input u(t), starting in x0 = 0 at t o, is the output 

(I . 5) y (t) 
t (t-i:)F 
' h e ag u(T)dT 

a a 

t t-T 
e 'u(t)dt + 

t -J ,__T 
a e· "(t-!)u(t)dT 

0 0 0 

We see that the limitin[; input/output behaviour of this fo.mily of systems as 

a~"' is the sarue as thar of ::he I-dimensional system g I , F = I , n = I . This 

kind of hole is of course expected. Obviously a family of systems (ga,F'a,ha) 

may "suddenly" have zero-pole cancellation as a -•co. The example also 

illustrates that the family of systems itself (ga,Fa,ha)a may not converge to 

anything as a ~ 00 , while the family of input-output operators 

(l. 6) 
t (t-r)F a 

hae gau(T)dT 
0 

does converge as a~ 00 (In the pointwise, i.e. weak topology, sense that 
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liro U (u(t)) exists for each sufficiently nice u(t)). This type of phenomenon 
a-- a 

'is of course expected if one takes quotients with respect to the action of a 

noncompact group. 

1.7. Example. -a) h = (a 2 ,o), a ElR. In this case 
-a ' a 

the limit 

( l • 8) 
t 

lim ya(t) = lim ! e-a(t-<)(a2-a3 (t-T))u(T)dT 
a-+-00 a-+<» o 

does exist for all reasonable input functions u(t). (E.g. continuously 

differentiable input functions). The limit operator is in fact the differentiation 

operator D: u(t)1-+ y(t) = d~~t). But this operator is not the input-output 

operator of any system of the form (1.1). E.g. because Dis unbounded, while 

the input-output operators of systems of the form I.I are necessarily bounded. 

1.9. The Example l.7 also shows that an obvious first thing to try: 

"just add in some nice way the lower dimensional systems" will not be sufficient 

at least for continuous time systems. However, e•en for discrete time systems, 

where as we shall see, the phenomenon of example 1.7 cannot occur, "adding in 

the lower di:uen,;ional systems" is of doubtful utility. To see this we turn 

our attention to a second bit of motivation for studying possible 

compactifications of l!co,cr. This has to do with finding a point in ~{o,cr 
m,n,p m,n,p 

which approximates, in some to be specified sense, a given set of input-output 

data, a point which was skipped over somewhat lightly in the first par~graph 

of this introduction. Incidentally it is reasonable to try to limit one's 

attention to co and er 3ystems because only ~he co and er part of a system 

is deducible from its input-output 

is not Hausdorff, while Lco,cr/GL 
ro,n,~ n 

behaviour. Al~o the quotient L /GL 
:n~nip n 

is a nice smooch manifold (cf. ,1,J, so that 

the abstract mathematics and the more nhvsical ~nterpretation agree rather ~ell. 

1.10. On findin~ best:::_ n-dbt.?nsional linear sy~~ approxir~aticns to 

given ~ut-out~ut s!._ata. To avoid a number of far from trivial extra 

difficulties which adhere to the continuous time case we here concentrate on 

discrete time systtms. Suppose therefore chat we have input-output data relating 

inputs u(t), t = 0,1, ... , T-j to outputs y(t), ': = 1, ... , T and that, for 

various reasons, e.g. economy of data storage, we wish ~o model this 

relationship by means of a discrete time system (l .1). Here~ is suppo~ed to be 

small comparent to T. One straightforward way to approach t!1is in the l input-

! output case is as follows. Every er triple (F,g,h) E Ll,n,l is GLnequivalent 
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to one of the form 

0 l 0 0 

. (~ 
0 0 

(I.II) g ' F = 0 'h • (bo, ••• ,bn-1) 

0 0 

a - a n-1 0 

'This results in the following ARMA relationship between inputs and outputs 

(I. 12) 

for all N ~ O, N .:::_ T-n. And, inversely, an AR.'1A model like (l.l2) implies that 

the input-output relationship can be thought of as generated by an underlying 

discrete dynamical system (J,J) which is GLn·equivalent to one with its matrices 

as in (1.11). 

Our input-output data give a collection of vectors d = (zn, •.• ,z0 ; 

) € 2n+ 1 d · · · h d f · vn_ 1, ... ,v0 lR an itremainstof1ndthat yperplane e1nedbyan 

equation of the form Zn + an-lzn-l + ... + a 0 Z0 = bn-lvn-I + ••. + b1v1 + b0 V0 

inlR2n+J.which passes best through the collection of data points {d}. This seems 

straightforward enough and moreover an essentially linear procedure. There is 

only a small hint of trouble in that the hyperplane thr~ugh zero such that e.g. 

the sums of the squares of the distances of the data points d to this hyperplane 

is minimal, may very well make only a very small angle with the hyperplane 

Z0 = 0. The problem of finding the best hyperplane is linear in the sense of 

projective geometry rather then affine geometry. A related difficulty is 

reflected by the fact that the natural limit of e.g. the family of AR.'1A schemes 

(1.13) 

as a y ~is the relation yN =~+!"But there is no discrete time linear 

dynamical sy.stem which can generate this relation, and it is also not true 

that the family of discrete time systems given by 

(1.14) 

converges in input-output behaviour as a ~ oo, There is finally a hint of 

more possible trouble in the more inputs-more outputs case because in the one 
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input-one output case the matrices of the form (l.11) induce a global continuous 

canonical form on Mc1o,crl but in the case of m > l and p > I such global ,n, 
continuous canonical forms do not exist (and cannot exist) on all of Mcr,co, [1-4). 

m,n,p 

As it turns out the linearization carried out by (l. l l) and (I .12) "is 

rather more suspect that would be suggested by the remarks above, To see this 

we describe the situation as follows. There are natural bases of the space of 

all input functions and the space of all output functions, viz. the functions 

£i' i = O, •.. , T-1, £i(t) = 0 if t # i, £i(i} =I and ni' i ~ l, ••. , T, 

ni(t) = o if t ~ i, ni(i) = 1. 

Incidentally, in the discrete time, finite horizon case a different choice 

of basis does not essentially affect the picture to be described below. In the 

continuous time case, or in the discrete time case with infinite horizon the 

choice of bases in input- and output function space is much more consequential. 

The space of all possible linear input-o'Utput relations (causal or not) is 

the space of all matrices 

(The causal input.output relations form a linear subspace). The space of 

input-output relations generated by a linear discrete time system of dimension 

< n is an open dense subspace of the space of all matrices of Hankel form 

H(A) • 

A 
0 

h-1 

Ar-1 

which moreover satisfy the condition rank H(A) ~ n. This is a highly nonlinear 

subspace, as is illistrated by the picture below which shows the closure of the 

subspace of input-output operators genera.ted by a system of dimension::_ I as 

a subspace of A0 , A1, A2 - space. The subspace is the cone with top in 0 

through the hyperbola A1 l,A0A2 =I. The origin in the picture is the zero 

system and the points A0 = 0, A1 = 0, A2 # 0 are the points in the surface which 

are not realizable as < I dimensional systems. 
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The nonlinearity of the picture is such as tc suggest that it may will be 

impossible to linearize this suriace without losing all ~ P.riori guarantees 

concerning the quality of our identification in terms of the noise in our data. 

This is indeed the case and to see this we calculate the sensitivity coeffi~ients 

of the outputs y(I), y(2), y(3), .. with respect to the A.~.A model parameters 

a0 , •.• ,an-I' b0 , ••. , bn-I. For simplicity we taken= I. We write a0 = -f 
and b "' h. We then have of course 

0 
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y(l)" • hu(o), y(2) = hfu(O) + hu(I), y(3) • hf2u(O) + hfu(I) + hu(2) 

So that if, e.g., u(J) = u(2) • 0 and u(O) • I, then the sensitivity 

coefficients of y(J), y(2), y(3) with respect to the ARMA model parameters are 

respectively 

ay -af - (O,h,2hf} 

which do not remain bounded independent of h and f. These sensitivity 

coefficients are especi~lly had if both f and h are large. This fits with the 

remark made just above (1.13) above, because this corresponds to a hyperplane 

of best fit which is very close to the hyperplane Zn = 0. On the other hand 

it is possible to divide the surface into a number of pieces and find local 

linearizations on each of these pieces such that the sensitivity coefficients 

calculated everywhere with respect to the appropriate local linearization do 

remain bounded. Indeed with respect to the coordinates A0 ,A1 we have 

A2 = A~ 1 Ai so that the sensitivity coefficients become 

and these are bounded by 2 in absolute value if [A I > !A1!. On the other hand 
0 ::-1 2 

with respect to the cooYdinates A1 , A2 we have A0 = A2 A1 ,so that the 

sensitivity coefficients become. 

3y -·I 
~A = (2A1A2 ,1,0), 
CIAI 

and these are bounded by 2 in absolu~e value in the region where IA I > !A1 j. 
2 

' 21 -
Now the surface has the equation AoA2 = A1, so that for every point on t:he 

surface we must have iA I > [A1! : A.2 I > I I {or both). So see t:hat for 
' 0 - or - ;A1 1 we 

this example two pieces suffice to find a piecewise linearization with 

uniformly bounded sensitivity coefficients. The picture incidentally :uggests that 

to avoid trouble where both A0 and A2 are small it would be good to introduce 
l a third neighbour~1ood with coordinates A1 and ,-(A -A2) in the intersection of 

2 ~ 2° 
the surface 1.1ith, say, the solid cylinder A0 + A2 :5_ !. The original 

coordinates h,f also work well in this region. It is perhaps also worth 

remarking that while the sensitivity coefficients ~~n), a~~n} get very 

rapidly worse if f > I and n ~ = this is much less so the case for the 

sensitivity coefficients dy(n) oA0 
ay(n) d ay(n) ay(n) in their appropriate 
ax-an ~· aA2 

I I 
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regions. Indeed in A0 , A1 coordinates one has An = .A:n+I A~ and in A1 ,A2 
-n+2 n-1 

coordinates An • A1 A2 and the remark follows. 

In the continuous time case we find instead of 1.12 a model 

where D is again the differential operator. This model is already a priori 

more suspect than its discrete counterpart (1.12}, simply because Dis not 

a bounded operator. 

1.16. The example suggests that it may be possible to construct the 

following sort of set up for identification procedures (discrete time case}. -There is a large open neighbourhood U of M , the closure in the space m,n,p 
of all linear input-output relations of the space of those input-output 

matrices which are realizable by means of~ n dimensional linear systems. 

This neighbourhood U comes equipped with a finite covering Ui 

maps <P.: u. + lRq' q = mpT2 .such that <P. (U. n M ) c lRmn+np 
l l 1 l m, n,p 

embedding) and such that the Jacobian of <Pi is bounded on all 

and coordinate 

c: Jllq (canonical 

of U. for all i. 
l 

The identification procedure would then roughly work as follows. Our input-

output data give as a point in lRq the space of all linear input-output relations. 

If x. U, this input-output rP.lation cannot be well approximated by a linear 

dynamical system of dimension.::_ n (and there should be an explicit number 

stating how badly the best approximation would still be)·. If x E U, find an i 

such that x E Ui. Apply ~i to x and find the pointy ElRmn+np ClRq closest 
-I 

to <Pi (x) (linear pre> j ect ion). Then take •Pi (y) and this wi 11 be a good linear 

dynamical system approximation of the input-output operate>r x. The boundedness 

of the Jacobian of the ~i guarantees that this procedure will have bounded 

sensitivity coefficients. In all this one can of course assume that x is 

already of Hankel fo'C1Il (if not first project on to the linear subspace of all 

input-output operators of Hankel form), so chat the essential problem really 

is how curved M lies in the space of all Hankel type matrices. m,n,p 

1.17. When can we expect that such a procedu~e can be constructed. 

Obviously this will be the case if we can find a suitable smooth Riemannian 

compactificatibn of ~co,cr. Of course not every smooth compactification will do. m,n,p 
The associated metric must fit with the topology on the space of the input-

output oper3t0rs belonging to the points of Mco,cr. The relevant topology on 
m,n,p 

the space of operators appears to be the weak or pointwise-convergence 

topology. This is suggested by the results to be discussed below and also fits 
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in well with (infinite dimensional) realization theory (Schwartz kernel 

theorem). 

For instance the 

d . lR.2n an one output is 
h S2n .. sp ere , giving us 

M1 1• Of course the ,n, 
the boundary of M1 1 ,n, 

space of all er systems of dimension n with one input 

and a nice smooth Riemannian compactification is ~he 2n

also a nice smooth Ricmannian compactification of 

same lower dimensional systems occur several times in 

in s2n; this, however, is not particularly bad for our 

purposes, and is a small price to pay for srooothness (and also appears to be 

unavoidable if one wants a smooth compactification). Much worse is that the 
2n 2n • one point compactification S of JR. brings systems very close together 

(in the Riemannian metric) which are very far from each other in input-output 

behaviour. 

All this then is a second bit of motivation for studying (partial) 

compactifications of :ico,cr which are system theoretically meaningful and m,n,p 
for studying the degeneration possibilities of families of systems. Possibly, 

as is suggested by the• results below, it is too much to hope for a total 

smooth Riema11nian compactifi~ation. In that <'ase one would try to find a 

smooth Rieruannian partial co1npactification M which is system theoretically 
m,n,p 

meanillgful i11 the sen,;e thnt a family of points in~! convngcs to a point 
m,n,.p 

in M if m?n,p the associat1·d farni I y of input-output operators 

converges in the weak topology (to somt' linear oper:1t1)r) and which has moreClver 

the property that M is flat enough everywlwrc wlier c it is not closed. m,n,p 
This is precisely the situation one obtains if in the example above one adds 

Meo' er h · · d h · 0 .J. 0 d h to l,l,J t e or1g1n an t e nonsystem points A0 = 0, A1 = , A2 r an ten 

resolves the singularity at the origin. 

The remcinder of this paper (sections 2-4) discusses some partial 

compactification results, these sections are essentially a sc,mewhat revised 

version of the corres?onding sections of ( 2 J. 

co,cr 
2. DIFFERENTIAL OPSRJl.TORS OF ORDER -;; n-1 AS LIJ'IITS OF 

In this and the ~allowing section we consider continuous time systems 

only. 

2.J. Definition. A differential operator of order n - I is (for the 

purposes of this pape~) an input-output map of the torm 

(2.2) y (t) 
n-1 

+ ... +an-ID u(t) 

where the a0 , •.. ,an-I are real constants and an-I t 0. The zero operator 

u(t)I->" 0 is, by definition, the uniqu" differential operator of order -1. In 

this and the following section we shall always suppose that u(t) is as often 
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continuously differentiable as is necessary. 

2.3. Theorem. Let L be a differential operator of order< n-1. Then there 

exists a family of (continuous time) linear dynamical systems 

(Fa,ga,ha)a c L~~~~~ such that (Fa,ga,ha) converges in input-output behaviour 

to L as a ..,. co. Here this last phrase means that for every smooth input function 

u(t) of compact support 

t (t-T).F 
(2.4) lim f h e ag u(T)dT = Lu(t) 

a-><x> o a a 

uniformly in ton every bounded t-interval in [0, 00). 

2.5. To prove theorem 2.3 we do first some preliminary exercises concerning 

differentiation, partial integration and determinants. The determinant exercise 

is the following. Let k =JN U {0,·l} and let n € l-1. Let B(n,k) be the n X n 
t . . h h b" . 1 ff" . . B( k) - (i+j+k) . . I ma r1x wit t e inom1a coe icient entrie~ n, i,j - i+l+k, i,J , .•• , n. 

Then det(B(n,k)) 

exerciAe says that 

I for all n,k. The combined differentiation/partial integration 

t 
(2.6) ; e-a(t-T)an(t-T)mu(t)dT 

0 

(J') dju 
where u (t) is short for --~(t) 

dtj 

2.7. Proo[ 0 the<'._l'."em 2.3. Let I < m < n and consider the following family of 

n-dimensional I input-I output linear dynamical systems. 

(2 .8) Fa=(-'.·.' o. !) 
0 O -a 

h 
a 

(0, ••. , 0, b m, •.• , b I) 

where the b1, ... , bm are still to be determined real numbers indepenciant oi the 

parameter a. Now sFa is the sum of the diagonal matrix - sain and the matrix 

with superdiagonal elements sa and zero's elsewhere. These matrices commute 
sF 

making it easy to write down~ a explicitly and using this and (2.6) one finds 

without difficulty that 

(2. 9) 
t (.t-t)Fa 
! hae gau(t)dt 
0 
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Using the determinant result of 2.5 above it follows that we can choose 

b 1, ••• , bm in such a way that 

(2.10) 
t ( t-"C )Fa ( I ) I 
f hae g8 u(T)dT •bum- (t) + O(a- ) 
0 

where b is any pregiven real number. Now let L be any differential operator 
n-1 of order~ n-1, say L = b0 + b1D+ ..• + bn-ID • For each i • O, ••• , n-1 let 

(F (i),g (i),h (i)) be a fa111ily of dynamical systems such that (2.JO) holds with a a a 
m - I• i and b =b .. Now let (F',g',h') be the n2-dimensional system which is 

l a a a 
the direct sum of then n-dimensional systems (F8 (i), ga(i), ha(i)). I.e. 

(2. 11) g~ -t~::~J ' F~ (':(O). • .. :.J 
The transfer function of (F~,g~,h~) is then Ta(s) 

n-1 
E h (i)(s-F (i))-lg (i) 

a a a i=o 
and because Fa(i) is the same matrix for all i it follows that the degree of 

the denominator of Ta(s) can be taken to be_:: n. By realization theory or 

decomposition theory, cf. [SJ, [6], it follows that there exists for all a€ lR 

an n-dimensional system (F~,g~,h~) with transfer function Ta(s), and the same 

input-output behaviour as (F~,g~,h~). 

. co er Finally because L1 ' 1 is open and dense in L we can find for all a €lR ,n, I ,n, I 
a er and co system (Fa,ga,ha) such that 

where M is 
a 

(t-T)F" (t-T)F I I 
lh"e ag" - he ag l < e: it--cle t-t Ma 

a a a a - a 

plus the maximum of the absolute values of the <!ntries of F". a 
-a!i 

Taking e.g. E = e a we see that the families (F",g",h") and (F ,g ,h) h.:::ve a aaa aaa 
the same limiting input-output behaviour. This concludes the proof of cheorem 2.3 

3. LIMITS OF TRANSFER FUNCTION~ 

Let (F,g,h) E .1c1o,cr1. Its transfer function is T(s) = h(s~F)-tg, which 
,n, 

is a rational function of the form 

(3. I) 
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auch that numerator and denominator have no factors in common. The system 

(F,g,h) is up to GL equivalence uniquely determined by T(s) so that we can and 
n 

shall identify M~:;~~ with the space of all such rational functions (3.l). 

There is an obvious smooth compactification of this space of all rational 

functions, viz. JP 2n, real projective space of dimension 2n, which consists of~ 
all ratios (x0 : •.• :x2n), xi EJR, such that at least one xi is nonzero. We 

embed M~~~~~ inlE'2n by mapping (F,g,h) to (b0 : ••• :bn-l:a0 , ••• ,an-l:I), where 

the b. and a. are the transfer coefficients as in (3.l). The image of this 
l. l. 

mapping w is clearly open and dense. 
2n the subspace of lP consisting of those points Now let M1 1 be ,n, 

(x0 : ••• :x2n) € JP2n for which at least one of the xn• •.. , x 2n is non-zero. To 

each x € M1 1 we associate a (generalized) transfer function ,n, 

(3.2) 

n-k-1 
bn-k-ls + •.• +bo 

+ n-k 
s + ••• +a 1s+a0 

where k = 2n - m if m is the index uf the last coordinate of x which is nonzero. 

Tr(s) = T (s) - L (s). x ~ x 

3.3.Le!llllla. Let TJ.(s) be a family of transfer f~nctions (3.1) of systems 
(F h ) ~ Lco,cr . d a'gr::t' a. "- I ,n,I in exed by a parameter CL Then Ji~ Tc'J.(s) exists pointwise 
for infinitely many values of s iff (i) all limit points of the sequence 

(x) , x = '.il(F ,g ,h ) , are in M1 1 cJP2n and (ii) if x and x' are two a a a. ·J. 'l .:::1 • ,n, 
limit points of this sequence then Tx(si = Tx 1 (s). Moreover if these conditions 

are fulfilled then lim T (s) = T (s) for all limit points x of rx ) • 
0,-M» a. x :!Cl 

The proof is elementary. Clearly if (x , ) , is a subsequence of (x ) 
J. 'l a a 

which converges to x € M1 1 then lim 'T , (s) = T (s). Now suppose (x ,) , is 
,n, :x•--·Ct .,ic • 'la 

a subsequence which converges to some point in JP-n -... M1 1, then 
,n, 

lim T ,(s) = + 00 ·for all but finitely many s. Finally if (xN)N ~as all its 
a•...,, a ........ 
limit points in ~l,n,l and there are limit points x, x' such that Tx(s) p Tx,(s), 

then lim Ta(s) cannot exist for infinitely many values of s because then we would 

have two unequal rational functions which are equal for infinitely many values of 

their argument. 
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3.4. Theorem. Let x E M1 1 and let (F,g,h) be any (n-k)-dimensional system 
,n,r n-k -1 

with transfer function equal to Tx(s), and such that det(s-F) = s + xm xm_ 1+ ••• 

+ x- 1x2 , where m = 2n-k is the index of the last non zero coordinate of x. Then m n 
there exists a family of system~ (F ,g ,h ) c: Lclo,crl such that 

a a a ,n, 
t (t-T)F t " 

(3.5) lim J he ag u(T)dT = L (D)u(t) + J he(t-T)Fgu(T)dT 
a-+eo 0 a a x 0 

and such that moreover 

(3. 6) lim T (s) = Tx(s), 
a-+<x> a 

Hm 1/J(F ,g ,h ) = x 
a-+<>0 a a a 

Proof. Let (F',g' ,h') be a family of k-dimensional systems in L1 k 1 whose 
.a a a , , 

input-output behaviour converges to the differential operator L (D). Let (F",g",h") 
x a a a 

be the direct sum of (F~,g~,h~) and (F,g,h). As in the proof of theorem 2.3 we can 

change the family (F~,g~,h~) to a family (Fa,ga,h8 ) of co and er systems with the 

same limit input-output behaviour. Then (3.5) holds. The first part of (3.6) follows 

by taking u(t) to be smooth of bounded support. Then the integrals and Lx(D)u(t) in 

(3.5) are all Laplace transformable and the first part of (3.6) follows.by the 

continuity of the Laplace transform (cf. [7], theorems 8.3.3 and 4.3.J). The second 

part of (3.6) follows from the first part together with the condition on det(s-F). 

3.7.Theorem. Let (Fa,ga,ha) be a family of n-dimensional systems such that 

t (t-T)F 
lim J h e ag u(T)dT 
a-+<><> 0 a a 

converges uniformly in t on bounded t intervals. Then there exists a k ~ 0, a 

differentail operator L of degree~ k-1 and an (n-k)-dimensional syste~ (F,g,h) 

such that 

(3.8) lim 
a-.co 

t (t-T)F a 
f h8 e gau(T)dT = Lu(t) + 
0 

t (t--r)F J he gu(T)dT 
0 

Proof. By changing the (Fa,ga,ha) slightly if necessary ( as in the proof of 

theorem 2.3) we can assume that (F ,g ,h ) E: L c1o,c: :or :i.11 a. I.et u(t) be a given 
a a a ,n,. J 

smooth input function of bcundeJ sup?ort anJ let U(s) be its Laplace transform. The 

Laplace transform of ~he exPresion under the limit sign in (3.8) is then Ta(s)U(~), 

where Ta (s) is the transfer function of (F 3 ,ga·· ha). The continuity of the Laplace 

transform ([7],theorem 8.3.3) and ler'lllla 3.3 above together the~ imply that there is 

an x E M1 1 such that lim T (s) = T (s)·. Take L = L (D) and let (F ,g,h) be any 
,n, ,.- a x x 

(n-k)-dimensional system with transfer function Tr(s). Then the statement of the 
x 

theorem follo~s because the Laplace transform is injective. 

3.9. Theorems 3.4 and 3.7 together say that H1 1 is a maximal partial ,n, 
compactification in the sense that if a family of systems (F3 ,ga,ha) converges in 
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input-output behaviour then their associated points in N1 1 converge in i11 1• ,n, ,n, 
aud inversely every point of M"1 1 arises as a limit of a family (x ) which comes 

.n, a a 
from a family of systems (Fa,g8 ,ha) which converges in input-output behaviour. It is 

not true, however, that a family (F ,g ,h ) converges in input-output behaviour iff 
a a a 

the sequence of associated points converges; cf. 3.10 below. 

3.10. One cannot use realization theory directly to prove theorem 2.3. For 

instance the family of rational functions (s-a)- 1a converges to -l as a+"" 

and -1 is the Laplace transform of the operator u(t).-+ y(t) = -u(t). The 

transfer functions (s-a)- 1a are realized by the sys~ems F ~ I, g • I, h = a. But 

the limit lim ft aet-Tu(T)dT does not exist for almost all u(t). 
a.- O 

On the other hand the following is true. Let (Fa,g8 ,ha) be a family of systems 

with transfer functions Ta(s). Suppose that there is a c ER such that T8 (s) has 

no poles with real part >c for all a. Then the limit of the Ta (s) exist& for 

a+ 00 iff the family (F8 ,ga,ta) converges in input-output behaviour. Half of tbis 

was proved in theorem 3.7 above. The other half is proved by using a continuity 

property of the inverse Laplace transform when applied to a converging sequence of 

rational ftlnctions with the extra property just mentioned. 

This can be used to give another proof of theorem 2.3 as well as its obviv~s 

more input - more output generalization. The other theorems above generalize 

immediately to this case. 

4. LIMITS OF DISCRETE TI~E SYSTEM$ 

4.1. First let be a family of co and er continuous. time systeius 

of dimension n which converges in input-output behaviour. Let A1.(a) = h :'ig. 
a a a 

Suppose in addition that for every 

there is a subsequence 0£ 

the block Hankel matrices 

'"JC (a) r,r 

i the remain bounded. Then for everv 

<Nhich converges to ,;ome matrix A .• Consider 
l 

1( 
r,r 

By choosing the subsequence~ inductively we c.an see to it that a subsequence of 

'J( (a) converges to 'X . It foll0ws that rank('X ) < n for al: r, which r,r r,r r.r -
in turn (cf. [ S], chatJter I 0) means that. A0 , A1, A2,... is realizable by a < n 

dimensional system. From this we see that the limit input-output be~aviour of the 

family (Fa,ga,ha) is necessarily the input-output behaviour of a< n dimensional 

system. I.e. the extra boundedness assuption on the Ai(a) sees to it that the 

limit differential operator L occurring in (3.8) is always zero. 

i 



4.2. Now let 

output operator of 

that the (Fa,ga,ha) 

41.5 

be a family of discrete time systems. The input-
• ( I I ) is the matrix A0 (a): 11 1 (.a): . . . . Now assume 

are n-dimensional and that the family converges in input-
output behaviour. Then the Ai {a) remain bounded for all i, and argueing exactly 
as in 4.1 above we find that the limit input-outpu~ behaviour is that of a linear 
discrete time system, possibly of lower dimension. In other words, in the discrete time 
time case a maximal partial compactification of 

consisting of all Cx0 : x 1: x 2: ••. : x 2n) € P2n 

,.,...co,,cr "" 
'"l,n,l is the space Ml,n,l 

such that the polynomial part of 
the associated rational function, Lx(s), is zero. That is, the smooth partial 
compactification M1 1 is obtained by adding in {several times) all lower ,n, 
dimensional systems and nothing else. 
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