ECONOMETRIC INSTITUTE

ON THE (INTERNAL) SYMMETRY GROUPS
OF LINEAR DYNAMICAL SYSTEMS

M. HAZEWINKEL

(/6» afns

REPORT 7811/M

ERASMUS UNIVERSITY ROTTERDAM, P.O. BOX 1738, ROTTERD AM, THE NETHERLANDS




ON THE (INTERNAL) SYMMETRY GROUPS OF LINEAR DYNAMICAL
SYSTEMS
oy

M. Hazewinkel

ABSTRACT

Let % = Fx + Gu,y = Hx, u ER", y EIRP, x € R™ be a linear
dynamical system of state space dimension n with m inputs and p outputs.
The input—output operator f£(I) associated to this system I,

y = } gef (£~
o
of GL_(R): (F,G,H)S = (SFS~ ,SG,HS“I), S € GL_(R). Thus the external

description of I by means of the operator £(I) is degenerate, much as

u(t) v(t Gu(t)dT,is invariant under the following action

1

e.g. in atomic physics an energy level may be degenerate. Or, again,
there is an (internal) symmetry group, viz. GLnGR). This paper, which
will be a chapter in a forthcoming book on "Groups in many body physics
and systems" (to be published by Vieweg) is concerned with those aspects
of the theory of linear dynamical systems which immediately relate to
the presense of this symmetry group (or degeneracy). The paper is
mainly expository, though it does contain some new results (e.g. on

how to "split" the degeneracy mentioned above) and some new proofs.
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1. INTRODUCTION AND STATEMENT OF THE MAIN DEFINITIONS
AND RESULTS,

A time invariant linear dynamical system is a set of equations

%X = Fx + Gu x(t+l) = Fx(t) + Gu(t)
(1.1) y = Hx y(t) = Hx(t)
(continuous time) () (discrete time)

where x € X =iRp, u€U=R" y €Y =nRP and vhere F,G,H are matrices
with coefficients in R of the dimensions n X n, n X m, p X n respectively,
We speak then of a system of dimension n, dim(Z) = n, with m inputs

and p outputs. Of course the discrete time case also makes sense over

any field k, (instead of R). The spaces X,U,Y are respectively called

state space, input space and output space., The usual picture is a

"black box".
——3 —_———
u, () v, (®)
(1.2) | : x(t) :
um(t> yp(t)

That is the system I is viewed as a machine which transforms an m-tuple
of input or control functions u](t), eeen um(t) into a p<tuple of output

or observation functions y](t), cees yp(t). The formulas expressing

y(t) in terms of the u(t) are

t

(1.3)  y(t) = e’ x(0) + / B’ FVgu(rydr,
[o]
t el i
y(t) = HF'x(0) + £ HF- ' Gu(i)
i=0

where x(0) is the state of the system at time O (and where we start
putting in input at time t = 0), Thus the input-output behaviour of our
box depends of course on the initial state x(0), One is particularly

interested in the input-output behaviour of I when x(0) = 0, We shall

write £(£) for the associated input—output operator. Thus




| t el
(1.6) £(I): u(t)— / He Gu(t)dt, £(E): u(t) I HE
[e} 1=0

F(t-1) iﬁ]Gu(i)

It is now an important fact that the input-output behaviour description
of the machine (1.2) is degenerate much as, say, energy levels in atomic
physics may be degenerate, More precisely the matrices F,G,H (and the
initial state x(0)) depend on the choice of a basis in state space and
from the input-output behaviour of the machine there is (without
changing the machine) no way of deciding on a ''canonical basis for

the state space X = R", More mathematically we have the following, Let

GLnGR) be the group of all invertible real n X n matrices and let

LIn n P(JR) be the space of all triples of matrices (F,G,H) of dimensions
2+
nXxXmn, nxm p X n respectively. The group GL_(R) acts on L @®)
n m,n,p

n
and R = space of initial states as

' se, 15!y, x(0)5 = sx(0)

(1.5) (F,G,H)> = (sFs”
and as is easily checked the associated input~output behaviour of the
corresponding machine as given by (1.3) and (1.4) is invariant under

this action of GLnGR); i,e., in particular f(ZS) = f(£), This action

corresponds to base change in state space. Indeed if x' = Sx and

x = Fx + Gu, y = tk then Snli' = FSle' + Gu, y = ps”!

x'= SFS—lx’ + SGu, y = HS_]x' and x'(0) = Sx(0),

x' so that

This chapter is concerned with those aspects of the theory of
linear dynamical systems which are more or less directly related
to the presence of the internal symmetry group GLnQR} of the internal
description of linear dynamical systems by triples of matrices
(cf. (1.1)) as compared to the degenerate external description by
means of the operator f£(Z) (or (1.3)). This is not really a research
paper (though it does in fact contain a few new results) but rather
a graduate level expository account of some of the material of [3 - 8]
and immediately related matters.

In the remaining part of this introduction we give a slightly
informal description of most of the main results of sections 2-8 below.

We shall concentrate on the continuous time case.



ul(t)

1.6. Feedback and how to resolve the external description degeneracy.

In the case of atomic physics a degenerate energy level may be
split by means of, e.g., a suitable magnetic field. One can ask whether
there exist something analogous in our case of degenerate extermnal
(=observable) descriptions of linear dynamical systems. There does
in fact exist some such thing, It is called state space feedback.
Consider the system (1.1). Introduction of state space feedback L
changes it to the system Z(L)

(1.7) (F+GL)x + Gu
Hx

e
i

«
1]

A

u(t) y(t)
x(t)

In thinking about these things the author has found it helpful

to visualize a linear dynamical system with (variable) feedback as a
set of n-integrators, !, ..,, n, interconnected by means of the matrix
F, a set of m input ports connected to the integrators by means of

the matrix G, a set of p output ports comnected to the integrators

by means of the matrix H and a set of comnections from the integrators
to the input ports (feedback) which maybe varied in strength by the
experimentator (as in atomic physics the splitting magnetic field may

be varied). Cf. also the picture below.

yl(t)

uz(t)

|

v, ()

Y

y3(t) =0
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- interconnections between the integrators as given
by the matrix F. 0 1 0
F =15y fpp a3
£3; 0 I35
connections from the input ports to integrators
f—— . — @ P A
as given by the matrix G 0
812
G = |1 0
0 1
connections from the integrators to the
.__._____>.— [
output ports as given by the matrix H
0 By Byg
H = h21 0 0
0 O 0
connections from the integrators to the
— — — — —» input ports (can be varied in strength by
the experimentator) as given by the matrix L
L 0 2
L = 11 13
0 0 223
Now let I =(F,G,H) and Z' = (F',G',H') be two linear dynamical systems,

and suppose that I and L' are completely reachable and completely
observable, (This is an entirely natural restriction in this context,

cf. 1.9 below; for a precise definition of these notioms, cf. 2.1 below),
Suppose that L # L' but £(Z) = £(I'). Let Z(L), Z'(L) be the systems
obtained by introducing the feedback L, i.e Z(L) = (F+GL,G,H),

'(L) = (F'+G'L,G',#'). Then there is a suitable feedback matrix L,
which can be taken arbitrarily small (so that £(L) and I'(L) are still
completely reachable and observable) such that £(Z(L)) # £('(L)).

I.e. feedback splits the GLnGR) — degenerate external description of

linear dynamical systems.

1.8. Realization theory. Let I be a linear dynamical system (1.1).

Then, if we leave I unchanged, from our observations we can deduce the
operator f(I)or, equivalently, we can find the sequence of matrices
HA () = (Ao’Al’AZ"")’ Ai = HF'G. To obtain these use 8-functions and

derivates of S-functions as inputs. Another way to see this is to apply




e

Laplace transforms to (1.1)., This gives
(1.9) s%(s) = FR(s) + Ga(s) , §(s) = HX(s)

so that the relation between the Laplace transforms §(s),G(s) of the
outputs y(t) and inputs u(t) is given by multiplication with the socalled

transfer matrix T(s)
(1.10) $(s) = T(s)G(s) , T(s) = H(s-F) G

. . -1
The power series development of T(s) in powers of s (around s = «)
is now

(1.11) T(s) = Aos"J FAs 2 A3 e

The question now naturally arises: when does a sequence of p X m
matrices 4 = (AO,A],...) come from a linear dynamical system (1,1),

or, as we shall say, when is A realizable.

1.12. Theorem (i) If A is realizable by an n-dimensional system I then

it is also realizable by an n' < n dimensional system I' which is moreover

completely reachable and completely observable.

(ii) The sequence o is realizable by an n dimensional system % if and only
if rank(];G#))'i n for all s €N U {0},

Herej{se4) is the block Hankel matrix

R oh =

e AZS

1.13. Invariants and the structure of MFr’CO = 19 ¢T GL .
o ® = 120 T @) /oL, @)

Let Lm,n,paR) be the space of all triples of matrices (F,G,H) of
dimensions n X n, n X m, p x n respectively, The group GPnGR) acts on
Lm,n,pGR> as in (1.5)., The input-~output matrices A, = HF'G are clearly
invariants for this action and the question arises whether these are the

only invariants, Here an invariant is defined as a function
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p: Lm n,p @®R) * R (or possibly a function defined on an invariant open

3 *%y
dense subset of L (R)) such that 0((F,G,H)>) = o(F,G,H) for all

E ]

triples (F,G,H) (in the open dense subset),
1,14. Theorem. Every invariant of GLnGR) acting on Lm n PGR) is a function

- s,
of the entries of A , ..., A2n—1‘

Let Lco’chR) be the subspace of all triples (F,G,H) € L GR) which

35t ’
are both completely observable and completely reachable, This 1s an open

and dense subspace of Lm n,pGR)° On this subspace GLnGR) acts faithfully

and a more precise version of theorem 1.14 describes the quotient space
;onf;GR) = zoéf;GR)/GLnGR) explicitly and gives an algorithm for recovering
(F,G,H) up—to—GLnGR)—equivalence from AO, cees Ay (cf. 4.25 below). It
turns out thatM - C’°"(R) is a smooth differentiable manifold and that the
projection LCO chR)'+ MCO CrC[R) is a principal GL R)-bundle (cf. 6.4

n,p m,n,p
below).

1.15. Canonical forms. For many purposes (prediction, construction of

feedbacks, identification and, not least, for proving theorems) an
internal description of a black box by means of a triple of matrices
(F,G,H) is preferable over knowledge of the input—output operator f(I).
As was remarked in section 1.13 above there do exist algorithms for
calculating some X = (F,G,H) which realizes f(Z) ordeD from the

matrices Ao’ ceey A One such algorithm is described in 4.25 below.

All these algorithmznh;ve the drawback that they are discontinuous in
general. This is a nontrivial difficulty, because after all one calculates
the (F,G,H) because one wants to use them as a basis for further
calculations, design, predictions etc., and the AO, cees A2n—1 are after
all subject to (small) measurement errors, Thus the question arises
whether there exist continuous methods of recovering (F,G,H) up~-to-
GLnGR)—equivalence from Ao’ cens A2n—l' Or, in other words, because
RﬁonC;GR) is explicitly describable subspace of the space of all sequences
of 2; P X m matrices and M?O C;GR) EO;C;GR)/GL (R), the question arises
whether there exist contlnuou; canonical %orms on LconérGR), where a

m,n,p

continuous canonical form is defined as follows.

1.16. Definition. A continuous canonical form on a GLnGR)-invariant
subspace L' < Lm n pCIR) is a continuous map c¢: L' > L' such that

’
(i) c((F,6,0)5%) = c((F,G,H)) for all (F,G,H) € L',

(ii) if c¢((F,G,H)) = c((F',G',H')) then there is a S € GL GR) such that
(F',G',H') = (F,G,H)°, and




(iii) for all (F,G,H) € L' there is an S € GLHOR) such that
¢(F,G,H) = (F,G,m)°,

For some additional remarks on the desirability of continuous
canonical forms cf. [2] and also [15]. Also our proof of '"feedback
suspends degeneracy' theorem mentioned in 1.6 above is based on
the use of a suitable canonical form. It turns out that there exist
open dense subspaces Ua c L pGR), which together cover Lco’chR),

m’n’ m’n’P
on which canonical forms exist. Cf, 3.10 below. On the other hand

1.17. Theorem. There exists a continuous canonical form on all of
160sCT

m,n,pGR) if and only if m =1 or p = 1,

1.18 On the geometry ofbi;OAC;GR). Holes. Now suppose we have a
s iy —

black box (1.2) which is to be modelled by a linear dynamical system

of dimension n. Then the input-output data give us a point of
MCO>CT
‘ m,n,p
% sequence of points inM

(R) and as more and more data come in we find (ideally) a

c .
0> R) representing better and better

2%
linear dynamical system approximations to the given black box, The
same thing happens when one is dealing with a slowly varying black
‘ﬁ box or linear dynamical system. If this sequence approaches a limit

| we have "identified" the black box. Unfortunately the space

| co,cr . . .
; Mm ; pGR) is never compact so that a sequence of points may fail to
] E R ]
converge to anything whatever. There are holes in MEOQCEGR). Consider
L

for example the following family of 2~dimensional one input, one

output systems

1 - 2
(1,19 gz = (1), FZ = ( g _’_Z), Hz = (z27,0), z = 1,2,3, ...

Let u(t), 0 <t <ty be a smooth input function, then y(t) = lim f(ZZ)u(t)
Z—>0
exists and is equall to y(t) = %? u(t). This operator can not be of the

form £(Z) for any system I of the form (1.1) (because the f(I) are always

| bounded operators and %E is an unbounded operator). A characteristic
{
| feature of this example is that the individual matrices F_,G,,H, do not

have limits as z -+ ©. (A not unexpected phenomenon, because after all
we are taking quotients by the noncompact group GLnGR)). This sort of
situation is actually important in practise, e.g. in the study of

very high gain state feedback systems x = Fx + Gu, u = cLx, where c is

a large scalar gain factor. Cf. [12].




. co,Cr . .
Another type of hole in M ; (R) corresponds to lower dimensional systems,
L Bl J

and in way these two holes and combinations of them are all the holes

there are in the sense of the following definitions and theorems.

1,21, Definition. We shall say that a family of systems ZZ = (FZ,GZ,HZ)
converges in input-output behaviour to an operator B if for every m-vector

of smooth input functions u(t) we have 1lim f(ZZ)u(t) = Bu(t) uniformly

. . 2>
in t on bounded t intervals.

1.22. Definition. A differential operator of order r is an operator of
@ v e S,
L

where the ajs -+»5 @ arepXm matrices with coefficients in R, and

the form u(t)— y(t) = Dy(t) = aou(t) + a

a # 0. We write ord(D) for the order of D, By definition ord(0) = -1.

1.23. Theorem. Let (Zz)Z be a family of systems in Lm,n,pGR) which
converges in input-output behaviour, Let B be the limit input=output
operator. Then there exist a system I' and a differential operator D
such that

Bu(t) = £(Z")u(t) + Du(t)
and ord(D) + dim(Z') < n-l.

1.24. Theorem. Let D be a linear differential operator and L' € Lm n PGR)
H] ’

and suppose that ord(D) + dim(Z') < n-1, Then there exists a family of

co,cr
systems (Zz)z , ZZ €L

. p(IR) such that for every smooth input vector
? b
u(t)

lim £(Z )u(t) = £(Z")u(t) + Du(t)
z> z
uniformly on bounded t-intervals,

1.25. Concluding introductory remarks.

Many of the results described above have their analogues in the
discrete case and/or the time varying case, cf, [3-8, 9-11,14]. But not all.
For instance the obvious analogues of theorems 1.23 and 1,24 fail utterly
in the discrete time case, In this case lig f(Zz)u(t) egists for all inputs
u(t) if and only if the individual matriges Ai(z) = HZF;GZ converge for
z > ©, This means that in the case of input-output convergence the limit
operator is mecessarily of the form £(Z') for some, possibly lower
dimensional, system I'. The same answer obtains in the continuous time
case if besides input—-output convergence one also requires that the

Fz’Gz’ HZ (or more generally the Ai(z)) remain bounded.
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2. COMPLETE REACHABILITY AND COMPLETE OBSRVABILITY,

Let (F,G,H) € Lm n pCIR) be a real linear dynamical system of state
»*to

space dimension n, with m inputs and p outputs. We define
(2.1) R(F,6) = (G FG .., F%6), s = 0,1,2,..., R(F,6) = R_(F,C)

the n X(s+])Mmmatrices consisting of the blocks G, FG, ..., FSG, and,
dually

H
HF
(2.2)  Q(F,m) = 2|, s=0,1,2,..,, Q(F,H) = Q_ (F,H)
HFS
We also define
A A ... A
o 1 s
A, ,
(2.3) ?(S(F,G,H) =9ls(2) ={. ! = o (F,MR_(F,G),
As AZS

where Ai = HFlG, i=20,1,2,,.. .

It is useful to notice that

(2.8) R (F,0% = & F,0, Q0% = o F,1nS5

1 1 -1

where of course (F,G)S = (SFS~ »SG), (F,H)S = (SFS L,HS "). It follows

that
S S
2.5 A ) = (F,em) =% (F,6,m) =¥ (D)

for all S € GLnGR), which is of course also immediately clear from (2.3)

2.6. Definitions of complete reachability of complete observability.

The system (F,G,H) € Lm’n

rank(R(F,G)) = n. The system (F,G,H) is said to be completely observable

PGR) is said to be completely reachable iff
]

iff rank(Q(F,H)) = n. These are generic conditions; in fact the subspace

co,cr .. ;
fL consisting of all systems which are both letel
Lm,n,paR) o m,n,pGR) g y ch are bo comp y

reachable and completely observable is open and dense. We note that
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(F,G,H) is co (= completely observable) and cr (= completely reachable)
iff the matrix Rn(F,G,H) = Q(F,H)R(F,G) is of rank n,

*2.7. Termilogical justification, Let (F,G,H) € L 0 PGR), Then (F,G,H)
s,

is completely reachable iff for every x € R" there is an input function

1
u(t) such that the unique solution of

x = Fx + Gu(t), x(0) =0

passes through %3 i.,e, every state is reachable from zero, For a proof
cf e.g. [17, theorem 3.5,3 on page 66]Jor [10, section 2,3]., Instead of
completely reachable one also often finds the terminology (completely
state) controllable in the literature.

Dually the system (F,G,H) is completely observable iff the
initial state x(0) at time zero is deducible from y(t), 0 < t <t
£, > 0 (using zero inputs). Equivalently (F,G,H) is completely
observable if the initial state x(0) is deducible from the input-output
behaviour of the system on an interval [O’tl]’ t > 0, Cf. e.g.
[14, Ch.V, section 3] or [17, theorem 3.5.26 on page 75).

The following theorem says that as far as input-output behaviour
goes every system can be replaced by a system which is co and cr. Thus

it is matural to concentrate our investigations on this class of systems.

2.8. Theorem. Let ¥ = (F,G,H) € Lm 0 pGR) with input-output operator
- b b

f(I). Let n' = rankCﬂn(Z)). Then there exists an
L' = (F',G',H") € L;";l?:am such that £(3) = £(').
bl ]
Proof. Let X = R" be the state space of L. Let XreaCh be the linear subspace
of X spanned by the columns of R(F,G). Then, clearly, c@®™ < Xreach

and F(Xreach) c XreaCh (Because ! = aoI + a]F t .o ta
certain a; € R by the Cayley-Hamilton theorem). Taking a basis for
XreaCh and completing this to a basis for X we see that for suitable

S € GLnGR), ZS is of the form

Fn_1 for

" "

ES==/G , i ‘ f12 , ( i | H“z)
\o 0 [ F |

where the partition blocks are respectively of the sizes:

n" X m, n-n" x m, n" x n", n" x n-n", n-n" x n", (n-n") x (n-n"),

p x n", p x(n-n") for G", 0, F", F o, F

it n" = dim Xreach. Now clearly

122 927 H", Hg respectively
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1. sFs” 't

Fr Ye

- "
He' 'G = (HS se = "¢’ ‘e

and rank R(F",G") rank (R(SFS 1 ,SG)) = rank(SR(F,G)) = rank R(F,G) = n".
It follows, cf. (1.4),that I and X" = (F",G",H") have the same input-

output operator. Thus to prove the theorem it now suffices to prove the

theorem under the extra hypothesis.that (F,G,H) is cr. Let Xo be the

subspace of all x € X such that Hle = 0 for all i = 0,1, ..., nj

Xo = Ker(Q(F,H)). Then HFix =0 for all i =1,2,..., using the Cayley-

Hamilton theorem. Hence FX0 c Xo and HXO = 0, Taking a basis for XO

and completing it to be basis for X we see that for a suitable

S € GLnGRL ZS is of the form
1 ' '

S _ _g; ’ Fi1 | Fi2 0.8

0 F!

where G',F',H' are respectively of the sizes n' X m, n' x n', p x n',
n' = rank(Q(F,H)).
Clearly

SFS-IT F't
e

Fr SG = H'e ‘G

He' '¢ = (us™))

1

rank (Q(F,H)) = rank(Q(SFS~ ,SHS_I) = rank(Q(F',H'"))

so that &' = (F',G',H') is completely observable and fZ' = fZ'“ Atso
R(SFS™!,5G) is of the form

R(SFS™!,s6) = (§7f$LETT)

But rank R(F;G) = n so that the n rows of R(SFS_I,SG) = SR(F,G)
are independent. It follows that the n' rows of R(F',G') are also

independent, proving that L' is also completely reachable.

*2.9. Pole Assigmment. A set A of complex numbers with multiplicities

is called symmetric if with B € A also B € A with the same multiplicity.
Here B is the complex conjugate of B. If A is a real n X n matrix then

0(A), the spectrum of A is a symmetric set.
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2.10. Theorem. The pair of matrices (F,G), F E?Rpxn, G ERYT is
completely reachable iff every symmetric set with multiplicities
of size n occurs as the spectrum of F + GL for a suitable (state
feedback) matrix L,

I.e. the system (F,G,H) is cr iff we can by means of suitable
state feedback arbitrarily reassign the poles of the system. For a

proof cf.,e.g.,[18, section 2.2].

3. NICE SELECTIONS AND THE LOCAL STRUCTURE OF

LT
m,n,p

®) /GL_(R).

3.1. Nice Selections. Let (F,G,H) € L n (R). We use I(n,m) to denote
E] H]
the ordered set of indices of the columns of the matrix R(F,G).

I.e. I(n,m) = {(i,}) i = 0, «e., n; 3 =1, ..., m} with the ordening
(0,1) < (0,2) <...< (0,m) < (1,1) <...< (1,m) <...< (n,1) <...< (n,m).

A nice selection o < I(n,m) is a subset of I(n,m) of size n = dimZ such

that (i,j) € o = (i-1,j) € o if 1 > 1. Pictorially we represent I(n,m)
as an (nxl) X m rectangular array of which the first row represents
the indices of the columns of G, the second row the indices of the
columns of FG,... etc.... We indicate the elements of a subset

with crosses. The subset of the picture on the left is then a nice
selection (m=4,n=5) and the subset o' of the picture on the right

below is not a nice selection

. X . X . . X .
. X . x . X . X
X X X

If B is a subset of I(n,m) we denote with R(F,G)B the matrix obtained
from R(F,G) by removing all columns whose index is not in B. We use

Lm nGR) to denote the space of all pairs of real matrices (F,G) of
3

dimensions n X n, n X m respectively.

3.2. Lemma. Let (F,G) € Lm nGR) be a completely reachable pair of matrices.

s
Then there is a nice selection o such that R(F,G)a is invertible.
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Remark. Complete reachability means that rank R(F,G) = n, so that there
is in any case some subset B of size n of I(n,m) such that R(F,G)B
is invertible. The lemma says that in that case there is also a nice

selection for which this holds.

Proof of the lemma. Define a nice subselection of I(n,m) as any subset

B (of size < n) such that (i,j) € B, 1 > 1 = (i-1,j) € B. Let o be a

maximally large nice subselection of I(n,m) such that the columns in
R(F,G)u are linearly independent. We shall show that rank(R(F,G)u) =
rank (R(F,G)), which will prove the lemma because by assumption

rank R(F,G) = n.

Let a = {(O,j]), eees (B38040 (0,3), wnns (is,js)}. Then by the
maximality of o we know the columns of R(F,G) with indices (0,j),
je{1,...,m} ~ {jl,...,js} and the columns of R(F,G) with indices
(it+1,jt), t=1, ..., s are linearly dependent on the columns of
R(F,G)a. With induction assume that all columns with indices

(it+k,jt), k<r,t=1, ..., s and (k-1,3), k < 1,

j e {1,...,m} ~ {jl,...,js} are linearly dependent on the columns of

R(F,G)a. So we have relations

had| P | . . .
F gj = ? . a(l,J)Flgj, jed{,...,m} ~ {J],...,JS}
(i,j)€n
ig+r ~ i
F g; = z b(i,j)Fg., t=1, ..o, s
t  (i,j)ea J

where gj denotes the j-th column of G. Multiplying on the left with F we
find

Frgj = Z . a(i,j)Fl+lgj
i +r+l (1, 5)€n "
F g, = I b(i,1)F g,

i+] ..
We have already seen that the F gj, (i,j) € o are linear combinations

of the column of R(F,G)u. It follows that also the F g, and Flt+r+lg,
J Je
are linear combinations of the columns of R(F,G}a. This finishes the

induction and hence the proof of the lemma.
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3.3. Successor indices. Let o < I(n,m) be a nice selection. The

successor indices of o are those elements (i,j) € I(n,m) ~ o for
which i = 0 or for which (i',j) € o for all i' < i if i > 1, For every
jO € {1,...,m} there is precisely one successor index of o of the form
(i,jo); this successor index is denoted s(u,jo). In the picture below

the successor indices of o are indiced by *'s (and the elements of O

with x's).

Columns of G * o x * o ox X e X3 e,

Columns of F G . X . . ey . e,
. . X . . eg . X,
. . * . . . X, .

Columns of FsG .

3.4. Lemma. Let oo € I(n,m) be a nice selection and Xys eees X and

m-tuple of n-vectors. Then there is precisely one pair (F,G) € Lm nGR)

H]
such that

R(F’G)u =1 , the n X n unit matrix

nxn

R(F,G) = Xj for all 3 =1, ..., m

s(a,3i)

Proof. Let fi be the i-th column of the matrix F, i = 1,2, ..., n. Then
in the example given above the values of the gj, j=1, ..., m and

fi’ i=1, ..., n can simply be read of from the diagram. One has in

this case
gl =x]’ 32=e]: g3=x3, 84=32

f =e

I f, = e f, = x f. = x

£y, = ey £y 5° Y4

32 72

It is easy to see that this works in general and to write down the

general proof though it tends to be notationally cumbersome.

3.5, Local structure of LST GR)/GLnGR). Let a < I(n,m) be a nice

m,n,p
selection.
We define
Uoc = {(F,G,H) €Lm,n,pGR) | det R(F’G)oc # 0}
(3.6)
Va = {(F’G’H) ELm,n,pGR) I R(Fac)u = Inxn}




lé

3.7, Lemma, (i) U, = Voc X GLn(lR)

.. _ omn+np
(11) Va =

Proof. (i) Let (F,G, H) € U . We assign to (F G,H) the pair
((F,6,1)° g74) where § = R(F,G)'. Then (F,6,0)° € v,
because R(SFS ',SG) = SR(F,G) and hence R(SFs"l,sc)a =
SR(F, G) . Inversely given ((F,G H) S) € V X GLn(]R) we

assign to it the element (F,G H) . This proves (1).

+
Assertion (ii) follows immediately from lemma 3.4. Indeed, let z € RO

and view z as an m + p tuple of n-vectors z = (x],...,xm; yl,..o,yp),.

R(F,G) .. =X

Then there are unique F,G,H such that R(F,G)a = s(a,3)

Ian, i
hJZ, =Y, where h2, is the 2-th row of H.

3.8. Local structure of L;O;C;CIR) /GLnC[R). Let again o be a nice selectio

H b
Then we define in addition,

co _ co,cr co,cr
(3.9) UOL UOL n Lm’ @®), V V n Lm n’pGR)

Then one has clearly that V;O is an open dense (algebraic) subset of VOL i
co co
that U_~ = x GL_(R).

3.10. The local nice selection canonical forms Cye Lemma 3.7 defines us
a (local) continuous canonical form on UOL for each nice selection &,
It is

S
_ o _ -1
(3.11) ca((F,G,H)) = (F,G,H) € Va’sa = R(F,G)a , (F,G,H) € Ua

The U are open dense subsets of L n, GR), and by lemma 3.2 the union
’

of all the U o %2 nice selection, covers all of Lm n pCIR). This is
L) b
thus a set of local canonical forms which can be useful in identificatio:

problems (it leads to statistically and numerically well posed problems,
cf [15, section IIJ.

3.11. The dual results. Dually we consider the set I(n,p) of all row

indices of Q(F,H), which we also picture as an (n+l) X p array of dots.
Now the first row represents the rows of H, the second row the rows

of HF, ... . A nice selection is defined as before and one has the obviot
analogues of all the results given above. In particular if (F,G,H) € L;(:I
there is a nice selection B = I(n,p) such that Q(F,H)(3 is invertible.

Here Q(F,I-I)B is the matrix obtained from Q(F,H) by rémoving all rows
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whose index is not in 8.
One also has of course local canonical forms EB (defined on ﬁe)
for every nice selection B < I(n,p):

S

(3.12) SLE,CE) = (61 ©,

S5 = Q(F,H)g , (F,G,H) € Tg

(3.13) ﬁB = {(F,G,H) € Lm’n’pCR)l Q(F,H)5 is invertible}

4, REALIZATION THEORY.

Let of = (Ao’AI’A?_"") be a sequence of p X m matrices. We shall
say that the sequence ¢} is realizable by an n~dimensional linear system
if there exist a system (F,G,H) € Lm, ,pM) such that Ai = H_FiG,
i=20,1,2,... . It follows immediately from (the proof of) theorem 2.6
above that ifo# is realizable by means of (F,G,H), then there is also
a possibly lower dimensional system L' = (F',G',H') € L;oncr (R), n' < m.
which also realizesg§ and which is moreover completely reachable and
completely observable.

For each sequence of p X m matricesd‘ we define the block Hankel

matrices
A A ... A
[o! 1 s
A1 .
(4.1) Hoeb = - . c les=0,1,2 ...

4.2. Theorem. The sequence of real p X m matrices A= (Ao’Al"") is
realizable by means of a completely reachable and completely observable
n-dimensional system if and only if rankﬂ( @) = n for all large enough
s. Moreover if both I, L' € 150> chlR) reallzeﬁ then I' = Z for some

5 € CL_R). o

This theorem will be proved below., First, however, we mention a

consequence.

4.3. Corollary. If the sequence of p X m matrices # is such that
rank 3{30‘) = n for all sufficiently large s, then rank SCS @) = n for

all s > n-1.
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Proof. If I = (F,G,H) realizes oA and T is co and cr and of dimension n,

then rank R (F,G) = rank Q (F,H) = n, so that rank _ “) =
n-1 n-1 n-l
rank(R__, (F,6)Q__, (F,H)) = n.

A first step in the proof of theorem 4.2 is now the following lemma
which says that if rank 9£S(dl) = n for all s > r-1, then the A; for

i > 2r are uniquely determined by the 2r matrices Ao, seey A2r—-l .

4.4, Lemma. Let ok = (Ao’Al"“) be a series of p X m matrices such that
rank ‘;’Cs(d(r) = n for all s > r-1. There are m X m matrices So, cees Sr—]

and p X p matrices To’ eesy T such that for all i = 0,1,2,... .

r-1

(4.5) A, = A8) SISLE

L1}
=g
wn
+
wn
+

]

T A, + T A. + ... + T
o1

18541 =184 4r-1

Proof. Because rank?fr_l @) = n and rankgfr(o‘) = n we have

Ao A] von Ar-l Ai'.
Al .
n = rankgfr__] @) = rank| » . .
i T RS PE S [ S
so that there are m X m matrices So’ sees Sr-l such that
Ai+r = AiSO + ... t Ai+r—lsr—]’ i=20, sees -1

Similarly, it follows from

A‘ * e A

0o r—1
ns=s rankﬂ(r_l 04) = rank| @ ?

Ar—l"' A2r—2

Ar an A2r-l

that there are matrices To’ «ees T__; such that

(4.6) Ay = TAy+ oo # T A, i=0, ..., -]
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Suppose with induction we have already proved (4.5) for

i<k-l, k>r.

Consider the following submatrix of g‘k“)

AL A e AL AL A
A] . . N
(4.7) : . . :
Ar-] e A2r-—2 AZr*l "'Ak+r-l
Ar e A2r—1 AZr te Ak+r

Using the relations (4.5) for i f.k-l we

to the rank of

see that the rank of 4,7 is equal

A A ... A 0 ... 0 O
o 1 r-1
Ay : . o
(4.8) . . > . .
Ar—l .. A2r—2 0 .- 0 0
Ar . AZr—] 0 »»» O X
where X = Ak+r - SOAk = ee. — Sr—lAk+r—1' Using (4.6) we see by means

of row operations on (4.8) that the rank

of (4.7) is also equal to the

rank of
A ... A 0...0 0
o -1
Ar—] A2r-2 0...0 0
0 - 0 0> 0 X

Now the rank of (4.7) is n

rank ’J{r_l @). Hence X = 0 which proves

the induction step. This proves the first half of (4.5); the second

half is proved similarly.

More generally one has the following result (which we shall not need

in the sequel),

*4.9. Lemma. Let Ay «v., A bea finite

s
there are i,j € N U {0} such that i + j

series of matrices and suppose

s — 1 and
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A e Ay AL e A [AL Ay eee A \
rank | ® . zrank | - : : = rank | ! . =
’ X ' ‘ ce. A,
AJ oo 1.+J AJ s e Ai"‘j i+j+1 AJ A1+J
j+1°°° i+j+1
for some n € N U {0}, then there are unique A ,y» Agpgs +o- such that

rank %t @) =n

for all t > max(i,]).
Proof. By hypothesis we know that there exist matrices So’ ey Si
such that

(4.10) =AS + ...+A .S r=0, ..oy ]

A. .S.
i+r+l ro r+i i °?

Now define At for t > s by the formula

(4.11) A=A (S % ..o *A_S.

Also by hypothesis we know that there exist To’ ey Tj such that

} (4.12) A =TA + ...+ T.A
!

S4rel AL Jj+r’r=0’ ooy 1

To prove that rank?tt(dh = n for all t > max(i,]j) it now clearly
J suffices to show that (4.12) holds in fact for all r > 0. Suppose

this has been proved for r < g-1, q > i+l, Consider the matrix

AO . o0 Al Ai+] LN BN ) Aq
(4.13) . . : ‘

Ao oo B (AL e A

ST VIPI | VOUTPR Ry VI

By means of column operations, the hypothesis of the lemma, and (4.10) -
(4.11) we see that the rank of the matrix (4.13) is n. Using row operations

and (4.12) for r < q-1 (induction hypothesis) we see that the rank of
(4,13) is equal to the rank of
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A .
0 1 i+l q
(4.14) . : ; :
éj‘ e o 0 A1+J i+j+l L AN ] Aj+q
0 <+« 0 0 -+. 0X
where X is the matrix A. -TA - ... -T.A. ., Now use column
J+q+l o'q J 1tq

operations and (4.10), (4.11) to see that the rank of (4.14) is equal
to the rank of

(4.15)

It follows that X = O,

4,16, Proof of theorem 4.2 (first step: existence of a co and cr

realization). Let r € N be such that r > n amd rank gcs(d) = n for all

s > r-1. We write

By mee A (k) A SRR NP
g{ = g‘r_l (A) = : :' s 3‘ = ; :‘
Apopeee Ao Arak-1 **0 Aorai-d
and for all s,t € N we define
E e = (Toye [osx(t_s)) if s <t
Esxs = Is><s if s=t
I .
Esxt = el if s> t
Qs-t)xt

where IaXa is the a X a identity matrix and Oaxb is the a X b zero matrix,

Because # is of rank n, there exist an invertible pr X pr matrix P and

an invertible mr X mr matrix M such that

Loxn ‘ On>< (mr-n)

(4.17) PHM =

= E E
pPrXn nxmr

0 (pr-n)xn 0 (pr—-n)x (mr-n)
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Now define

Pg((])M Emrxn , G=E PHE

(4.18) F = nxpr mrxm’

En><pr

H=E %iME

pXpr mrxn
We claim that then (F¥,G,H) realizes 4, i.e. that

(4.19) A, = HF'G , i=0,1,2, ...

To prove this we define

0 oo 0 SO Q' 1! 0’ .s O
I R .
: : ' S
D = . . C = * v

o . o ... o 1
s |‘ . O »

N - . e '
0 0 I Sr_ o N Tr-—l

where 0, I, 0', I' are respectively the m X m zero matrix, the

m X m identity matrix, the p X p zero matrix and the p x p identity

matrix and where the So’ ooy Sr-l and To’ ey Tr-—l are such that
(4.5) holds for all i, Then
(4.20) ) - ko - ¢k, k= 1,2, ...

X = K o . -
Let H MEmanEnXprP’ Then H* is a pseudoinverse of P in that
(4.21) g(w*g( =H

. 51 -1
*Y =

(Endeed using (4.17) we have HA*H P EernEner rxn En><pr
TR I R b

prxntnxmr ecause
-1 -1 _ _ _
MoM=1, PP =L E e Purxan = Tnxn? Expriprxn - Toxn2e

We now first prove that
(4.22) B P CHME - L k=1,2, ...

nxpr mrxn
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In view of (4.20) this is the definition of F (cf. (4,18)) in the case

k = 1. So assume (4.22) has been proved for k < t. We then have

]

L t+l] t
P C RMEmI E PC?(.DMEmrX

va ™ Eopr a by (6.20))

E
nxpr

(]

E__PCHA*HDME
mrX

nXpr n (by(4.21))

t
E PCHM Emr E P #DME

nxpr Xn nxpr mrxn
(by the definition of N*)

_ wt . .
= F EnxprP C?(,MEmrxn (by the induction

hypothesis and (4.20))

F'F  (by (4.20))

We now have for all k > 0

A'k = prpr gi(k)Emrxm (definition of m(k))

= E Ck?(E

pXpr mrxm (by (4.20))

k
E oprC % H*KE o (by (4.21))

L}

k . ..
*
prprc HM EmrannxprPaEmrxm (by the definition of H*)

]

prprkaM E xnG (by the definition of G and (4.20))

HH*HDME G (by (4.21))

E
pXpr mrxn

- ... *
prpr'}tM EmrannxprP ?tDkM EmanG (by the definition of H*)

HE P CUM E (by the definition of H and (4.20))

nxpr xn
k
=HFG (by (4.22))

This proves the existence of an n—dimensional system X = (F,G,H) which

realizes of . Now for all s = 0,1,2,...
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‘H h = o (F,HR_(F,6)

where
H
HF
QS(F,H) = Z , RS(F,G) = (G FG ... F°G)

HFS

Both QS(F,H) and RS(F,G) have necessarily rank < n, It follows via the
Cayley-Hamilton theorem that (F,G,H) is completely reachable and

completely controllable, because rank ﬂsﬂ) =n for s > r-1.

4,23, Proof of the uniqueness statement of theorem 4.2.

Let I = (F,G,H) and I = (F,G,H) be two co and cr realizations

ofd . Then dim(Z) = rank?(n_l(/‘) = dim(Z). By hypothesis we have
i = =i= .

(4.24) A, =HFG=HFC ,1i=0,1,2, ...
According to lemma 3.2 and 3.1]1 there exists a nice sefeckion « . of
I[n-1,m), the set of column indices of an(F,G) and g‘nﬂ (F,G,H), and there
exists a nice selection B of Int,p), the set of row indices of
Q. (F,H) and.ggrq(F,G,H), such that

rank(Rn_](F,G& ) = rank(Qn_l(F,H)B) = n

Let ?{n__l (F,G,H)a 8 be the matrix obtained from an_l(F,G,H) by removing

b .
all rows whose index is not in B and all columns whose index is not in a.
Then

9{'n--l(F’G’H)OL,B = Qn~-1 <F’H)B Rn—l(F’s})a

so that ?{n_](F,G,H)a 8 is an invertible n X n matrix. Also
H)

= Q (FBR _ (F8),

n—1

so that Qn-l(i"ﬁ)s and Rn—l(f’é)o( are also invertible. Now let
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= (F,G,H)Y, T = Q. (F,H),

Z

|
~
i
)
@
-
T
N’

| =

Ly

]
~
i
_CD
-
fan}
-
]

U — T - -

(F,G,H)", T = Qn—l (F’H)B

Then of course Z] and E] also realize . Moreover, using (2.4) we see
Qo FppBpdg = I, =Q _(F,H),

It follows that

R(F,,6,) = 7:11(21)B = Jtn(Z)B = HH(E)B = 3tn<z = R(Fl,(-;l)

])B

and, in turn, this means that F, = i"-l and G1 = 51 by lemma (3.7) (i)
combined with lemma (3.4). Further the matrix consisting of the first

p rows of Stn(Zl) = ,Cn(Zl) is equal to
HIR(F]’GI) = H]R(F],G])

so that also Hl = ﬁ] because R(F],GJ) = R(f],al) is of rank n. This

proves that indeed % = ZS with § = T-]T.

4,25. A realization algorithm. Now that we know that o is realizable

by a co and cr system of dimension n iff rank ‘JCS()‘-) = n for all large
enough s it is possible to give a rather easier algorithm for
calculating a realization than the one used in 4 .16 above (which is the
algorithm of B.L. Ho). It goes as follows., Because A is realizable by
a s € 1coscr

m’n’P
indices of R(F,G) and }{,n():), and a nice selection B <« I(n,p), the set of
row indices of Q(F,H) and '}(n(Z), such that

(R) there exist a nice selection oo < I(n,m), the set of column

(4.26) an("hoz,B =S
is an invertible n X n matrix. Consider
sT'® @b
n B

This n X(n+1)m matrix is necessarily of the form R(F¥,G) for some
(r,G) € L;rnGR) and moreover by (4.26)
»
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(s, ), = 1,

so that F,G can simply be written down from S—lﬂn(J)B as in the
proof of lemma 3.4. The matrix H is now obtained as the matrix
consisting of the first p rows of xn(‘ha‘

After choosing o, this algorithm describes the unique triple
(F,G,H) which realizes & such that moreover R(F,G)a = In'

*4,27, Relation with ratiomal functions.

Suppose that ﬂ'k“) is of rank n for all sufficiently large k. Then by
theorem 4.2 the sequence A is realizable. Using Laplace transforms
(cf. 1.8 above) we see that this means that the p x m matrix of

ps ;
. -i-1 . . . . .
power series I A.s is in fact a matrix of rational functions.
i=o

I
—~
mf—"

|
15

(2]

1
-

(4.28) T A.s ce — a s-ao)—lB(s) =

1

a(s) 'B(s)

where B(s) is a p x m matrix of polynomials in s of degree < n-1.

Inversely if
® - 1
(4,29) T OAs T =d'(s) RB'(s)

for a matrix of polynomials B'(s) and a polynomial d'(s) =

r-1

=5 - a'r_Js - el - a']s - a(') with r = degree(d'{s)) > degree B'(s),

+ +

= 4! '
A, a A, + a_IAi+l oo

\J
a A.
i+r o1 r-1"1i+r-1

for all i = 0,1,2,... . And this, in turn implies that

rank?(k(ﬂ) = rank “r_](d’)

for all k.~>_ r-1, so that # is realizable. It follows that # is realizable

. =-i-1 . . .
iff ZAis represents a rational function which goes to zero as s + .
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5. FEEDBACK SPLITS THE EXTERNAL DESCRIPTION
DEGENERACY,

In this section we shall prove the result described in section 1.6

To do this we first discuss still another local canonical form.

5.1. The Kronecker nice selection’ of a system, Let (F,G,H) € L ,n;pGR)°
We proceed as follows to obtain a "first" nice selection k such that
(F,G,H) € U_.

Consider the set of column indices I(m,n) in the order
(0,1) < (0,2) <...< (O,m) < (1,1) <ian< (1,m) <...< (n,1) <...< (n,m).
For each (i,j) we set (i,]) € K e Ft g is linear independent of the
F' g v with (i',3") < (4i,3j). We shall ca11 the subset K of I(n,m) thus
obtalned, the Kronecker selection of (F,G,H) and denote it with

K(F,G,H). It is obvious that k has n elements if (F,G,H) € L pGR)
’

5.2. Lemma. The Kronecker selection k defined above is a nice selection.
Proof. Let (i,j) € k and suppose i > l. Suppose that (i',j) ¢ k, i' < i.

This means that there is a relation

i' k
F g. = z b(k’Z)F g,Q,
b (k) <G, §)

a0
Multiplying with F'™' on the left one obtains

i-i'+k

F'g. = I b(k,L)F g,

Tk, <3, 3)
showing that Flgj is linearly dependent on the Fsgj, with (s,3') < (i,3).
A contradiction, q. e.d.

5.3. Lemma. Let (F,G,H) € L;r ,®) and S € GL (R), then

S
k(F,G,H) = «((F,G,H)")
5.4, Lemma. Let (F,G,H) € L;?n pCIR) and let L be an m X n matrix. Then
Rt B

k(F,G,H) = k(F+GL,G,H)

The proof of lemma 5.3 is immediate. As to lemma 5.4 we define
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XO(Z) subspace of X =R" generated by B> +oes 8

X, (Z) = subspace of X =R" generated by g., ..., 8p? F , ¢eey F
(5.5) ! £ En

.

Xn(Z) subspace of X e R" generated by B1s cevs B>

n n
F oou’F ’ ‘.',Fg-]’ ""Fgm

Let L(L) = (F+GL,G,H) and let F = F + GL. Then one easily obtains by

induction that

(5.6) Xi(Z(L)) = Xi(Z), i=0, ..., n

and that

(5.7) fvlgj = Figj mod X271y, i=0,1, ..., n

(where, by definition, X —l(Z) {0}) Lemma 5.4 is an immediate consequence

of (5.7). (Note that a basis for X' (I) is formed by the vectors K gy
with (k,2) € «(Z) and k < i; the classes of the F gz‘WIth k,) € (D),
k = 1 are a basis for the quotient space X (Z)/X1 ](2), i=0, ..., n).

If z = (F,G,H) € Lcr cOGR) then «(¥,G,H) can be calculated from
WQ(F,G,H). Indeed in tha; case Q(F,H) is of rank n. Therefore, because
1&“T,G,H) = Q(F,H)R(F,G), the dependency relations between the columns of
1{ (F,G,H) and between the columns of R(F,G) are exactly the same,

5.8. Remark. If (F,G,H) € L n,p@®) then also (F4GL,G,H) € L;r @®)
’ £ E Batet ]
as is easily checked. But if (F,G,H) € Lion pGR), then (F+GL,G,H) need
E Bt ]
not also be completely observable., Though of course this will be the case

for sufficiently small L (because L;On (R) is an open subset of L ®)).

s Dy m,n,p

*5.9. The Kronecker control invariants. The invariant «(F,G,H) depends

only on F and G, so that we can also write k(F,G). For each j =1, ..., m,
let kj be the number of elements'(i £) in k(F,G) such that £ = j. Let

K (F,G) >...> K ,(F G), m' = rank(G), be the sequence of those k which
are # 0 ordered with respect to size. It follows from lemma's 5.3 and 5.4

that the Ki(F’G) are invariant for the transformations
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1

(5.10) (F,G) (F,G)s = (SFS ',SG) (base change in state space)

(5.11) (F,G)— (F+GL,G) (feedback)
One easily checks that the Ki(F,G) are also invariant under

(5.12) (F,G)+— (F,GT), T € GLmGR) (base change in input space)

This can e.g. be seen as follows. Let ki(Z) = dim Xl(Z) - dim Xl_1

(@)
for i = 0,1,...,n. Consider an rectangular array of (n+l) X m boxes
with the rows labelled O, ..., n. Now put a cross in the first Xi(Z)
boxes of row i for 1 = 0, ..., n. Then Kj(E), j=1, «.., m' is the
number of crosses in column j of the array. Obviously the Ai(Z) do
not change under a transformation of type (5.12), proving that also
the Kj(F,G) are invariant under 5.12,

The group generated by all these transformations is called the

feedback group. Thus the mi(F,G) are invariants of the feedback group

acting on L;fnGR). It now turns out that these are in fact the only
invariants. I.e. if (F,G), (F,G) € L;fnaR) and «; (F,6) = «, (F,0),
i=1, ..., m', then (F,G) can be obtained from (F,G) by means of

a series of transformations from (5.10) - (5.12). Cf. [11] for a
'proof , or cE. 5.30 below.

The Ki(F,G) are also identifiable with Kronecker's minimal
column indices of the singular matrix pencil (zIn - F| G), cf [11].

Still another way to view the Ki(F,G) is as follows.

Consider the transfer matrix T(s) = H(sIn—F)_IG of the linear
dynamical system X = (F,G,H) considered as a p X m matrix valued
function of the complex variable s. One can now prove (cf. [14]).
Theorem. There exdjstmatrices N(s) and D(s) of polynomial functions of s
such that (i) T(s) = N(s)D(s)—l, (ii) there exist matrices of polynomials
such that X(s)N(s) + Y(s)D(s) = Im, (1ii) N(s) and D(s) are unique up
to multiplication on the right by a unit from the ring of polynomial
m X m matrices. Moreover degree(det D(s)) = n = dim(Z).

Now for each s € L, one defines

‘bz(s) = {(N(s)u, D(s)u)|u € L™} P
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If s EXL is such that D(s)_1 exists, then also ¢Z(s) =
= {(T(s)u,u)|u ex™} cx?™, In any case ¢Z(S) is a p-dimensional

+m .. s . +m
subspace of L™, In addition one defines d)z(m) = {(0,u)|u €L} «xP .
which is entirely natural because 1lim T(s) = 0. This gives a continuous

2

s
map of the Riemann sphere L U {»} = S§° to the Grassmann manifold

Gm’P+mGE) of m-planes in p + m space. Let £ - Gm’p+mGC) be the canonical
complex vector bundle whose fibre over z € Gm p+m0C) is the m-plane
b

represented by z., Pulling back Em along ¢Z gives us a holomorphic
complex vector bundle £(I) over S .

Now holomorphic vectorbundles over the sphere 82 have been classified
binrothendieck. The classification result is: every holomorphic vector-
bundle over 82 is isomorphic to a direct sum of line bundles and line
bundles are classified by their degrees.

It now turns out that the numbers classifying £(Z), the bundle
over 82 defined by the system I,are precisely the Ki(Z), i=1, ..., m,
where Ki(Z) =0 for i >n' = rank(G). One also recovers n = dim(%)
as the intersection number of %682) with a hyperplane in G @ .

»mFp
These observations are due to Clyde Martin and Bob Hermann,

cf. [13].

As we have seen the Ki(Z) are invariants for the transformations
(5.10), (5.11), (5.12). Being defined in terms of F and G alone they are
also obviously invariant under base change in output space:

(F,G,H)»>» (F,G,SH), S € GLPGR). The Ki(Z) are, however, definitely
not a full set of invariants for the group G acting on Lm,n,pGR)’ where
G is the group generated by base changes in state space, input space

and output space and the feedback transformations.

5.13., The canonical input base change matrix T(I).

= cr
Let T (F,G,H) €Lm,n,
selection of I. Let (i,j) = s(k,j) be a successor index of k.

pGR) and let ¢ = k(I) be the Kronecker nice

By the definition of k we have a unique expression of the form

(5.14) Fgi =% a,(iNFg + I a(k,2)Fg,
gl,;!')E'K (k, )€K
3'<j] k<i

Now define recursively
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(5.15)

o
s
]
(30

- (R} A= ~ -~
£ 7 58U e B )

and

(5.16) T(I) = (bjk)’ bjk 1 if j = k, bjk = —ak(j), if j < k,

bjk

0 if i > k,

then G = GT(Z), and T(Z) is an upper triangular matrix of determinant 1.

5.17. Lemma. Let I € (F,G,H) € L°F

m,n,pGR)’ then

T(X) = T(EY), TEW) = T()

for all § € GL_(R) and all feedback matrices L € rR",
Proof. Obvious,. (Use (5.7)).

5.18. Example, Let m = 5, n = 9,and let (F,G,H) € LCF (R) have

Kronecker selection k(F,G,H) equal to 55.9sP
X x o, x X
X X . X .
K=' x . . .
X

where we have omitted the last five rows of dots.

Then T(Z) is an upper triangular matrix of the form

1 0 * *x %
o 1 * 0 *
T(Z) = {0 O 1 0 O
0 0 1 *
0 0 0 1

Note that T(Z)_-1 is of precisely the same form.
This is a general phenomon. Indeed by (5.14) and (5.15) (cf. also
example (5.18)) §j is of the form
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(5.19) g. =g. + 1 bijgi > T(Z) = (b;.)

So that b.. = O unless i = j (and then b,., = 1) or i < j and . > g.
1] 1] 1 J

Let ty, «vop t) be the columns of T(Z) and €15 +evs € the standard

basis for R™. Then

(5.20) t,. =e. + L b..e.
J J k‘>k' lJ 1

1L ]

i<j

Using induction with respect an ordening of the {1, ..., m} satisfying

i< w-ki Z.kj it readily follows that

e. =t. + L bi‘ti
] i<j ]
k.>k.
1]
which proves that T(Z)_] also has zero entries at all spots (i,])

with i > j or i < j and ki_i kj.

5.21. The block companion canonical form. Let Kk be a nice selection,

We are going to construct a canonical form on the subspace WK of all

5 g LGt
m,n,PGR

) with (%) = k. We shall do this only in full detail for
the case that K is the nice selection of example 5.18. This special
case is, however, general enough to see that this construction works
in general. Let (F,G,H) € WK and let G = GI(Z). Now consider the
system (F,@,H) which is also in WK as is easily checked. This system

has the property that for each successor index s(k,j) = (i,j) of k with i # 0

we have

(5.22) Flgj = 3 a'(k,l)Fkgl
(k,R) &
k<i

(i.e. T(F,G,H) = Im). Indeed , using (5.14)

= i - 3 i = k = kﬁ
Fgy=Fg, -1 a@GOFg, =1 akW)Fg = 2 a'(KUFE,

i'<3 (k,2) €& (k, L)€k
.k<i k<i
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(Cf. (5.5)). Now define a new basis for R™ as follows. Let

K = {(O’jl)’ e ey (il’jl); cee y (O,jr)’ ceey (i—r’jr)- Then

kt = it +1,t=1, ..., r, and i+ ... kr = n, For the successor

indices s(k,j ) = (kt,jt), t=1, ..., r, write

(5.23) Fg, =-3 bt(k,ﬂ,)Fk‘gz
Ie (k,L)€k
K<k,

Setting bt(k,ﬁ) = 0 for all (k,%) ¢ Kk we now define a new basis for
n
R by

k]—l t k1—2 t
e =F g. + I b (k,~1,j)F €. *+ ...+ I Db (1,7)8.
! Iy o VT It j=1 1 T3¢
k=2 t k-3 t
e, =F & + I b (k-1,i)F 8. + ....+ Ib (1,jp8.
2 o= It i=1 | It
0 -
*
o
e, = g.
ky 3
(5.24)
kz—l t k2-2 t
e =F° g, + Iby(k1,§)F ° 8 + ...+ Lb (1,ijJ)8.
kel Jp 4= 272 7°F It i=1 2 It
e
L ]
e =g. -
k1+k2 32
e = g,
K +e ..tk ng

Let Xoc:ilRn be the space spanned by the vectors g.j,...,gj i.e.
. t
Xo N XO(F,G,H) = Xo(ﬁ). Then we see from (5.23) that for the vectors

defined by (5.24) above we have

4%
i
3y
!
o
g
x
;
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Fe ‘€ X(G), F(ei) = e, mod Xb for i =k, k-1, ..., 2

-1 1 71
1
Fe € X(G), F(ei) = e mod Xo for i = k]+k2, cens k1+2
k. +1
1
e
[ ]
(]
Fe € X(G), F(ei) = e mod Xo for i = kj+...+kr,...,k1+...+
k1+...+k —l+l
t + k., +2
r-1

It follows that with respect to the basis €15 cees €, F and G

are of the form

0 1 0.0 0 e 0 0 A 0
. . A "'i ry S ] L
: N . 0 M : 2 : : k]
0 e+ 01 0 e 0 0 e+~ 0
% X vs0 XK ¥ * * 1K voe o X
0 sae o0 1 00 0 =+ 0
] 9 o ! e % . .
: : : . .. 0 LY : ; kz
0 200 0 0100 0 1 0 e¢. O
(5.25)F= * PR * X 0ee¢ % *x * o oo *
’ o B :
' . ; ’
0 .- 0[]0 +»- 0 [0 1 0--0
: A SRE S I
0 e+ 0] 0 ses 0 |0 >~ 1]
f o o * { % 20 0 % k 03 Xk X
k—.‘-\' J - V_______I
k, X, P

G = (8,,8ys.0-,8)), with
(5.26)

, 8. =e s seey B. =& =e ,
I kT Ty TRtk I, Kpreetk, n

§j =0 for j € {1,...,m} ~ {jl""’jr}

In particular in the case that Kk is the nice selection of example
19 cees € defined by 5.24
the matrices F and G take the form (cf. 5.18, the inverse of T(I) is of

5.18 we see that with respect to the basis e

the same form as T(Z)),
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0o 1 |0 o 0 00 O
61 3.2 83 84 as 8.6 a] 3.8
0o 0 |0 1 o0 0o o0
, O 0 |0 0 1 0 o0
F' = o 0|0 0 0 1 |0 O
b, by | by b, b b | b by
o 0o |0 0 0 0 |0 1
C] C2 C3 C4 C5 C6 C7 C8
d; dy | dy 4, dg d¢ | d; dq
(5.27)
0 0 0
1 0 * o0 *
o 0 0 0 ©0
o -0 0 0 o0 o0
0 1 * % %
0 0 0 0 ©
0o 0 0 1 *
0O 0 0 0 1

This does not yet define a canonical form on WK. True, for every
L € WK there exists an S € GLnGR) such that (F,G)S takes the form
(5.27). But for two pairs (F,G) # (F,G), both of the form (5.27),
there may very well exists an S # In such that (F,G)S = (F,G).

In fact, it is now not difficult to check that if S is an n x n

matrix of the form

1 0 313 314 0 0

0 1 0 s;3 5140 0

0 0 1 0 0 0 0 0

0o o0 |o 1 0 0 0 0
S = 0 0 0 0 1 o0 0 O 0

0 o0 0 0 1 0 0 0

0 s73 s74 0 1 0 0

0 0 373 s74 0 0 1 0

Sg1 0 | Sg3 Sgs Sgy O | Sg7 0 | 1
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then SC = G and SFS ! is of the same general form as F, if F and G
are of the form (5.27). Choosing S130 Sy4e 5730 S740 Sg1s Sq3° Sg4°
S95 and Sq 7 judiciously we see that for every I = (F,G,H) € Wk,
there exists a S € GLnGR) such that SFS—] and SG take the forms

o 1 ]o o0 o 0 0 |0
a; a2 a3 a4 0 0 a7 a8 a9
o o]o 1 o o0 o |o
o 0 |0 o0 o lo o |o
. o o |0 o 1 o oo

srs”! =
by by | by b, by by | by by | by
0 0 |0 o0 o ]o 1 |o
¢ Cp |3 ¢4 0 0 | e cg i ocg
g 0 ]d; 0 0 0 |a o |4

(5.28)
0O 0 0 0 0
1 0 3 0 5
0 0 0
0 0 0
sc =0 0 0 0
0 T ep3 cp p5
0 0 0 0 0
0 0 1 c45
00 0 0 1
where

] 0 c]3 0 ClS
0 1 cpy ¢y, Cys

rayl o0 0 0 0
0 0 Q 1 c45
0 0 0 1

The general pattern should be clear: the off-diagonal blocks have zero's
in the last row iff there are more columns than rows, in fact in that case
the last row ends with (number of columns) - (number of rows) zero's; the

structure of the diagonal blocks is clear.
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Now suppose that (F',G',H') and (F",G",H") are two systems such
that (F',G')S = (F",G") for some S and such that (F',G') and (F",G")
are both of the forms (5.28). One checks easily that then necessarily

S = In. We have shown

5.29. Proposition. Let Kk be the nice selection of example 5.18. Then for
every L = (F,G,H) € WK there 1is precisely one S € GLnGR) such that
sFs”! and SC have the forms (5.28).

This means in particular (in view of the results of section 4 above)

0,c

that if ¥ € WK n Li ;GR), then the numbers 315 eees By 875 ey 3gs

Bl
b]’ ooy bg, Cps +ees C4s Cgs eovy Cgs d], d3, d7, d9 can be calculated
from £(Z) (or Ao’ ey A2n—l)' Of course these results hold quite
generally for all nice selections K. We note that in general WK is not
an open subspace of el @®). In fact Wk/GLnGR) is a linear subspace
of Uk/GLnGR) =:m@n+np - %K, In case K 1s the nice selection of example
5.18 the codimension of Wk/GLnGR) in UK/GLnGR) is 12, (This number can
immediately be read off from K: g3 linear dependent on 8> 8, causes

9 - 2 = 7 linear restrictions; ng linearly dependent on 815 By» gq,
85> Fq,5 Fg,» ng causes 9 - 7 = 2 extra linear restrictions; F g,

linearly dependent on Bys e 85> Fg1, ng, ngcauses 9 -7 = 2 more

linear restrictions; and finally Fzg4 dependent on B s sees 8o ng,

Fez, ng, Fzg2 causes 9 - 8 = 1 more linear restriction; 7+2+2+1=12),

*5,.30. Using the results above, it is now easy to prove that the

K](F,G), sy Kme,G) are the only invariants of the feedback group

r

acting on L; nGR). Indeed, we have already shown that the

b

Ki(F,G), i=1, ..., m'" are invariants,

Inversely, using first of all a transformation of type (5.12)
we can see to it that (F,GT) has k, > k, >...> km’ and then

K](F,G) = Ky eees Km,(F,G) = km" ki = 0 for i > m', Then, using

1’
transformations of type (5.10) and (5.12), we can change

(F,GT) into a pair (F',G') with F' and G' of the type (5.25), (5.26).
A final transformation of type (5.11) then changes F' into a matrix

of type (5.25) with all stars equal to zero. The final pair (F",G")

thus obtained depends only on the numbers KI(F,G), ceesK m,(F,G).

q.e.d.
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5.31. Feedback breaks all symmetry, We are now in a position to prove

the result mentioned in 1.6 that feedback splits the degenerate external
description of systems. We shall certainly have proved this if we have

proved,
5,32, Theorem. Let I EIﬁf;F;GR). Then I is completely determined by
sty !

the input-output maps f(L€L)) for small L. More precisely let
L = (F,G,H) and Ai(L) = H(F+GL)1G for i = 0,1, ..., 2n-1. Then the entries
of Ai(L) are differentiable functions of Lyand F, G and H can be

calculated from Ao’ veey A and the numbers

2n-1
BAi(L)
—W‘* ,i=0’ eec ey 211"'1,j=1, ey m,k'_'vl, LRI B N,
jk |L=o

Proof. Let Kk = k(Z). Recall that k can be calculated from Ao’ ceny A2n~1
(because L is co and cr). Now assume that K is the nice selection of
example 5.18, (This is sufficiently general, I hope, to make it clear
that the theorem holds in general). Let X' = (F',G',H') be the block
companion canonical form of (F,G,H) (I' is obtained as follows:

first calculate any realization I" = (F",G",H") of Ao, ey A2n—1’ e.g.
by means of the algorithm of 4.25 above and then put I" in block
companion canonical form as in 5.21 above).

Then

-1
It =58

for a certain S € GLnGR), and it remains to calculate S. With this aim

in mind we examine I(L) = (F+GL,G,H) and its block companion canonical
form., Consider

-1

s = (s7'rs+s”!

cLs, S 1G,HS)

= (F'+G'LS,G',H')

Now assume that L is of the form
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21
(5.33)

t

]
O O O » O
o O O » O

Then if F' is of the form (5.28) we see that if S = (s..)

1]
/6 1 0 0 0 0 0
a, a,| a3 a, a, 3 | ag
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 Q
F' + G'LS =| O 0 0 0 0 1 0 0 0
1 ? 1 1 ) ] 1 1 ]
bJ b2 b3 b4. b5 b 61 b7 b8 b9
0 0 0 0 0 0 1 0
¢; ¢y | cq ¢y c; cg |cg
d] 0 d3 0 0 0 d7 0 d9
Q
with b' = b. (L) =b, + ¢ &,..8.., 1 =1, ..., 9. Thus the block
i 1 1 j=1 2] 11
-1
companion canonical from of £(L) is always Z(L)S if L is of the form

(5.33). Note that the number of the row which has nonzero entries is
determined by k(Z); it is the smallest i for which ki is maximal;
note also that if j is such that kj is maximal then the j-th vector
of G' is always the (k1+...+kj)-th standard basis vector (cf.just below
5.19).

So to find S we proceed as follows. Calculate the block companion

canonical forms of Z(L) from AO(L), cees (L) for small L. (This

A
2n~1
can be done because for small enough L, Z(L) is still co). This gives

us in particular the functions bi(L). Then

) Bbi(L)

31 8% 55 [0

s

This determines S and gives us L as I = (Z')S. q.e.d.
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6. DESCRIPTION OF L°°°°T (R)/GL (R). INVARIANTS.
m,n,p n —_—

co,cCr . .
n PCIR). Let oo < I(n,m) be a nice selection.
’ ]

We recall that U, = {(F,G,H) € L n,p(m)l det R(F,G)  # 0} , that

-

6.1, Local structure of L

v, = {(F,GH) €L pCIR)I R(F,G), = I } and that U /GL ®R) =V, =
]an+np’ cf.section 3.

For each x E R TP Jet (F x), G (%), H (x)) € V be the unique

system corresponding to x according to the 1somorph13m of 3.7 above.

6.2. The quotient manifold M (IR) m n pC(R) /GL (R) . Now that we
b

know what U /GL (R) looks 11ke 1t is not dlfflcult to describe
R) /GL (IR) (Recall that the union of the UOL for @ nice covers

m n,p

mn+np

(R)). We only need to figure out how the Va = should be

m n,p
glued together. This is not particularly difficult because if
(F,G,H)S = (F',G',H') for some S and (F,G,H) € U, then

S = R(F',G") R(F G)&]. It follows that the quotient space

m n,paR) = Lm n,p(:IR)/GLnC[lE{) can be constructed as follows.

= mn+np

For each nice selection o let Va =R and for each second

nice selection B let

VOLB = {x € flaldet R(Fm(x),GOL(x))B # O}

We define

¢0¢B : VOLB -+ VBOL

by the formula
(6.3)  ba(x) = y = R(F, (x),G, (x))5 R(E,(X),6,(x)) = R(F(3),G4 (1))

Let M;rn pCIR) be the topological space obtained by glueing together the

L]

i;a by means of the isomorphisms ¢ B

cr -
Th = i
en Mm,n,pGR) m, CIR)/GL R). If we denote also with V_ the
isomorphic image of V_ in Mt (R) then the quotient map

a m’n’p
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ms 1T ®) MCE

(R) can be described as follows. For each
m,n,p m,n,p
= (F,G,H) € L;rn (R), choose a nice selection O such that I € Ua.
>
Then m(Z) = x € Va M

5 S

pCIR) where x is such that

’n,

= (F(x),G, (x),H,(x)) with S = R(F,G); .

6.4. Theorem. M;rn pGR) is a differentiable manifold and
b b4
er cr . .. .
m s L - M is a principal GL fibre bundle.
m,n’pClR) m’n’pClR) p p nCIR)

For a proof, cf. [5].

6.5. Th . . co,cr _ {co,cr . .
5 e quotient manifold Mm,n,pGR) Lm,n GR)/GLnGR) Let

MCO»CT co,cr co,cr

m(L""? Then M s an open submanifold of
M n,pC!R) (m’n’pGR)) n,p CIR) i P
cr

m’n’p
a let V;o = {x € Val(Fa(x),Ga(x),Ha(x)) is completely observablel,

and for each nice selection B let 70 - v¢° N V_ .. Then
co,Ccr a @ aB
’

(R). It can be described as follows. For each nice selection

¢QB(G§E) = Ba and M (R) is the differentiable manifold obtained
b t]
by glueing together the Vgo by means of the isomorphisms
& . Feo , geo
ag® Vag ” Vgar
6.6. MCO C;GR) as a submanifold ofimgnmp. Let (F,G,H) € Lco C;GR)
’

’ b

We associate to (F,G,H) to sequence of 2n p X m matrices
2nm; .
(Ao""’ 2= 1) ER p’ where Ai HF G, i=0, «.., 2n~1. The results
of section 4 above (realization theory) prove that this map is injective
2nmp
2n— 1) R

co,cr
GR) as a

and prove that its image consists of those elements (AO,...,
such that rank %n-l @) = rank g‘nd) = n. We thus obtain M

(nonsingular algebraic) smooth submanifold ofimznmp.

6.7. Invariants. By definition a smooth invariant for GLnGR) acting

on Lm o pCIR) is a smooth function f: U +GR defined on an open dense
b

subset U < L GR) such that £(Z) = f(X ) for all £ € U and

’

S € GL ®) such that Z € U.

co,cr . . .
Now L ? and dense in L . It now follows
m’nquR) ts open m:n’pGR)

from 6.6 that every invariant can be written as a smooth function of
the entries of the invariant matrix valued functions Ags oees A

on L (R).

m,N,p

2n—-1
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7. ON THE (NON) EXISTENCE OF CANONICAL FORMS.

7.1, Canonical forms.

Let L' be a GLnGR)—invariant subspace of Lm a pGR). A canonical
3 Hd
form for GLnGR) acting on L' is a mapping c: L' = L' such that the

following three properties hold

(7.2) c(ZS) =¢c(f) for all T €L', S E€ GLnGR)

(7.3) for all I € L' there is an S € GLnGR) such that c(Z) = ZS

(7.4)  o(D) = c(Z') » 35 € GL_(R) such that I' = 53

(Note that (7.4) is implied by (7.3)).

Thus a canonical form selects precisely one element out of each
orbit of GLnGR) acting on L'. We speak of a continuous canonical form
if ¢ is continuous.

Of course, there exist canonical forms on, say L;?;f;GR), €e.g.
the following one, EK: L;?;f;GR) - L;?LT;GR) which is defined as
follows: let T € L;?STEGR), calculate «(Z) and let EK(Z) be the block
companion canonical form of I as described in section 5.21 above.

This canonical form is not continuous, however (,though still
quite useful, as we saw in section 5.31). As we argued in 1.15 above,
for some purposes it would be desirable to have a continuous canonical
form (cf also[2]). In this connection let us also remark that the Jordan
canonical form for square matrices under similarity transformations

-1, . . .
(MM SMS ") is also not continuous, and this causes a number of unpleasant

numerical difficulties, cf. [16].

*7.5. Continuous canonical forms and sections. Let L' be a GLnGR)—invariant
cr ' , cr . '

subspace of Lm,n,paR)’ Let M m(L') < Mm,n,pGR) be the image of L

under the projection T (cf. 6.2 above). Now let c: L' > L' be a continuous

canonical form on L'. Then'c(ZS) = ¢c(Z) for all ¥ € L' so that ¢ factorizes

through M' to define a continuous map s: M' ~ L' such that ¢ = s o .

Because of (7.3) we have T o c = 7 so that T = T o s o 7. Because T is
surjective it follows that T o s = idn, so that s is a continuous section
of the (principal GLnGR)) fibre bundle m: L' +» M', Inversely let s: M' > L'
be a continuous section of m, Then s o m: L' - L' is a continuous canonical

form on L'.

B
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7.6, (Non)existence of global canonical forms. In this section we

shall prove theorem 1.17 which says that there exists a continuous

canonical form on all of LSF?¢°
. m,n,p .
First suppose that m = 1. Then there is only one nice selection

(R) if and only if m =1 or p = 1.

in I(n,m), viz. ((0,1), (1,1), ...,(n-1,1)). We have already seen

that there exists a continuous canonical form ca: Ud - Ua for all.

nice selections a. (cf. 3.10). This proves the theorem for m = 1.
The case p = 1 is treated similarly (cf. 3.11). It remains to prove
that there is no continuous canonical form on L;?;f;GR) if m > 2
and p > 2. To do this we construct two families of linear dynamical
systems as follows for all a €ER, b € R (We assume n.Z‘Z; if n=1

the examples must be modified somewhat).

a 1 0+ 0 1 b Q0 * 0

1 1 0 «-0 1 1 0 -0
G, (a) = 2 1 Gy(®) =| 2 1

Do B Do B

2 1 2 1

where B is some (constant) (n-2) x (m~2) matrix with coefficients

in R

1 o ... O
I N I O

. . ‘. 0
[ . L )
o ... 0 n

yl(a) 1 2 ... 9\ - xl(b) 1 2 ... 2

yz(a) 1 1 ... 1 xz(b) 1 1 ... 1

m(@: 0 0 Hﬁb)= 0 9
S B : L]
\ 0 0 0 0

where C is some (constant) real (p-2) X (n-2) matrix. Here the

continuous functions
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y](a),yz(a) X, (b),x (b) are e.g. yl(a) = a for |a| <1,

yl(a) a—1 for lal > 1, yz(a) = exp( a2), x (b) =1 for lbl <1,

x, (b) = 2 for Ib| > 1, X, (b) b lexp (b~ ) for b # 0, x,(0) = 0.

The precise form of these functions is not important. What is important
is that they are continuous, that x](b) = b—lyl(b-l), xz(b) = bhlyz(b_l)
for all b # 0 and that yz(a) # 0 for all a and xl(b) # 0 for all b,

For all b # 0 let T(b) be the matrix

[

[=]

b 0 o e 0

. ve

7.7 ‘ T(b) =

o

0 e+ 0

—

Let T, (a) = (F)(a), G,(a), H (a)), E,(b) = (F,(b), G,(b), H,(b)). Then

one easily checks that

T(b)

(7.8) ab=1 = Z](a) = Zz(b)

Co,CIr

Note also that Z (a), Z (b) € L GR) for all a,b € R; in fact

(7.9) Z](a) € Uy, @ ((0,2), (1,2), ...y(n-1,2)) for all a €R

(7.10) Zz(b) €U ((0,1), (1,1), ...y(n-1,1)) for all b €R

g &
which proves the complete reachability. The complete observability is
seen similarly.
Now suppose that ¢ is a continuous canonical form on LCO C;GR)
’
Let c(Z,(a)) = (F (a), G (a), H (a)), c(Z (b)) = (F (b),C ,(®), H ).

Let S(a) be such that c(Z (a)) Z (a) and let S(b) be such that
_ S (b)
c(Zz(b)) = Ez(b) .

It follows from (7.9) and (7.10) that

S(a)

1]

RE, @),5, (), REF, (@),6, (a)),,
(7.11)
S(b)

[]

R(F,(6),8,(0)) R(F,(b),C, (6))
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Consequently S(a) and S(b) are (unique and are) continuous

functions of a and b.

Now take a

b =1, Then ab = | and T(b) = In so that (c£(7.7),
(7.8) and (7.11)) S(1) = S(1). It follows from this and the continuity
of S(a) and S(b) that we must have

(7.12) sign(det S(a)) = sign(det S(b)) for all a,b €R

Now take a = b =-1, Then ab

1 and we have, using (7.8),

I

St-1)
Z,(-1) i c(Z,(-1)

e(z, (-1 = 1, -3V
It follows that S(-1) = S(-1)T(~1), and hence by (7.7), that
det(S(-1)) = - det(S(-1))

which contradicts (7.12). This proves that there does not exists a

continuous canonical form on L;OSCEGR) if m> 2 and p > 2.
9 ’

*7.13. Acknowledgement and remarks. By choosing the matrices B and C

in G](a),Gz(b),Hl(a),Hz(b) judiciously we can also ensure that
rank(G](a) = m = rank Gz(b) if m < n and rank Hl(a) = p = rank Hz(b)
if p < n.

As we have seen in 7.5 above there exists a continuous canonical

form on L;OQC;GR) if and only if the principal GLnGR) fibre bundle
» b

T @ Lco’chR) > Mco’chR) admits a section. This, in turn is the
m,n,p m,n,p

case if and only if this bundle is trivial. The example on which the

proof in 7.6 above is based precisely the same example we used in
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[5] to prove the fibre bundle 7 is in fact nontrivial if p > 2 and
m > 2, and from this point of view the example appears somewhat less
"ad hoc" than in the present setting., The idea of using the example
to prove nonexistence as done above is due to R.E. Kalman.
8. ON THE GEOMETRY OF M;?r’:; (R). HOLES AND
(PARTIAL) COMPACTIFICATIONS.

As we have seen in the introduction (cf. 1.19) the differentiable

manifold M°°2¢F
m,n’p

in certain situations., In this section we prove theorems 1.23 and 1,24

@®) is full of holes, a situation which is undesirable

but, for the sake of simplicity only in the casem =1 or p = 1,

8.1. An addendum to realization theory. Let T(s) = d(s)_]b(s) be a

rational function, with degree d(s) = n > degree b(s). Then we know
by 4.27 that there is a one input one output system I with transfer
function TZ(S). We claim that we can see to it that dim(Z) < n.
Indeed if

_ -1 -2 -3
TZ(S) =as + a. s + a

. n n-1
then, if d(s) = s - dn—-ls = tee — d]s - do’ we have

a. =doai+d1a.+ + ... + d

i+n i+l n-12i+n-1

for all i > 0. It follows that if of = (ao,a],az,...), then
rank ﬂ{r(ol)- = rank g‘n—l(d) for all r > n-1. But # _, @) is ann x n
matrix and hence rank S{r(ﬂl) < n for all s, which by section 4 means
‘that there is a realization of o (or T(s)) of dimension < n.
It follows that a cr and co system I of dimension n has a
transfer function TZ(S) = d(s)-lb(s) with degree (d(s)) = n and no
common factors in d(s) and b(s), and inversely if T(s) = d(s)_]b(s),
degree b(s) < n = degree (d(s)),and b(s) and d(s) have no common
factors, then all n-dimensional realizations of T(s) are co and cr.
Indeed if d(s) and b(s) have a common factor, then
Tz(s) = d'(s)*]b'(s) with degree (d'(s)) < n-1 and it follows as above
that rank?{r(df) < n-1 so that I is not cr and co. Inversely if I is not
cr and co there is a I' of dimension < n-1 which also realizes # so that
T(s) = Tyi(s) = h'(sI-F') g = det(sI-F") 'B(s) = d'(s)”'B(s) with
degree(d'(s)) < n-1.
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*8,2, There is a more input, more output version of 8,1, But it is

not perhaps the most obvious possibility, E.g. the lowest dimensional

1 2
1 1

is: Let T(s) = D(s)—]N(s), where D(s) and N(s) are as in the theorem

realization of s_l( ) has dimension 2. The right generalization

mentioned in section 5.9. Then there is a co and cr realization of

T(s) of dimension degree (det(D(s)).

n-1
8.3. Theorem., Let D =a + a 4, ! ———, a. ER be a
—_— o 1 dt n-1 dtn—l i
differential operator of order < n-I. Then there exists a family of

1COsCT
]’n’
sense of definition 1.21.

systems (ZZ)Z c @) such that the f(Z ) converge to D in the
To prove this theorem we need to do some exercises concerning
differentiation, determinants and partial integration. They are
(8.4) Let k € Z, k > -1 and let B Kk be the n X n matrix with
’
(i,j)-th entry equal to the binomial coefficient (l+i:?)
Then det(Bn,k) =1,

i t _
E_ESEZ . Then [ 2"

(8.5) Let u(i)(t) = T
dt 0

e o+ D@ Dy w0

where 0 is the Landau symbol.

. i .
(8.6) Let 6(1) = (t-thu(r), ¢ (1) = 9;9§11. Then ¢H (t) = 0
dt

for i < m and
oW () = NG~ ... G D™ () if i >

And finally, combining (8.5) and (8.6),

n
2D R B (ydr = (D! 1 DITTE T (g

(8.7)
i=m+] n

O - rt

+ O(z_l)

8.8. Proof of theorem 8.3. We consider the following family of n

dimensional systems (with one output and one input),
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E) O -z t .o. :

gZ = b ’ FZ . N ‘ .‘ o0y hZ = (0,...,0,xm’,.,’xl)
2" ‘ v z
o - 0 -z

where the x ceey X5 M < n, are same still to be determined real

]!
numbers, One calculates

: . 5222 o (sz)n—l
2! . (n-1)!
0 1 * .
sF . . :
e Z . . .
. 2.2
- s z
. 27
sz
0 ] . . 0 ]
Hence
(e-T)F n . .
hze zgz - 3 xizm+1(i!) ](t_T)le z(t-T)
i=1
and, using (8.7),
t (t"T)Fz m -1 m+i . e io1 pios
S he g u(dr = I (A 'x, I FDTEN ENITETH A
o i=1 j=i+l t

u(jﬁi-l)(t) + O(Z‘])

m-1 m .
I DA, @it
=1 1 1

‘ yu® 2D ey v ooz7h

2=0 i

Now, by (8.4) we know that det(CM+l;2_]))i 2) = 1, so that we can
H

choose Xps e X in such a way that

t (t~T)F

g he zgzu(T)dT = amf]u(m*l)(tl+ oz"hy

where a__,. is any pregiven real numberﬁr]
It follows that lim £(I ) = d

a
z0 m-1] aem !
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Let Zz(i) = (Fz(i), gz(i),hz(i)), i=0, ..., n~1 be systems constructed

as above with limiting input/output operator equal to
i -~
a. ghi . Now consider the nz—dimensional systems ZZ defined by

1 dt

F (O 0 ... O

z
: g,(0)
~ 0 * . N .. z. -
FZ = : . X . 0 3 gz = . ’ hZ = (hz(O), ceey hz(n—]))
0 0 F, (o-] g, (n-1)

Then clearly lim f(Z ) = D. Let T(l)(s) be the transfer function

of L (1) Thed for certaln polynomials B( )(s) we have

(8.9) Téi)(s) d (s)~ (l)(s), d (s) independent of i

The transfer function of Zz is clearly equal to

(8.10)  1T_(s) = s T(l)(s) =4 ()7'B (), B(s) = z B(l)( )
i=o
By 8.1 it follows from (8.10) that Tz(s) can also be realized by an

n-dimensional system, Z'Z. Then also lim f(Z;) = D. Finally we can
Z->0

o . ) co,cr
change I’ slightly to L for all z to find a family (Zz)Z c L]’n’]GR)

such that lim f(£ ) = D. This proves the theorem.

Z>o z
8.11, Corollary.Let I' be a system of dimension i and let D be a
differential operator of order n - i — 1 (where order(0)=-1). Then

there exists a family (£ ) < LS9?°T(@R) such that lim £(2 ) =D + £(I').
z'z 1,n,l1 7300 z

Proof. Let Z; = (F;,g;,h;) be a family in L (R) such that

1,n-1i,1

1lim f(Z;) =D, Let Z' = (F',g"',h'). Let Zz be the n-dimensional system
Z-ro

defined by the triple of matrices

R F; 0 n
F,_= » g = z s h_= (h;’h')

0 F! z g' z

Then 1lim f(Zz) =D + f(I'). Now perturb Zz slightly for each z to Zz’
Z-0
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to find a completely reachable and completely observable family
(Zz)Z such that lim f(Zz) =D + £(Z').

Z-¥00

8.12. Theorem. Let (ZZ)z cL n 1CIR) be a family of systems which

]’ ’
converges in input—output behaviour in the sense of definition 1.21,
Then there exist a system I' and a differential operator D such that

dim(Z') + ord(D) < n-1 and lim f(Zz) = £f(Z') + D

Z-»c0

Proof. Consider the relation

y,(£) = £(Z u(t)

for smooth input functions u(t). Let G(s) and ?z(s) be the Laplace

transforms of u(t) and yz(t). Then we have
§,(s) = T (s)a(s)

where Tz(s) is the transferfunction of Zz. Because the f(Zz) converge
as z > © (in the sense of definition 1.21), and because the Laplace
transform is continuous, it follows that there is a rational function

T(s) = d(s)-lb(s) with degree d(s) < n, degree b(s) < n-1 such that

lim Tz(s) = T(s)

Z->0

pointwise in s for all but finitely many s. Write

— '
T(s) = e test .. te it €D

with degree d'(s) = i, degree(b'(s)) < i. Let I' be a system of
dimension < i with transfer function equal to d'(s)—]b'(s) and let
dn—i-l

D be the differential operator e, *e ., cee t €

1 dt n-i-1 n-i-1"°

dt

The Laplace transform of the relation
y(t) = £(Z")u(t) + Du(t)

for smooth input functions u(t), is
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F(s) = T(s)TA(s)

Because the Laplace transform is injective (on smooth functionms) it

follows that

lim f(Zz) = f(Z') +D

Z>rx

*8.13., Remarks on compactification, desingularization, symmetry

breaking, etc.

The more input, more output versions of theorems 8.3 and 8.12
are also true. To prove them it is more comvenient to use another
technique which is based on a continuity property of the inverse
Laplace transform for certain sequences of functions. (The inverse
Laplace transform is certainly not continuous in general; also
it 1s perfectly possible to have a sequence of systems Z such that
their transfer functions T (s) converge for z - =, but such that
the f(Zz) do not converge, e.g. Tz(s) z(z—s) )

Let £ be a co and cr system of dimension n with one input and

one output. Let T(s)

n-1
bn—ls +...+b]s+bo ) b(s)
sn+d sn_1+...+d]s+dO d(s)

T(s) =

be the transfer function of I. Assign to T(s) the point

2n
(b te.etb _j:d s...:d ,:1) € ®)

real projective space of dimension 2n. This defines an embedding
co,cr

of M GR) 1ntoIP GR) The image is obviously dense so thatiPznGR)

J:na

. r
is a smooth compactification of MIOQCIGR).
3

Let M GR) be the subspace ofIP GR) consisting of those

]’n’
points (xo:....x Y iYyieeeiVy ) E'EznGR) for which at least one

n-1
Vi i=0, ..., nis dlfferent from zero. For these points

R e
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n-1
x +x s+ LN ] +x s
o 1 n-1

4y St .ty ST
Yty Stee tyy

has meaning and this ratiomal function is then the transfer function

of a generalized linear dynamical system:

Fx + Gu

b4
(8.14)
y = Hx + Du

where D is a differential operator. (The points in IPanIR) ~ 1711 o1
9’ ’

corresponds to "systems" which tend to give infinite outputs for
finite inputs; they are interpretable,however, in terms of
correspondences y(t)+ u(t)).

Further let Ml,n,l’ consist of those (xo:...:xn_1 :yo: ...:yn)

for which if y; = 0 for i > r then also X 4

points the D in (8.14) is zero and these points thus yield

=0, i > r, For these

transfer functions of systems of dimension < n. (But many points

-~

in Ml 0.1 have the same transfer functions). Assigning to a point
Lol B ]

m Ml,n,l the first 2n + 1 coefficients of

n—-1
X PR St.. 04 s _ 1 - -3

n
Yty st.. .+yns

1
[y
2]
+
(Y]
7]
+
o
2]
+

we find the following situation

2n+l __ _ 2n+l

R = R

Here ® is an embedding and its image is the subspace of all sequences

A= Sao""’aZn) such that rankal,n_l(p‘) = rank Stn(ol) = n, The image

of H is the space of all sequences # such that rank #_(4) = rank 9!1_1(4) =1
for some i < n. This is a singular submanifold of ]R2n+ and ® is a

resolution of singularities.

co,cr .
M77>") correspond to transfer functions
n,1  1,n,1

of lower dimensional co and cr systems. If a sequence x_ € M?O’cf
,n’

The points of (M]
’
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coﬁverges to such a point, the internal symmetry group GLnGR) of X,

suddenly contracts to some GLmGR) c GLnGR) with m < n.

REFERENCES.

1. J.L. Casti, Dynamical Systems and their Applications: Linear Theory,
Acad. Pr., 1977.

2. M,J. Denham, Canonical Forms for the Identification of Multivariable
Linear Systems, IEEE Trans. Automatic Control 19,6(1974), 646-656.

3. M, Hazewinkel, R.E. Kalman, Moduli and Canonical Forms for Linear
Dynamical Systems, Report 7504, Econometric Institute, Erasmus Univ.
Rotterdam, 1975,

4, M. Hazewinkel, R.E. Kalman, On Invariants, Canonical Forms and Moduli
for Linear, Constant, Finite Dimensional, Dynamical Systems. In:
Proc. CNR—-CISM Symp. Algebraic System Theory (Udine 1975). Lect.
Notes Economics and Math. Systems 131(1976), Springer, 48-60.

5. M. Hazewinkel, Moduli and Canonical Forms for Linear Dynamical
Systems II: The Topological Case, J. Math. System Theory 10(1977),
363-385.

6. M, Hazewinkel, Moduli and Canonical Forms for Linear Dynamical
Systems III: The Algebraic—Geometric Case. In: C. Martin,

R. Hermann(eds), The 1976 AMES Research Centre (NASA) Conf. on
Geometric Control, Math. Sci. Press, 1977, 291-360.

7. M. Hazewinkel, Degenerating Families of Linear Dynamical Systems I:
Proc. 1977 IEEE Conf. on Decision and Control (New Orleans),
258-264.,

8. M. Hazewinkel, Invariants, Moduli and Canonical Forms for Linear
Time-varying Dyhamical Systems, Report 7725, Econometric Inst.,
Erasmus Univ. Rotterdam, 1977 (Submitted IEEE Trans Circuits and
Systems).

9. R.E, Kalman, Lectures on Controllability and Observability. In:

G. Evangilisti (ed), Controllability and Observability (CIME, 1968),
Edizione Cremomnese, 1969, 1-151,

10. R.E. Kalman, P.L, Falb, M.A. Arbib, Topics in Mathematical Systems
Theory, McGraw-Hill, 1969.

11. R.E. Kalman, Kronecker Invariants and Feedback. .In: L. Weiss (ed),
Ordinary Differential Equations (1971, NRL-MRC conference), Acad.
Press, 1972, 459-471.




12,

13,

14,
15.

16.

17.
18,

54

Kar-Keung, D. Young, P.V. Kokotovic, V.I. Utkin, A Singular
Perturbation Analysis of high-gain Feedback Systems. IEEE Tranms.
Automatic Control 22, 6 (1977), 931-938.

C. Martin, R. Hermann, Applications of Algebraic Geometry to Systems
Theory: The McMillan degree and Kronecker indices of transfer
functions as Topological and Holomorphic System Invariants,
Preprint, 1977,

H.H. Rosenbrock, State Space and Multivariable Theory, Nelson, 1970,

J.C. Willems, K. Glover, Parametrizations of Linear Dynamical Systems:
Canonical Forms and Identifiability, IEEE Trans, Automatic Control
19, 6(1974), 640-646.

J.H. Wilkinson, G.H. Golub, Ill-conditioned Eigensystems and
Computation of the Jordan Canonical Form, SIAM Review 18, 4(1976),
578-619.

W.A. Wolowich, Linear Multivariable Systems, Springer, 1974,

W. Murray Wonham, Linear Multivariable Control. A geometric Approach,

Lect. Notes Economics and Math. Systems 101, Springer, 1974.

g



