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1 . INTRODUCTION AND MOTIVATION 

Let 

Fx + Gu 

(!.I) 

y = Ex y = Hx 
t t 

be a continuous time or discrete time linear dynamical system of state space 

dimension n, with m inputs and with p outputs. (So that x E: JP_n, u E: JRm, y E JR?). 

Here the matrices F ,G,H are supposed to be independant of time. We use L m,n,p 
2 

= JRmn+np+n to denote the space of all such systems, and we let 

Leo (resp. Lcr , resp. Lco,cr) denote the open and dense subspaces of all 
m,n,p m,n,p m,n,p 

completely observable (resp. completely reachable, resp. completely observable 

an:l completely reachable) systems. Base change in state space induces an action 

of GLn, the group of real invertible n x n matrices on L , viz. m,n,p 

(F,G,H) 8 = (SFS-l ,SG,HS- 1), and two systems in L which are related in this 
m,n,p 

way are indistinguisable from the point of view of their input-output behaviour. 

Inversely, if (F,G,H), (F,G,H) are two systems in L with the same input-
m,n,p 

output behaviour and at least one of them is er and co then they are 
- - - s 

GLn-equivalent (i.e. there is an SE: GLn such that (F,G,H) = (F,G,H) ). This 

makes the space of orbits Mco,cr 
m,n,p 

Lco,cr/GL important in identification of 
m,n,p n 

systems theory, essentially because the input-output data of a given black box 

give zero information concerning a basis for state space. More precisely suppose 

we have given a black-box which is to be modelled by means of a linear dynamical 

system. Then the input-output data give us (hopefully) a point of Mco,cr 
m,n,p 

(for some more remarks concerning this cf. below in I.JO). As more and more 

input-output data come in we find a sequence of points in Mco,cr representing 
m,n,p 
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better and better n-dimensional linear dynamical system approximations of the 

given black box. If this sequence approaches a limit we have found the best 

linear dynamical system model (of dimension n) of our black box. We have then 

"identified" the black box. The same picture is relevant if we are dealing 

with a slowly time varying linear dynamical system. (In practice of course it 

is often desirable to have a concrete representation in terms of triples of 

matrices of our sequence of systems; this is where the matter of continuous 

canonical forms comes in). Unfortunately the space Mco,cr is never compact; m,n,p 
i.e. a sequence of points in Mco,cr 

m,n,p 
may fail to converge. There are holes in 

Mco,cr. To illustrate what kinds of 
m,n,p 

holes there are we offer the following 

three 2-dimensional, 

1.2. Example. 

input-I output examples. 

in x 
0 

(1. 3) 

I 
1), ha= (a,O). The result of starting 

0 at time t = 0 with the input function u(t) is then 

y(t) 
t 
; (l+t-L)aet-Tu(T)dT 
0 

Taking e.g. u(t) = l for 0 < t < T and u(t) = 0 for t > T we see that the 

family of systems (Fa,ga,ha)a does not have any reasonable limiting input-output 
behaviour as a + oo. Such a family can hardly represent a sequence of better and 

better approximations to any (physical or economical) black box. 

l .4. Example. 

l -] 
1), ha= (a ,0), 0 <a ElR. In this 

example the result of input u(t), starting in x0 = 0 at t O, is the output 

( 1.5) y(t) 
t (t--r)F a 
! hae gau(T)dT 

t t 
f et--ru(T)dT +: a-]et-T (t-T)u(T)dT 

0 0 0 

We see that the limiting input/output behaviour of this family of systems as 

a+ 00 is the same as that of the I-dimensional system g I, F = 1, h = 1. This 

kind of hole is of course expected. Obviously a family of systems (ga,Fa,ha) 

may "suddenly" have zero-pole cancellation as a + oo, The example also 

illustrates that the family of systems itself (ga,Fa,ha)a may not converge to 

anything as a ->- 00 , while the family of input-output operators 

(I. 6) 
t (t--r)F 

U : u(t)o-+ Ya(t) = ! h e ag u(T)dT a 0 a a 

does converge as a+ 00 (In the pointwise, i.e. weak topology, sense that 
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lim U (u(t)) exists for each sufficiently nice u(t)). This type of phenomenon 
a-><x> a 

is of course expected if one takes quotients with respect to the action of a 

noncompact group. 

1.7. Example. -a) h 
-a ' a (a2,0), a ER. In this case 

the limit 

(I. 8) 
t 

lim ya(t) = lim f e-a(t-T)(a2-a3 (t-T))u(T)dT 
a-><x> a->00 o 

does exist for all reasonable input functions u(t). (E.g. continuously 

differentiable input functions). The limit operator is in fact the differentiation 

operator D: u(t)t->- y(t) = d~~t). But this operator is not the input-output 

operator of any system of the form (l.l). E.g. because Dis unbounded, while 

the input-output operators of systems of the form l.J are necessarily bounded. 

1.9. The Example 1.7 also shows that an obvious first thing to try: 

"just add in some nice way the lower dimensional systems" will not be sufficient 

at least for continuous time systems. Roweve.r, even for discrete time systems, 

where as we shall see, the phenomenon of example 1.7 cannot occur, "adding in 

the lower dimensional systems" is of doubtful utility. To see this we turn 

our attention to a second bit of motivation for studying possible 

compactifications of Mco,cr. This has to do with finding a point in Mco,cr 
m,n,p m,n,p 

which approximates, in some to be specified sense, a given set of input-output 

data, a point which was skipped over somewhat lightly in the first paragraph 

of this introduction. Incidentally it is reasonable to try to limit one's 

attention to co and er systems because only the co and er part of a system 

is deducible from its input-output behaviour. Also the quotient Lm n /GLn 
is not Hausdorff, while Lco,cr/GL is a nice smooth manifold (cf. rlj), so that 

m,n,p n 
the abstract mathematics and the more physical interpretation agree rather well. 

J .10. On finding best .2 n-dimensional linear system approximations to 

given input-output data. To avoid a number of far from trivial extra 

difficulties which adhere to the continuous time case we here concentrate on 

discrete time systems. Suppose therefore that we have input-output data relating 

inputs u(t), t = 0, I, ... , T-l to output.! y(t), t = I, ... , T and that, for 

various reasons, e.g. economy of data storage, we wish to model this 

relationship by means of a discrete time system(!.!). Here n is supposed to be 

small comparent to T. One straightforward way to approach this in the 1 input-

! output case is as follows. Every er triple (F,g,h) E Ll,n,l is GLnequivalent 
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to one of the form 

0 J 0 0 

, (i 
0 0 

(I. 11) g ' F 0 ' h (bo' • • · ,bn-1) 

0 0 

-a - a n-1 0 

'This results in the following ARMA relationship between inputs and outputs 

(1.12) 

for all N ~ O, N 2_ T-n. And, inversely, an ARMA model like (1.12) implies that 

the input-output relationship can be thought of as generated by an underlying 

discrete dynamical system (Joi) which is GLn·equivalent to one with its matrices 

as in (I • 11 ) • 

Our input-output data give a collection of vectors d m (zn•·· .,z0 ; 

v 1, ... ,v ) E JR.2n+l and it remains to find that hyperplane defined by an 
n- o 

equation of the form Zn + an-lzn-I + ..• + a0 Z0 = bn-lvn-I + •.• + b1v 1 + b0V0 

inlR.2n+l which passes best through the collection of data points {d}. This seems 

straightforward enough and moreover an essentially linear procedure. There is 

only a small hint of trouble in that the hyperplane through zero such that e.g. 

the sums of the squares of the distances of the data points d to this hyperplane 

is minimal,may very well make only a very small angle with the hyperplane 

Zn = 0. The problem of finding the best hyperplane is linear in the sense of 

projective geometry rather then affine geometry. A related difficulty is 

reflected by the fact that the natural limit of e.g. the family of ARMA schemes 

(1.13) 

as a + 00 is the relation yN = uN+l. But there is no discrete time linear 

dynamical system which can generate this relation, and it is also not true 

that the family of discrete time systems given by 

(1.14) g (1,a) 

converges in input-output behaviour as a + ~. There is finally a hint of 

more possible trouble in the more inputs-more outputs case because in the one 
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input-one output case the matrices of the form (1 .11} induce a global continuous 

canonical form on Mc1o,crl but in the case of m > I and p > I such global ,n, 

continuous canonical forms do not exist (and cannot exist) on all of Mcr,co, [l-4], 
m,n,p 

As it turns out the linearization carried out by (I.II) and (l .12) is 

rather more suspect that would be suggested by the remarks above, To see this 

we describe the situation as follows. There are natural bases of the space of 

all input functions and the space of all output functions, viz. the functions 

Ei' i = O, .•• , T-1, e:i(t) = 0 if t <f i, e:i(i) =I and ni' i =I, .•• , T, 

0 if t"' i, ni(i) = 1. 

Incidentally, in the discrete time, finite horizon case a different choice 

of basis does not essentially affect the picture to be described below. In the 

continuous time case, or in the discrete time case with infinite horizon the 

choice of bases in input- and output function space is much more consequential. 

The space of all possible linear input-output relations (causal or not) is 

the space of all matrices 

( ~ ~.~1 ) 

~-1,0 A.,~1,T-1 
(The causal input~output relations form a linear subspace). The space of 

input-output relations generated by a linear discrete time system of dimension 

_::. n is an open dense subspace of the space of all matrices of Hankel form 

H(A) 

A 
0 Ar-1 

which moreover satisfy the condition rank HCA) _::. n. This is a highly nonlinear 

subspace, as is illistrated by the picture below which shows the closure of the 

subspace of input-output operators generated by a system of dimension _::. I as 

a subspace of A0 , A1, A2 - space. The subspace is the cone with top in 0 

through the hyperbola A1 l,A0A2 =I. The origin in the picture is the zero 

system and the points A0 = 0, A1 = O, A2 "' 0 are the points in the surface which 

are not realizable as < 1 dimensional systems. 
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/ 

The nonlinearity of the picture is such as to suggest that it may will be 

impossible to linearize this surface without losing all ~ P.riori guarantees 

concerning the quality of our identification in terms of the noise in our data. 

This is indeed the case and to see this we calculate the sensitivity coefficients 

of the outputs y(l), y(2), y(3), .. with respect to the AR1'1.A model parameters 

a ' 0 

and b 
0 

an-!' b0 , .•• , bn-l. For simplicity we taken= l. We write a 0 = -f 

h. We then have of course 
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y(I) hu(o), y(2) = hfu(O) + hu(I), y(3} hf2u(O) + hfu(I) + hu(2) 

So that if, e.g., u(l} = u(2} = 0 and u(O) =I, then the sensitivity 

coefficients of y(l), y(2}, y(3) with respect to the ARMA model parameters are 

respectively 

ay 2 ay _ 
oh = (l ,f,f ) , at - (O,h,2hf} 

which do not remain bounded independent of hand f. These sensitivity 

coefficients are especially had if both f and h are large. This fits with the 

remark made just above (l.13) above, because this corresponds to a hyperplane 

of best fit which is very close to the hyperplane Zn = 0. On the other hand 

it is possible to divide the surface into a number of pieces and find local 

linearizations on each of these pieces such that the sensitivity coefficients 

calculated everywhere with respect to the appropriate local linearization do 

remain bounded. Indeed with respect to the coordinates A0 ,A1 we have 

A2 = A: 1Ai so that the sensitivity coefficients become 

and these are bounded by 2 in absolute value if IA I > JA 1 1. On the other hand 
0 :;-I 2 

with respect to the coordinates A1, A2 we have A0 = A2 A1 so that the 

sensitivity coefficients become. 

E.L = -2 2 
aA2 (-A2 Al ,O, l) 

and these are bounded by 2 in absolute value in the region where IA2 1 .:: IA1 I. 

Now the surface has the equation A0A2 =A~, so that for every point on the 

surface we must have IA0 1.:: JA11 or IA2 J .'.: IA1 I (or both). So we see that for 

this example two pieces suffice to find a piecewise linearization with 

uniformly bounded sensitivity coefficients. The picture incidentally suggests that 

to avoid trouble where both A and A2 are small it would be good to introduce 
o I 

a third neighbourhood with coordinates A1 and 2(A0 -A2) in the intersection of 

the surface with, say, the solid cylinder A2 + A22 <!.The original 
0 -

coordinates h,f also work well in this region. It is perhaps also worth 
k . h h" . . . ff" . ay(n) Cly(n) remar ing t at w ile the sens1t1v1ty coe ic1ents ~· ~ get very 

rapidly worse if f > I and n ~ ~ this is much less so the case for the 

sensitivity coefficients a~in) 
0 

3y(n) d ay(n) Cly(n) in their appropriate 
aA an aA' --aA2 

I I 
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-n+l n 
regions. Indeed in A0 , A1 coordinates one has An= A0 A1 and in A1,A2 

-n+2 n-1 coordinates An = A1 A2 and the remark follows. 

In the continuous time case we find instead of 1.12 a model 

(!. 15) 
n n-1 D y(t) + bn_ 1D y(t) + ••• + b0y(t) = 

where D is again the differential operator. This model is already a priori 

more suspect than its discrete counterpart (l.12), simply because Dis not 

a bounded operator. 

1.16. The example suggests that it may be possible to construct the 

following sort of set up for identification procedures (discrete time case). -There is a large open neighbourhood U of M , the closure iri the space m,n,p 
of all linear input-output relations of the space of those input-output 

matrices which are realizable by means of ~ n dimensional linear systems. 

This neighbourhood U comes equipped with a finite covering Ui and coordinate 

maps cp.: U. -+ lRq, q = mpT2 such that cp. (U. n M ) c JRmn+np c JRq (canonical 
i i i l m,n,p 

embedding) and such that the Jacobian of cpi is bounded on all of Ui for all i. 

The identification procedure would then roughly work as follows. Our input­

output data give as a point inlRq the space of all linear input-output relations. 

If x ~ U, this input-output relation cannot be well approximated by a linear 

dynamical system of dimension .2_ n (and there should be an explicit number 

stating how badly the best approximation would still be). If x EU, find an i 

such that x E U i. Apply cp i to x and find the point y E IRmn+np c IRq closest 
-1 

to cjli(x) (linear projection). Then take cpi (y) and this will be a good linear 

dynamical system approximation of the input-output operator x. The boundedness 

of the Jacobian of the cpi guarantees that this procedure will have bounded 

sensitivity coefficients. In all this one can of course assume that x is 

already of Hankel form (if not first project on to the linear subspace of all 

input-output operators of Hankel form), so that the essential problem really -is how curved M lies in the space of all Hankel type matrices. m,n,p 

1.17. When can we expect that such a procedure can be constructed. 

Obviously this will be the case if we can find a suitable smooth Riemannian 

compactification of Mco,cr. Of course not every smooth compactification will do. 
m,n,p 

The associated metric must fit with the topology on the space of the input-

output operators belonging to the points of Mco,cr. The relevant topology on 
m,n,p 

the space of operators appears to be the weak or pointwise-convergence 

topology. This is suggested by the results to be discussed below and also fits 
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in well with (infinite dimensional) realization theory (Schwartz kernel 

theorem). 

For instance the space of all er systems of dimension n with one input 

and one output is1R2n and a nice smooth Riemannian compactification is the 2n­

sphere s2n, giving us also a nice smooth Riemannian compactification of 

M1 1. Of course the ,n, 
the boundary of M1 1 ,n, 

same lower dimensional systems occur several times in 

in s2n; this, however, is not particularly bad for our 

purposes, and is a small price to pay for smoothness (and also appears to be 

unavoidable if one wants a smooth compactification). Much worse is that the 
2n 2n . one point compactification S of lR brings systems very close together 

(in the Riemannian metric) which are very far from each other in input-output 

behaviour. 

All this then is a second bit of motivation for studying (partial) 

compactifications of Mco,cr which are system theoretically meaningful and m,n,p 
for studying the degeneration possibilities of families of systems. Possibly, 

as is suggested by the results below, it is too much to hope for a total 

smooth Riemannian compactif ication. In that case one would try to find a 

smooth Riemannian partial compactification M which is system theoretically m,n,p 
meaningful in the sense that a family of points in M converges to a point m,n,p 
in M if the associated family of input-output operators m,n,p 
converges in the weak topology (to some linear operator) and which has moreover 

the property that M is flat enough everywhere where it is not closed. m,n,p 
This is precisely the situation one obtains if in the example above one adds 

co,cr h . . d . .1 to Ml,l,I t e origin an the nonsystem points A0 = 0, A1 = O, A2 r 0 and then 

resolves the singularity at the origin. 

The remainder of this paper (sections 2-4) discusses some partial 

compactification results, these sections are essentially a somewhat revised 

version of the corresponding sections of [ 2 ]. 

co,cr 
2. DIFFERENTIAL OPERATORS OF ORDER :> n-1 AS LIMITS OF L1 , n, 1 • 

In this and the following section we consider continuous time systems 

only. 

2.1. Definition. A differential operator of order n - l is (for the 

purposes of this paper) an input-output map of the form 

(2.2) y (t) 

where the a0 , ••• ,an-I are real constants and an-I+ 0. The zero operator 

u(t)i-+- O is, by definition, the unique differential operator of order -1. In 

this and the following section we shall always suppose that u(t) is as often 
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continuously differentiable as is necessary. 

2.3. Theorem. Let L be a differential operator of order< n-J. Then there 

exists a family of (continuous time) linear dynamical systems 

co er ( ) · · t t t b h · (Fa,ga,ha)a c Ll,~,l such that Fa,ga,ha converges in inpu -ou pu e aviour 

to L as a ~ ~. Here this last phrase means that for every smooth input function 

u(t) of compact support 

(2 .4) 
t 

lim f h e 
a 

a~ o 
Lu(t) 

uniformly in ton every bounded t-interval in [0, 00). 

2.5. To prove theorem 2.3 we do first some preliminary exercises concerning 

differentiation, partial integration and determinants. The determinant exercise 

is the following. Let k =JN U {O;l} and let n E JN. Let B(n,k) be the n X n 

. . . . . ( k) - (i+j+k) .. matrix with the binomial coefficient entries B n, i, j - i + 1 +k , i, J I , ••• , n. 

Then det(B(n,k)) 

exercise says that 

I for all n,k. The combined differentiation/partial integration 

t 
(2.6) f e-a(t-T)an(t-i:)mu(i:)dT 

0 

where u (j) ( t) is short for dj~ ( t) 
dt1 

2.7. Proof of theorem 2.3. Let l < m < n and consider the following family of 

n-dimensional I input-! output linear dynamical systems. 

(2. 8) Fa =(-: .. ' O !) 
0 0 -.a 

I 

h 
a 

(O, ..• ,O,bm, ... ,b 1) 

where the b1, ••• , bro are still to be determined real numbers independant of the 

parameter a. Now sFa is the sum of the diagonal matrix - sain and the matrix 

with superdiagonal elements sa and zero's elsewhere. These matrices commute 
sFa 

making it easy to write down e explicitly and using this and (2.6) one £inds 

without difficulty that 

(2. 9) 
t (t-1) F 
! h e ag u(1)dT 

a a 
0 

m-1 m 
" (-I)m- +l 9, m+i-9,-J (m-9,-J) -1 
1.. a ( I b. ( . )u (t) + O (a ) 

9-=o i= 1 1 1 
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Using the determinant result of 2.5 above it follows that we can choose 

b 1, ... , bm in such a way that 

(2. 10) 
t (t-T)F a 
I hae gau(T)dT 
0 

where b is any pregiven real number. Now let L be any differential operator 
n-1 of order.:::_ n-1, say L = b0 + b 1D+ ... + bn_ 1D . For each i = 0, .•. , n-1 let 

(Fa(i),ga(i),ha(i)) be a family of dynamical systems such that (2.10) holds with 

m - I = i and b =b .. Now let (F' ,g' ,h') be the n2-dimensional system which is 
i a a a 

the direct sum of then n-dimensional systems (Fa(i), ga(i), ha(i)). I.e. 

(2. 11) g' 
a 

The transfer function of (F~,g~,h~) is then Ta(s) 

h' 
a 

n-1 
l: h (i)(s-F (i))-lg (i) 

a a a i=o 
and because Fa(i) is the same matrix for all i it follows that the degree of 

the denominator of Ta(s) can be taken to be< n. By realization theory or 

decomposition theory, cf. [S], [6], it follows that there exists for all a E IR 
an n-dimensional system (F~,g~,h~) with transfer function Ta(s), and the same 

input-output behaviour as (F~,g~,h~). 

. co er 
Finally because LI,~,! is open and dense in Ll,n,l we can find for all a EIR 
a er and co system (Fa,ga,ha) such that 

( t-T)F" ( t-T)F I IM 
\h"e ag" - he ag I< E: lt-T\e t-T a 

a a a a - a 

where M is 
a 

plus the maximum of the absolute values of the entries of F''. a 
-aM 

Taking e.g. e::a = e a we see that the families (F~,g~,h~) and (Fa,ga,ha) have 

the same limiting input-output behaviour. This concludes the proof of theorem 2.3 

3. LIMITS OF TRANSFER FUNCTIONS 

co er . ( ) Let (F ,g,h) E L1 ' 1• Its transfer function is T s ,n, 
-1 

h(s-F) g, which 

is a rational function of the form 

n-1 
bn- I s + ... +b 1s+b0 

n n-1 s +an_ 1s + ... +a 1s+a0 

(3. I) T(s) 
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such that numerator and denominator have no factors in connnon. The system 

(F,g,h) is up to GLn equivalence uniquely determined by T(s) so that we can and 

shall identify Mc1o,crl with the space of all such rational functions (3.1). 
,n, 

There is an obvious smooth compactification of this space of all rational 

functions, viz. JP 2°, real projective space of dimension 2n, which consists of 

all ratios (x0 : ••• :x2n), xi EJR, such that at least one xi is nonzero. We 

embed M~~~~~ inJP 2n by mapping (F,g,h) to (b0 : ••• :bn_1 :a0 , ... ,an-J:l), where 

the b. and a. are the transfer coefficients as in (3.1). The image of this 
l. l 

mapping ~ is clearly open and dense. 
2n the subspace of lP consisting of those points Now let M1 1 be ,n, 

(x0 : .•• :x2n) EJP2n for which at least one of the xn' ... , x2n is non-zero. To 

each x E M we associate a (generalized) transfer function 
I ,n, l 

(3.2) 

n-1 xn_ 1s + •.. +x 1s+x0 

n 
x2ns + .•. +xn 

n-k-1 
bn-k-1 5 + ... +bo 

+ n-k s + ... +a 1 s+a0 

k-1 
ck-1 s + ... + c + 

0 

where k = 2n - m if m is the index of the last coordinate of x which is nonzero. 
k-J r 

We write Lx(s) c0 + c1 s + ... + ck-J s and T (s) = T (s) - L (s). x x . x 

3.3.Lemma. Let Ta(s) be a family of transfer functions (3.1) of systems 

(F g h ) E Lco,cr indexed by h l" ( ) a' a' a l,n,l a parameter a. Ten a.l1ll Ta s exists pointwise 
for infinitely many values of s iff (i) all limit points of the sequence 

(x) , x = ~(F ,g ,h ), are in M1 1 cJP2n and (ii) if x and x' are two 
a a a a a a ,n, 

limit points of this sequence then Tx(s) = Tx 1 (s). Moreover if these conditions 

are fulfilled then lim T (s) = T (s) for all limit points x of (x ) . 
a...,, a x aa 

The proof is elementary. Clearly if (x ,) , is a subsequence of (x ) 
a a a a 

then lim T , (s) = T (s). Now suppose (x ,) , is 
a''°" a 2 x _ a a 

to some point in JP n ' M1 1, then 
,n, 

which converges to x E M1 1 ,n, 
a subsequence which converges 

lim Ta,(s) = _! 00 for all but finitely many s. Finally if (xa)a has all its 
a I ->-00 

limit points in Ml,n,I and there are limit points x, x' such that Tx(s) # Tx,(s), 

then lim Ta(s) cannot exist for infinitely many values of s because then we would 

have two unequal rational functions which are equal for infinitely many values of 

their argument. 
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3.4. Theorem. Let x E 'M1 1 and let (F,g,h) be any (n-k)-dimensional system 
,n,r n-k -I 

with transfer function equal to Tx(s), and such that det(s-F) = s + xm xm_ 1+ .•. 
-I 

+ xm x2n' where m = 2n-k is the index of the last non zero coordinate of x. Then 
there exists a family of systems (F ,g ,h ) c Lc1o,crl such that 

a a a ,n, 
t (t-T)F t 

(3.5) lim f he ag u(T)dT L (D)u(t) + f he(t-T)Fgu(T)dT 
a-><>oQa a x 0 

and such that moreover 

(3. 6) lim T (s) = Tx(s), 
a->oo a 

lim ~(Fa,ga,ha) = x 
a-><>o 

Proof. Let (F~,g~,h~) be a family of k-dimensional systems in Ll,k,I whose 

input-output behaviour converges to the differential operator Lx(D). Let (F~,g~,h~) 

be the direct sum of (F~,g~,h~) and (F,g,h). As in the proof of theorem 2.3 we can 

change the family (F~,g~,h~) to a family (Fa,ga,ha) of co and er systems with the 

same limit input-output behaviour. Then (3.5) holds. The first part of (3.6) follows 

by taking u(t) to be smooth of bounded support. Then the integrals and Lx(D)u(t) in 

(3.5) are all Laplace transformable and the first part of (3.6) follows.by the 

continuity of the Laplace transform (cf. [7], theorems 8.3.3 and 4.3.1). The second 

part of (3.6) follows from the first part together with the condition on det(s-F). 

3.7.Theorem. Let (Fa,ga,ha) be a family of n-dimensional systems such that 

t (t-T)F 
lim J h e ag u(T)dT 
a""""" 0 a a 

converges uniformly in t on bounded t intervals. Then there exists a k ~ 0, a 

differentail operator L of degree~ k-1 and an (n-k)-dimensional system (F,g,h) 

such that 

(3. 8) lim 
a->00 

t (t-T)Fa 
J hae gau(T)dT = Lu(t) + 
0 

Proof. By changing the (Fa,ga,ha) slightly if necessary ( as in the proof of 
co er . theorem 2.3) we can assume that (F ,g ,h ) E L1 ' 1 for all a. Let u(t) be a given a a a ,n, 

smooth input function of bounded support and let U(s) be its Laplace transform. The 

Laplace transform of the expresion under the limit sign in (3.8) is then Ta(s)U(s), 

where Ta(s) is the transfer function of (Fa,ga,ha). The continuity of the Laplace 

transform ([7],theorem 8.3.3) and lemma 3.3 above together then imply that there is 

an x E 111 1 such that lirn T (s) = Tx(s). Take L = Lx(D) and let (F,g,h) be any 
,n, a-KC> a 

(n-k)-dirnensional system with transfer function Tr(s). Then the statement of the x 
theorem follo .. 1s because the Laplace transform is injective. 

3.9. Theorems 3.4 and 3.7 together say that M1 1 is a maximal partial ,n, 
compactification in the sense that if a family of systems (Fa,ga,ha) converges in 
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input-output behaviour then their associated points in M1 ,n,I converge in Ml,n,I, 

and inversely every point of M1 1 arises as a limit of a family (xa)a which comes 
,n, 

from a family of systems (F g h ) which converges in input-output behaviour. It is 
a' a" a 

· ( h ) · · t t t behaviour ;ff not true, however, that a family Fa,ga' a converges in inpu -ou pu • 

the sequence of associated points converges; cf. 3.10 below. 

3.10. One cannot use realization theory directly to prove theorem 2.3. For 

instance the family of rational functions (s-a)- 1a converges to -I as a+ 

and -I is the Laplace transform of the operator u(t)....+ y(t) = -u(t). The 

transfer functions (s-a)-la are realized by the systems F = I, g = 1, h =a. But 

the limit lim ft aet-Tu(T)dT does not exist for almost all u(t). 
a"""' 0 

On the other hand the following is true. Let (Fa,ga,ha) be a family of systems 

with transfer functions Ta(s). Suppose that there is a c ER such that Ta(s) has 

no poles with real part >c for all a. Then the limit of the Ta(s) exists for 

a+ 00 iff the family (Fa,ga,ha) converges in input-output behaviour. Half of this 

was proved in theorem 3.7 above. The other half is proved by using a continuity 

property of the inverse Laplace transform when applied to a converging sequence of 

rational functions with the extra property just mentioned. 

This can be used to give another proof of theorem 2.3 as well as its obvious 

more input - more output generalization. The other theorems above generalize 

immediately to this case. 

4. LIMITS OF DISCRETE TIME SYSTEM8 

4.1. First let (Fa,ga,ha) be a family of co and er continuous time systems 

of dimension n which converges in input-output behaviour. Let A1. (a) = h Fig . 
a a a 

Suppose in addition that for every i the Ai(a) remain bounded. Then for every i 

there is a subsequence of 

the block Hankel matrices 

(Ai(a))a which converges to some matrix A .. Consider 
l 

A (a)) 

L.) 'X r,r 

A 
r 

By choosing the subsequences inductively we can see to it that a subsequence of 

'Kr,r(a) converges to /(r r' It follows that rank(d{ ) < n for all r, which 
' r,r -

in turn (cf. [5], chapter I 0) means that AO' Al, A2, ... is realizable by a < n 
dimensional system. From this we see that the limit inpu t-ou tpu t behaviour of the 

family (Fa,ga,ha) is necessarily the input-output behaviour of a< n dimensional 

system. I.e. the extra boundedness assuption on the A. (a) sees to it that the 
1 

limit differential operator L occurring in (3.8) is always zero. 



4.2. Now let 

output operator of 

that the (Fa,ga,ha) 

(F a'ga,ha) 

(F a'ga,ha) 
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be a family of discrete time systems. The input­

is the matrix (A0 (a) ! A1 (a)! • • • ) • Now assume 

are n-dimensional and that the family converges in input-

output behaviour. Then the Ai (a) remain bounded for all i, and argueing exactly 

as in 4.1 above we find that the limit input-output behaviour is that of a linear 

discrete time system, possibly of lower dimension. In other words, in the discrete time 

time case a maximal partial compactification of Mc1o,crl is the space M1 1 2n ,n, ,n, 
consisting of all (x0 : x1: x 2: ..• : x2n) € P such that the polynomial part of 

the associated rational function, Lx(s), is zero. That is, the smooth partial 

compactification M1 1 is obtained by adding in (several times) all lower ,n, 
dimensional systems and nothing else. 
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