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In this talk the notion of a "linking system" is defined, a notion 

closely related to matroid theory. With this concept theorems on bipar­

tite graphs and directed graphs, in relation to matroids, can be general­

ized. Linking systems can be interpreted as a special case of the 

"tabloids" of S. Hocquenghem [3]. 

DEFINITION. A linking system is a triple (X,Y,A) where X and Y are fi­

nite sets and 0 ~ A c P(X) x P(Y), such that: 

(i) if (X', Y') E f\' then IX' I = IY' I; 

(ii) if (X', Y') E f\ and X" c X', then (X", Y") E A for some Y" c Y'; 

(iii) if (X', Y') E f\ and Y" c Y', then (X", Y") E f\ for some X" c X'; 

(iv) if (Xl 'y I) E A and (X2' Y2) E A' then there is an (X', Y') E f\ such 

that x 1 c X' c x 1 u x2 and y2 c Y' c YI u Y2 . 

Examples of linking systems may be obtained as follows. 

(a) Let (X,Y,E) be a bipartite graph (i.e. E c X x Y) and 

f\ = 6E = {(X' ,Y') I there exists a matching in E between X' c X and 

Y' c Y}. Then (X,Y,/\) is a linking system. Axiom (iv) was proved by 

H. Perfect and J.S. Pym [6]. A linking system constructed in this 

way is called a deltoid linking system. 

(b) Let (Z,r) be a directed graph and X,Y c Z. Let furthermore: 

f\ = { (X, , y') there are pairwise vertex-disjoint paths in r between 

X' c X and Y' c Y, such that in each vertex of X' starts a path and 

in each vertex of Y' ends a path}. Then (X,Y,A) is a linking system. 

Axiom (iv) was proved by J.S. Pym [7]. Linking systems constructed 

in this way are called gammoid linking systems. 

(c) Let (X,Y,<ji) be a matrix over a field IF (i.e. <ji : X x Y--+ IF), and 

let A= {(X' ,Y') \ the submatrix generated by X' c X and Y' c Y is 
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regular}. Then (X,X,A) is a linking system. Such a linking system 

is called representable over lF . 

Of course, example (a) is a special case of example (b): eaeh deltoid 

linking system is a gammoid linking system. 

There exist close relations between linking systems and matroids. In 

fact each linking system may be understood as a matroid with a fixed 

base (a based matroid). 

THEOREM I. Let X and Y be disjoint finite sets. Then there exists a one­

to-one relation between: 

(1) linking systems (X,Y,A), and 

(2) matroids (Xu Y,B) with X E B (Bis the eolleetion of bases), 

given by: 
(X I. Y') E A iff (X\X') u Y' E B. 

The correspondence is such that the linking system is a deltoid linking 

system iff the matroid is a deltoid; likewise, this correspondence 

exists between gamnoid linking systems and ganmoids and between linking 

systems representable over a field lF and matroids representable over lF. 

A second relation between linking systems and matroid theory gives the 

following theorem. 

THEOREM 2. Let (X,I) be a matroid (1 is the eolleetion if independent 

subsets of X) and let (X,Y,A) be a linking system. Let furthermore: 

1 *A= {Y' c Y I there exists an X' E T sueh that (X' ,Y') EA}. 

Then (Y,T * A) is a matroid. 

The proof of this theorem makes use of theorem I and the fact that the 

union of two matroids is again a matroid. 

As corollaries we have: 

(I) (J. Edmonds & D.R. Fulkerson [2]) if (X,Y,E) is a bipartite graph 

and J = {Y' c Y \ Y' is matched with some subset of X}, then (Y,J) 

is a matroid; 

(2) (H. Perfect [4]) if (Z,r) is a digraph, X,Y c Zand 

J = {Y' c Y I there are \Y' I pairwise vertex-disjoint paths start-
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ing in X and ending in Y'}, then (Y,J) is a matroid; 

(3) (H. Perfect [5]) if (X,7) is a matroid, (X,Y,E) a bipartite graph 

and J = {Y' c Y J Y' is matched with some X' E 1}, then (Y,J) is a 

matroid; 

(4) (R.A. Brualdi [!]) is (X,7) is a matroid, (Z,r) a digraph, X,Y c Z 

and J = {Y' c Y J there are JY'J pairwise vertex-disjoint paths 

starting in X' and ending in Y'}, then (Y,J) is a matroid. 

Of course, corollaries (!), (2) and (3) are also consequences of corol­

lary (4). 

Theorem 2 gave a kind of product of a matroid and a linking system. The 

next theorem gives in an analogue way a product of two linking systems. 

THEOREM 3. Let (X,Y,A 1) and (Y,Z,A2) be linking systems. Let further­

more A1 * A2 = {(X',Z') J there is a Y' c Y such that (X',Y') E A1 

and (Y',Z') E A2}. Then (X,z,A 1 * A2) is again a linking system. 

Again, the proof of this theorem uses theorem I and the union-theorem 

of matroids. 

A linking system is partially determined by its "underlying" bipartite 

graph, as defined in the following theorem. 

THEOREM 4. Let (X,Y,A) be a linking system and let (X,Y,E) be the bi­

partite graph with: (x,y) EE iff ({x},{y}) E A. Then: 

(I) if there is exactly one matching in E between X' c X and Y' c Y, 

then (X' , Y') E A; 

(2) if (X',Y') EA, then there exists at least one matching in Ebe­

tween X' and Y'. 

(2) means: Ac ~E (as defined in example (a)). Thus the maximum of all 

linking systems with the same underlying bipartite graph (X,Y,E) is the 

deltoid linking system (X,Y,~E)' since this last linking system has 

also (X,Y,E) as underlying bipartite graph. 

Proofs and more details can be found in [8] and [9]. 
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