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1 Introduction and statement of the main definitions and results 

A time invariant linear dynamical system is a set of equations 

x= Fx +Gu 

(1.1) y = Hx 

(continous time) 

(I) 
x(t + 1) = Fx(t) + Gu(t) 

y(t) = Hx(t) 

(discrete time) , 

where x EX= IRn, u EU= IRm, y EY = IRP and where F, G, Hare matrices with coef­
ficients in IR of the dimensions n X n, n X m, p X n respectively. We speak then of a 
system of dimension n, dim(L) = n, with ni inputs and p outputs. Of cource the discrete 
time case also makes sense over any field k, (instead of IR). The spaces X, u; Y are 
respectively called state space, input space and output -space. The usual picture is a "black 
box". 

' 

(1.2) U1 (t) Y1 (t) 

x(t) 

Um(t) Yp(t) 

That is, the system L is viewed as a machine which transforms an m-tuple of input or 
control functions u1 (t), .. ., Um (t) into a p-tuple of output or observation functions 
y 1 (t), .. ., Yp (t). Many physical systems can be viewed as such a "black box". For instance 
the box max be a chemical reaction vat. The u1 (t), ... , Um (t) may be concentrations of 
various chemicals which are inserted and the y_1 (t), ... , y_:p(t) represent certain series of 
measurements serving as indicators that everything goes as we wish (or not). Especially 
the output aspect (represented by the matrix H) captures something very often encounte­
red in physics, electronics, chemistry, and also astronomy: only certain functions of the 
state variables x 1 (t), ... , Xn (t) are directly observable! Thus in astronomy one has to make 
do with certain projections (against the sky sphere) of the space variables describing, e.g., 
the solar system, in atomic physics one may have to rely only on scattering data, and, as 
a last example, in economics one uses so called economic indices, which, hopefully, reflect 
more or less accurately the goings on of the "real" (largely unknown) underlying .,.,,.., ... v.uu•• ~ 
processes. 
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The formulas expressing y(t) in terms of the u(t) are 

(1.3) 

t 

•y(t) = HeFtx(O) + J HeF(t-r) Gu(r)dr, 

0 

t-1 

y(t) = HFtx(O) + L HFt-i-l Gu(i), 
i= 0 
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where x(O) is the state of the system at time 0 (and where we start putting in input at 

time t = 0). Thus the input-output behaviour of our box depends of course on the initial 

state x(O). One is particularly interested in the input-output behaviour of 1; when x(O) = 0. 

We shall write f (1;) for the associated input-output operator. Thus 

t t-1 

(1.4) f(l;): u(t) ~ JHeF(t-r)Gu(r)dr,f(2::): u(t) ~ L HFt-i- 1 Gu(i) 

o i=O 

It is now an important fact that the input-output behaviour description of the machine 

(1.2) is degenerate, much as, say, energy levels in atomic physics may be degenerate. More 

precisely the matrices F, G, H (and the initial state x(O)) depend on the choice of a basis 

in state space and from the input-output behaviour of the machine there is (without chan­

ging the machine) no way of deciding on a "canonical" basis for the state space X = IRn. 

More mathematically we have the following. Let GLn(IR) be the group of all invertible 

real n X n matrices and let Lm,n,p(IR) be the space of all triples of matrices (F, G, H) of 

dimensions n X n, n X m, p X n respectively. The group GLn(IR) acts on Lm,n,p(IR) and 

IRn = space of initial states, as 

(1.5) (F' G, H)8 = (SFs-1 , SG, HS-1), x(0)8 = Sx(O) 

and as is easily checked the associated input-output behaviour of the corresponding machine 

as given by (1.3) and (1.4) is invariant under this action of GLn(IR); i.e., in particular 

f (1;8 ) = f(I:). This action corresponds to base change in state space. Indeed if x' = Sx and 

x = Fx +Gu, y = Hx then s-1x.' = FS-1x' +Gu, y = HS-1x' so that x' = SFS-1x' + SGu, 

y = Hs-1x' and x'(O) = Sx(O). 

This chapter is concerned with those aspects of the theory of linear dynamical systems which 

are more or less directly related to the presence of the internal symmetry group GLn(IR) 

of the internal description of linear dynamical systems by triples of matrices (cf. (1.1)) as 

compared to the degenerate external description by means of the operator f (I:) (or (1.3)). 

This is not really a research paper (though it does in fact contain a few new results) but 

rather a graduate level expository account of some of the material of [3-8] and immediately 

related matters. 

In the remaining part of this introduction we give a slightly informal description of most of 

the main results of sections 2-8 below. 

We shall concentrate on the continuous time case. 
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1.6 Feedback and how to resolve the external description degeneracy. In the case of ato­
mic physics a degenerate energy level may beAsplit by means of, e.g., a suitable magnetic 
field. One can ask whether there exists something analogous in our case of degenerate ex­
ternal(= observable) descriptions of linear dynamical systems. There does in fact exist 
some such thing. It is called state space feedback. Consider the system (1.1). Introduc­
tion of state space feedback L changes it to the system :E(L) 

x = (F + GL)x +Gu 
(1.7) 

y=Hx 

u(t) 

L 

. 

-
I 

y(t) 
... . 

x(t) 

In thinking about these things the author has found it helpful to visualize a linear dynami­
cal system with (variable) feedback as a set of n-integrators, 1, ... , n, interconnected by 
means of the matrix F, a set of m input points connected to the integrators by means of· 
the matrix G, a set of p output points connected to the integrators by means of the matrix 
H and a set of connections from the integrators to the input points (feedback) which may be 
varied in strength by the experimentator (as in atomic physics the splitting magnetic field 
may be varied). Cf. also the picture below. 

h,2 Y, (t) 
----·-----~---"--/ 

/ 
/ 

h,~, 
/ 2 ___ ..,,, __ .... --·~--

// h21 
/ 

3 y,(t) :o 
Fig. 1 

-~-- interconnections between the integrators as given by the matrix F 

F =( ~21 
f31 

1 

0 

-· - . ~ ·- connections from the input points to integrators as given by the matrix G 

G =(~ ~") 
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_ -+--- connections from the integrators to the output points as given by the 
matrix H 
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-r -r -r connections from the integrators to the input points (can be varied in strength 
by the experimentator) as given by the matrix L 

( 
lu 

L= 
0 

0 

0 

Now let 1: = (F, G, H) and L 1 = (F', G', H') be two linear dynamical systems, and suppose 
that L and L 1 are completely reachable and completely observable. (This is an entirely 
natural restriction in this context, cf. 1.12 below; for a precise definition of the notions, 
cf. 2.6 below). Suppose that L =I= L' but f (L) = f (L'). Let L(L), L' (L) be the systems 
obtained by introducing the feedback L, i.e. L(L) = (F + GL, G, H), L'(L) = (F' + G'L, 
G', H'). Then there is a suitable feedback matrix L, which can be taken arbitrarily small 
(so that L(L) and !:' (L) are still completely reachable and observable) such that 
f (L(L)) * f (L' (L)). I.e. feedback splits the GLn(lR) - degenerate external description 
of linear dynamical systems. 

1.8 Realization theory. Let L be a linear dynamical system (1.1). Then, if we leave 1: 
unchanged, from our observations we can deduce the operator f (!:) or, equivalently, we 
can find the sequence of matrices A(L) = (A0 , A 1 , A2 , .•• ),Ai= HFiG. To obtain these use 
o-functions and derivates of o-functions as inputs. Another way to see this is to apply 
Laplace transforms to (1.1). This gives 

(1.9) s~(s) = F~(s) + Gti(s), y(s) = ffi(s) , 

so that the relation between the Laplace transforms y(s), ii(s) of the outputs y(t) and 
inputs u(t) is given by multiplication with the socalled transfer matrix T(s) 

(1.10) y(s) = T(s)fi(s), T(s) = H(s - F)-1 G . 

The power series development of T(s) in powers of s-1 (around s = 00) is now 

(1.11) T(s) = Aos-1 + A1s-2 + A2s-3 + .... 

The question now naturally arises: when does a sequence of p X m matrices A= (Ao, Ai, ... ) 
come from a linear dynamical system (1.1), or, as we shall say, when is A realizable. 
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1.12 Theorem (cf. [10]): 

(i) If A is realizable by an n-dimensional system 1: then it is also realizable by an n' < n 
dimensional system 1:1 which is moreover completely reachable and completely ob­
servable. 

(ii) The sequence A is realizable by an n dimensional system 1: if and only if rank 
(H5(A)) < n for all s E IN U {O}. 

Here H5 (A) is the block Hankel matrix 

Hs(A)= 

1.13 Invariants and the structure of Mcr,co (IA)= Leo, er (IR)/GL (IR). m,n,p m,n,p n 

Let Lm,n,p(IR) be the space of all triples of matrices (F, G, H) of dimensions n X n, 
n X m, p X n respective!~. The group GLn(IR) acts on Lm,n,p(IR) as in (1.5). The input­
output matrices Ai= HF1G are clearly invariants for this action and the question arises 
whether these are the only invariants. Here an invariant is defined as a function p: 
Lm,n,p(IR)-+ IR (or possibly a function defined on an invariant open dense subset of 
Lm,n,p(IR)) such that p((F, G, Hf) = p(F, G, H) for all triples (F, G, H) (in the open 
dense subset). 

1.14 Theorem: Every continuous invariant of GLn (IR) acting on Lm,n,p(IR) is a function 
of the entries of A0 , ... , A1 n - 1 . 

Let r.::n~p(IR) be the subspace of all triples (F, G, H) E Lm,n,p(IR) which are both 
completely observable and completely reachable. This is an open and dense subspace of 
Lm,n,p (IR). On this subspace GLn (IR) acts faithfully and a more precise version of theo­
rem 1.14 describes the quotient space M:;~~p(IR) = 1::~~p(IR)/GLn(IR) explicitly and 
gives an algorithm for recovering (F, G, H) up-to-GLu (IR)-equivalence from A0 , •.• , A1n-I 
(cf. 4.25 below). It turns out that M::~P(IR) is a smooth differentiable manifold and 
that the projection 1:::./IR)-+ M::~~p(IR) is a principal GLn(IR)-bundle (cf. 6.4 be­
low). 

1.15 Canonical forms. For many purposes (prediction, construction of feedbacks, identi­
fication and, not least, for proving theorems) an internal description of a black box by 
means of a triple of matrices (F, G, H) is preferable over knowledge of the input-output 
operator f(1:). As was remarked in section 1.14 above there do exist algorithms for cal-
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culating some :k = (F, G, H) which realizes f (k) or A (:k) from the matrices A0 , ... , A2n _ 1. 

One such algorithm is described in 4.25 below. All these algorithms have the drawback 

that they are discontinuous in general. This is a nontrivial difficulty, because after all one 

calculates the (F, G, H) because one wants to use them as a basis for further calculations, 

design, predictions etc., and the A0 , ..• , Azn-l are after all subject to (small) measure­

ment errors. Thus the question arises whether there exist continuous methods of recove­

ring (F, G, H) up-to-GLn (IR)-equivalence from A0 , ... , Azn-l· Or, in other words, be-

cause M::~:P (IR) is an explicitly describable subspace of the space of all sequences of 

2np X m matrices and M::~:P(IR) = L::~:P(IR)/GLn(IR), the question arises whether 

there exist continuous canonical forms on L::~:P (IR), where a continuous canonical 

form is defined as follows. 

1.16 Definition: A continuous canonical form on a GLn (IR)-invariant subspace 

L' C Lm,n,p(IR) is a continuous map c: L'-+ L' such that 

(i) c((F, G, H)8) = c((F, G, H)) for all (F, G, H) EL', 

(ii) if c((F, G, H)) = c((F', G', H')) then there is a SE GLn (IR) such that 

(F', G', H') = (F, G, H)8 , and 

(iii) for all (F, G, H) EL' there is an SE GLn(IR) such that c(F, G, H) = (F, G, H)8. 

For some additional remarks on the desirability of continuous canonical forms cf. [2] 

and also [ 15]. Also our proof of the "feedback suspends degeneracy" theorem mentioned 

in 1.6 above is based on the use of a suitable canonical form. It turns out that there exist 

open dense subspaces Ua C Lm,n,p(IR), which together cover L::~~P(IR), on which 

continuous canonical forms exist. Cf. 3 .10 below. On the other hand. 

1.17 Theorem: There exists a continuous canonical form on all of L::~~P (IR) if and 

only if m = 1 or p = 1. 

1.18 On the geometry of Moo, er (IR). Holes. Now suppose we have a black box (1.2) m,n,p 
which is to be modelled by a linear dynamical system of dimension n. Then the input-

output data give us a point of M::~~P (IR) and as more and more data come in we find 

(ideally) a sequence of points in M::~:P (IR) representing better and better linear dyna­

mical system approximations to the given black box. The same thing happens when one 

is dealing with a slowly varying black box or linear dynamical system. If this sequence 

approaches a limit we have "identified" the black box. Unfortunately the space 

Moo,er (IR) is never compact so that a sequence of points may fail to converge to any-
m,n,p co er · · 

thing whatever. There are holes in Mm,'n,p (IR). Consider for example the following 

family of 2-dimensional, one input, one output systems 

(1.19) gz = (~), Fz = l~ =~'Hz= (z2 , 0), Z = 1, 2, 3, .... 
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Let u(t),O~t~t0 beasmoothinputfunction,then y(t) = lim f(LJu(t)existsandis z_..oo 
equal to y(t) = d~ u(t). This operator can not be of the form f(l:) for any system 2: of 
the form (1.1) (because the f(l:) are always bounded operators and :t is an unbounded 
operator). A characteristic feature of this example is that the individual matrices 
Fz, Gz, Hz do not have limits as z-+ 00• (A not unexpected phenomenon, because after 
all we are taking quotients by the noncompact group G Ln (IR )). This sort of situation is 
actually important in practice, e.g. in the study of very high gain state feedbac~ systems 
x = Fx +Gu, u = cLx, where c is a large scalar gain factor. Cf. [12]. 
Another type of hole in if::~~P(IR) corresponds to lower dimensional systems, and in a 
way these two holes and combinations of them are all the holes there are in the sense of 
the following definitions and theorems for the case p = m = 1. There are similar theorems 
in the more input/more output cases. 

1.20 Definition: We shall say that a family of systems kz = (Fz, Gz, Hz) converges in 
input-output behaviour to an .operator B if for every m-vector of smooth input functions 
u(t) with support in (0, 00) we have lim f(Z:J u(t) = Bu(t) uniformly in t on boundM t 
intervals. z __,. 00 

1.21 Definition: A differential operator of order r is an operator of the form 
. d ~ 

u(t) i-+ y(t) = Dy(t) = a0u(t) + a1 dt u(t) + ... + 3.r dtr u(t), where the a0 , ••. , ar are 

p X m matrices with coefficients in IR, and ar =fa 0. We write ord(D) for the order of D. 
By definition ord(O) = -1. 

1.22 Theorem: Let (l:z)z be a family of systems in L 1,n, 1 (IR) which converges in input­
output behaviour. Let B be the limit input-output operator. Then there exist a system z:' 
and a differential operator D such that 

Bu(t) = f (l:')u(t) + Du(t) 

and ord(D) + dim(l:') ~ n -1. 

1.23 Theorem: Let D be a linear differential operator and L1 E11,n, 1(1R) and suppose 
that ord(D) + dim(L') ~ n -1. Then there exists a family of systems (Z:z)z, 
Lz E Lco,cr1(1R) such that for every smooth input vector u(t) 1,n, 

1im f(2:z)u(t) = f (2:')u(t) + Du(t) 
z __,. 00 

uniformely on bounded t-intervals. 

1.24 Concluding introductory remarks. Many of the results described above have their 
analogues in the discrete case and/or the time varying case, cf. [3-8, 9-11, 14]. But not 
all. For instance the obvious analogues of theorems 1.23 and 1.22 fail utterly in the dis­
crete time case. In this case lim f (l:z)u(t) exists for all inputs u(t) if and only if the in-z_,. oo 
dividual matrices Ai (z) = HzF~Gz converge for z-+ 00• This means that in the case of in-
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put-output convergence the limit operator is necessarily of the form f (1;') for some, possibly 
lower dimensional, system l;'. The same answer obtains in the continuous time case if 
besides input-output convergence one also requires that the Fz, Gz, Hz (or more generally 
the Ai (z)) remain bounded. 

A number of sections have been marked with a *: these contain additional material and 
can without endangering one's understanding be omitted the first time through. 

2 Complete reachability and complete observability 

Let F, G, H) E Lm,n,p (IR) be a real linear dynamical system of state space dimension n, 
with m inputs and p outputs. We defme 

(2.1) R8{F, G) = (G FG ... F8G), s = 0, 1, 2, ... , R(F, G) = Rn(F, G) 

the n X (s + l)m matrices consisting of the blocks G, FG, ... , F8G, and dually 

H 

HF 
(2.2) Os(F, H) = , S = 0, 1, 2, ... ,Q(F,H) = On{F,H). 

We also define 

(2.3) H5 (F, G, H) = HsC'E) = 

.where Ai= HFiG, i = 0, 1, 2, .... 

It is useful to notice that 

= Q5 (F, H)R5 (F, G), s = 0, 1, 2, ... , 

(2.4) Rk((F, G)5) = SRk(F, G), Qk((F, H)8) = Qk(F, H)s-1 ' 

where of course {F, G)8 = (SFs-1 , SG), {F, H)8 = (SFs-1 , HS-1). It follows that 

(2.5) Hk(l;8) = Hk((F, G, H)8 ) = Hk((F, G, H)) = Hk(l;) 

for all S E GLn (IR), which is of course itlso immediately clear from {2.3). 

2.6 Definitions of complete reachability of complete observability. The system 
(F, G, H) E Lm,n,p(IR) is said to be completely reachable iff rank (R(F, G)) = n. The 
system (F, G, H) is said to be completely observable iff rank (Q (F, H)) = n. These are 
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generic conditions; in fact the subspace L';::~~P (IR) of Lm,n,p (IR) consisting of all systems 
which are both completely reachable and completely observable is open and dense. We note 
that (F, G, H) is co ( = completely observable) and er ( = completely reachable) iff the 
matrix Hn(F, G, H) = Q(F, H) R(F, G) is of rank n. 

*2.7 Termilogicaljustification. Let (F,G,H)E Lm,n,p(IR). Then(F,G,H) is completely 
reachable iff for every x1 E IRn there is an input function u(t) such that the unique solu­
tion of 

x = Fx + Gu(t), x(O) = 0 

passes through x1; i.e. every state is reachable from zero. For a proof cf., e.g., [17, theorem 
3.5.3 on page 66] or [10, section 2.3]. Instead of completely reachable one also often fmds 
the terminology (completely state) controllable in the literature. 

Dually the system (F, G, H) is completely observable iff the initial state x(O) at time zero 
is deducible from y(t), 0 ~ t ~ t 1 , t 1 > 0 (using zero inputs). Equivalently (F, G, H) is 
completely observable if the initial state x(O) is deducible from the input-output behaviour 
of the system on an interval [O, ti], t 1 >O. Cf., e.g., [14, Ch. V, section 3] or [17, theorem 
3.5.26 on page 75]. 

The following theorem says that as far as input-output behaviour goes every system can be 
replaced by a system which is co and er. Thus it is natural to concentrate our investigations 
on this class of systems. 

2.8 Theorem ([ 1 O]): Let L = (F, G, H) E Lm, n, P (IR) with input-output operator f(k). Let 
n' = rank(Hn (L)). Then there exists an 

k 1 = (F', G', H') E L::~~P(IR) such that f(k) = f(~'). 

Proof· Let X = IRn be the state space of~. Let :xreach be the linear subspace of X 
spanned by the columns of R(F, G). Then, clearly, G(IRm) c xreach and F(Xreact,i) c 
:xreach (Because Fn = a0 I + a1 F + ... + an-1Fn-l for certain 3i E IR by the Cayley­
Hamilton theorem). Taking a basis for xreach and completing this to a basis for X we see 
that for suitable SE GLn (IR), Ls is of the form 

where the partition blocks are respectively of the sizes: 
" "X "X " "X " "X " ( ")X( ") n X m,n-n m,n n ,n n-n ,n-n n, n-n n-n , 

" X ( ") fi G" 0 F" F 0 F H" H" . 1 if " dimXreach p X n , p n - n or , , , 12, , 22, , 2 respective y n = . 
Now clearly 
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and rank R(F 11
, G") = rank (R(SFS-1 , SG)) = rank (SR(F, G)) = rank R(F, G) = n". 

It follows, cf. (1.4), that k and k 11 = (F", G", H") have the same input-output operator. 

Thus to prove the theorem it now suffices to prove the theorem under the extra hypothesis 

that (F, G, H) is er. Let Xo be the subspace of all x E X such that HF ix = 0 for all 

i = 0, 1, ... , n; i.e., X0 = Ker(Q(F, H)). Then HFix = 0 for all i = 1, 2, ... , using the Cay­

ley-Hamilton theorem. Hence FX0 C X0 and HX0 = 0. Taking a basis for X 0 and comple­

ting it to a basis for X we see that for a suitable SE GL0 (1R), ks is of the form 

where G', F', H' are respectively of the sizes n' X m, n' X n', p X n', n' = rank(Q(F, H)), 

which is also equal to rank H n (F, G, H) if (F, G, H) is er. 

Clearly 
-1 I 

HeFrG = (HS-l)eSFS rsG = H'eF TG' 

rank(Q(F, H)) = rank(Q(SFS-1 , SHS-1 ) = rank(Q(F', H')), 

so that k 1 = (F', G', H') is completely observable and f~' = f~. Also R(SFS-1 , SG) is of 

the form 

R(SFs-1 , SG) = ( ~, , ) . 
R(F, G) 

But rank R(F, G) = n so that the n rows of R (SFS-1 , SG) = SR (F, G) are independent 
It follows that the n' rows of R(F', G') are also independent, proving that k 1 is also comple­

tely reachable. 

*2.9 Pole Assignment. A set A of complex numbers with multiplicities is called symmetric 

if with {3 E /\ also ~ E A with the same multiplicity. Here ~ is the complex conjugate of (3 . 

. If A is a real n X n matrix then a(A), the spectrum of A, is a symmetric set. 

2.10 Theorem: The pair of matrices (F, G), FE IRn x n, GE IRn x m is completely 

reachable iff every symmetric set with multiplicities of size n occurs as the spectrum of 

F + GL for a suitable (state feedback) matrix L. 

I.e. the system (F, G, H) is er iff we can by means of suitable state feedback arbitrarily 

reassign the poles of the system. For a proof cf., e.g., [18, section 2.2]. 
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3 Nice Selections and the Local Structure of L~, n, P {IR )/Gln (IR) 

3.1 Nice Selections. Let (F, G, H) E Lm,n,p(IR). We use I(n, m) to denote the ordered 
set of indices of the columns of the matrix R(F, G). 
I.e. I(n, m) = {(i, j) Ii= 0, .. ., n; j = 1, ... , m} with the ordening 
(0, 1) < (O, 2)< ... <(O, m) < (1, 1)< ... <(1, m) < ... <(n, 1) < ... <(n, m). A nice 
selection a c I(n, m) is a subset of I(n, m) of size n =dim k such that 
(i, j) Ea=> (i-1, j) Ea if i;;;;.: 1. Pictorially we represent I(n, m) as an (n + 1) X m rectan­
gular array of which the first row represents the indices of the columns of G, the second 
row the indices of the columns of FG, ... etc .... We indicate the elements of a subset a 
with crosses. The subset of the picture on the left is then a nice selection (m = 4, n = 5) 
and the subset a' of the picture on the right below is not a nice selection 

x x x 

x x x x 

x x x 

If (3 is a subset of I(n, m) we denote with R(F, G)13 the matrix obtained from R(F, G) 
by removing all columns whose index is not in (3. 

We use Lm n (IR) to denote the space of all pairs of real matrices (F, G) of dimensions 
' n X n, n X m respectively. 

3.2 Lemma: Let (F, G) E Lm,nOR) be a completely reachable pair of matrices. Then 
there is a nice selection a such that R(F, G)a is invertible. 

Remark: Complete reachabilitiy means that rank R(F, G) = n, so that there is in any case 
some subset (3 of size n of I(n, rn) such that R(F, G)13 is invertible. The lemma says that 
in that case there is also a nice selection for which this holds. 

Proof of the lemma: Define a nice sub selection of I (n, m) as any subset (3 (of size ~ n) 
such that (i, j) E (3, i;;;;.: 1 => (i ·- 1, j) E (3. Let a be a maximally large nice subselection of 
I(n, m) such that the columns in R(F, G)a are linearly independent. We shall show that 
rank (R(F, G)J = rank (R(F, G)), which will prove the lemma because by assumption 
rank R(F, G) = n. 

Let a= {(O,ji), .. ., Oi.h); ... , (O,jJ, .. ., Os,j8)} .. Then by the maximality of a we know 
the columns of R(F, G) with indices (O,j),j E {1, ... , m} \ {h, ... ,j 8 } and the columns of 
R(F, G) with indices (it+ l,jt), t = l, ... , s are linearly dependent on the columns of 
R(F, G)a. With induction assume that all columns with indices (it+ k, jt), k ~ r, 
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t = 1, ... ,sand (k- l,j), k :s;;;; r,j E {l, ... , m} \ {h, .. .,js} are linearly dependent on the 
columns of R (P, G )a· So we have relations 

pr-lgj= L a(i,j)Pigj,jE{l, ... ,m}\{ji, ... ,js} 
(i,j) Ea 

Pit+rg· = " b(' ')pi 1 Jt L i,J gj,t= , .. .,s, 
(i,j) Ea 

where gj denotes the j-th column of G. Multiplying on the left with P we find 

prgj = L a(i,j)Fi+l gj 
(i,j) Ea 

Pit+r+ 1 . = '\' b(. ')pi+ 1 . gJt L...i l,J gJ. 
(i,j)Ea 

We have already seen that the pi+ 1 gj, (i, j) E a are linear combinations of the columns of 
R(P, G)a· It follows that also the F gj and F~ +r+ 1 gh are linear combinations of the co­
lumns of R(P, G)a· This finishes the induction and hence the proof of the lemma. 

3.3 Successor indices. Let a c I(n, m) be a nice selection. The successor indices of a are 
those elements (i, j) E I ( n, m) \ a for which i = 0 or for which (i', j) E a for all i' < i if 
i ~ 1. For every j 0 E { 1, ... , m} there is precisely one successor index of a of the form 
(i, fo); this successor index is denoted s( a, j0 ). In the picture below the successor indices 
of a are indiced by *' s (and the elements of a with x's). 

Columns of G * x * x X1 ei X3 e2 

Columns of PG x x e3 e4 

x * es X4 

* X2 

Columns of F5 G 

3.4 Lemma; Let a c I(n, m) be a nice selection and x1 , ••• , Xm an m-tuple of n-vectors. 
Then there is precisely one pair (F, G) E Lm,n (IR) such that 

R(P, G)a = In x n• the n X n unit matrix 

R(P, G)s(a,j) = Xj for all j = 1, ... , m. 
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Proof: Let fi be the i-th column of the matrix F, i = 1, 2, ... , n. Then in the example 
given above the values of the gj, j = 1, ... , m and fi> i = l, ... , n can simply be read of 
from the diagram. One has in this case 

g1 = X1,g2 = el>gJ = X3,g4 = e1 

f 1 = eJ, f 2 = e4, f 3 = e5 , f4 = X4, f 5 = X2. 

It is easy to see that this works in general and to write down the general proof though it 
tends to be notationally cumbersome. 

3.5 Local structure of L:,n,p (IR)/GLn (IR). Let a C I(n, m) be a nice selection. 
We define 

U~ = {(F, G, H) E Lm n p(IR) I det R(F, G)~ =F O} (3.6) ~ I I ~ 

Va= {(F, G, H) E Lm,n,p(IR) I R(F, G)a = Inx n} . 

3.7 Lemma: 

(i) Ua=VaXGLn(IR) 
(ii) Va= IRmn+ np 

Proof" (i) Let (F, G, H) E U,x- We assign to (F, G, H) the pair((F, G, H)8, s-1) where 
S = R(F, G);1. Then (F, G, H)8 E Va because R(SFS-1 , SG) = SR(F, G) and hence 
R(SFS-1, SG)a = SR(F, G)a. Inversely given ((F, G, H), S) E Va X GLn (IR) we assign 
to it the element (F, G, H)8 . This proves (i).Assertion (ii) follows immediately from 
lemma 3.4. Indeed, let z E IR mn + np and view z as an m + p tuple of n-vectors 
z = (xi, ... , Xm; Yi. ... , Yp). Then there are unique F, G, H such that R(F, G)a = In x n• 
R(F, G)s(a,j) = Xj, hz = Yz where h1 is the /-throw of H. 

3.8 Local structure of L::~~P (IR)/GLn (IR). Let again a be a nice selection. Then we de­
fine in addition. 

(3.9) u: = Ua n L::~~p(IR), V: =Van L::~~P(IR) 

Then one has clearly that v: is an open dense (algebraic) subset of Va and that 

U~0 ~ v: X GLn (IR). 

3.10 The local nice selection canonical forms Ca· Lemma 3.7 defines us a (local) conti­
nuous form on Ua for each nice selection a. It is 

(3.11) ca((F, G, H)) = (F, G, H)8a E Va, Sa= R(F, G)~1 , (F, G, H) E Ua 
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er · 
The UQ are open dense subsets of Lm n P(IR), and by lenuna 3.2 the union of all the UQ, 
a a nice selection, covers all of L:,n,~ (iR). This is thus a set of local canonical forms 
which can be useful in identification problems (it leads to statistically and numerically 
well posed problems, cf. [15, section II]. 

3.12 The dual results. Dually we consider the set I(n, p) of all row indices of Q(F, H), 
which we also picture as an (n + 1) X p array of dots. Now the first row represents the 
rows·of H, the second row the rows of HF, .... A nice selection is defined as before and 
one has the obvious analogues of all the results given above. In particular if 
(F, G, H) E L:,n.eOR) there is a nice selection (3 c I(n, p) such that Q(F, H)13 is inver­
tible. Here Q (F, H Jp is the matrix obtained from Q (F, H) by removing all rows whose 
index is not in (3. 

One also has of course local canonical forms c13 (defined on Up) for every nice selection 
(3 c I(n, p): 

- . s -
(3.13) c13((F, G, H)) = (F, G, H) f3, s(3 = Q(F, H)(3, (F, G, H) E U13 

(3.14) U13 = {(F, G, H) E Lm,n,p(IR) I Q(F, H)13 is invertible} . 

4 Realization theory 

Let A= (A0 , A 1, A 2 , ••• )be a sequence of p X m matrices. We shall say that the sequence 
A is realizable by an n-dimensional linear system if there exist a system (F, G, H) E Lm,n, p (iR 

Lm,n,p(IR) such that Ai= HFiG, i = 0, 1, 2, .... It follows immediately from (the proof 
of) theorem 2.8 above that if A is realizable by means of (F, G, H), then there is also a 
possible lower dimensional system :E' = (F', G', H') E L'::~f P (IR), n' ~ n. which also 
realizes A and which is moreover completely reachable and completely observable. 

For each sequence of p X m matrices A we define the block Hankel matrices 

(4.1) H8 (A) = ' s = 0, 1, 2, .... 

4.2 Theorem: The sequence of real p X m matrices A =(Ao, Ai. ... ) is reama'1.e by 
means of a completely reachable and completely observable n-dirnensional system if and 
only if rank H5(A) = n for all large enough s. Moreover if both l:, :E' E L'::~~P (IR) realize 
A then l:' = :E8 for some SE GLn (IR). 

This theorem will be proved below. First, however, we mention a consequence. 
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4.3 Corollary: If the sequence of p X m matrices A is such that rank H s (A) = n for all 
sufficiently large s, then rank H8 (A) = n for-all s;;;;::: n -1. 

Proof If~= (F, G, H) realizes A and ~ is co and er and of dimension n, then 
rankRn_1(F,G)=rankQn....:1(F,H)=n, so that rank.Hn-1CA)= rank(Rn_1(F,G) 
Qn-1 (F; H)) = n. 

A first step in the proof of theorem 4.2 is now the following lemma which says that if 
rank H s (A) = n for all s ;;;;::: r - 1, then the Ai for i ;;;;::: 2r are uniquely determined by the 
2r matrices Ao, ... , A1r-l· 

4.4 Lemma: Let A= (A0 , Ai, ... ) be a series of p X m matrices such that rank Hs(A) = n 
for alls;;;;::: r-1. There are m X m matrices S0 , ••• , Sr-l and p X p matrices To, ... ; Tr-l 
such that for all i = 0, 1, 2, .... 

(4.5) Ai+r = AiSo + Ai+1S1 + ... + Ai+r-1 Sr-1 = 

= T oAi + T 1 Ai + 1 + · · · + T r-1 Ai+ r -1 · 

Proof· Because rank Hr_1(A) = n and rank Hr(A) = n we have 

n = rank Hr-1 (A) = rank 

so that there are m X m matrices S0 , ••• , Sr-l such that 

Ai+r = AiSo + ... + Ai+r-lSr-1' i = 0, ... ,r -1. 

Similarly, it follows from 

Ao Ar-1 

n =rank Hr-l (A)= rank Ar-l 

A1r-1 

that there are matrices T 0 , ••. , Tr-l such that 

Azr-2 

(4.6) Ar+i = ToAi + ... + Tr-tAi+r-1' i = 0, ... , r-1. 

Suppose with induction we have already proved ( 4.5) for i ~ k -1, k ;;:i: r. 
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Consider the following submatrix of Hk (A) 

Ao Ai Ar-1 Ar Ak 

Ai 

(4.7) 
Ar-1 A2r-2 A2r-1 Ak+r-1 

Ar A2r-1 A2r Ak+r 

Using the relations ( 4.5) for i ..;;; k -1 we see that the rank of 4. 7 is equal to the rank of 

Ao A1 0 0 0 

Ai 

(4.8) 
Ar-1 A2r-2 0 0 0 

Ar A2r-1 0 0 x 

where X = Ak+r -AkSo - ... -Ak+r-iSr-l· Using (4.6) we see by means of row opera­
tions on ( 4.8) that the rank of ( 4. 7) is also equal to the rank of 

Ao 0 0 0 

A2r-2 0 0 0 

0 0 0 0 x 

Now the rank of (4.7) is n =rank Hr-l (A). Hence X = 0 which proves the induction step. 
This proves the first half of ( 4.5); the second half is proved similarly. 

More generally one has the following result (which we shall not need in the sequel). 

*4.9 Lemma: Let A0, ••• , As be a finite series of matrices and suppose there are 
i, j E IN U {O} such that i + j = s -1 and 

c ... ~J c Ai 
A1+1 J Ao Ai 

rank : : =rank : · =rank 
Aj Ai+i Aj Ai+j Ai+ j+l Aj Ai+j 

Aj+1··· Ai+j+1 

=n 
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for some n E IN U { 0} , then there are unique As+ i. As+ 2, ... such that 

rank Ht (A) = n 

for all t ;;;;i: max(i, j). 

Proof· By hypothesis we know that there exist matrices S0 , ... , Si 

(4.10) Ai+r+l = ArSo + ... + Ar+iSi> r = 0, ... ,j. 

Now define At for t > s by the formula 

Also by hypothesis we know that there exist T 0 , ••• , Tj such that 

(4.12) Aj+r+1 = ToAr + ... + TjAj+ro r = 0, ... ,i. 

To prove that rank Ht(A) = n for all t ;;;;i: max(i,j) it now clearly suffices to show that 
( 4.12) holds in fact for all r ;;;;i: 0. Suppose this has been proved for r ~ q -1, q ;;;;i: i + 1. 
Consider the matrix 

A_o Ai Ai+t Aq 

(4.13) 
Aj Ai+j Ai+j+1 Aj +q 

Aj+1 Ai+j+l Ai+j+2 Aj+q+l 

By means of column operations, the hypothesis of the lemma, and ( 4.10)-( 4.11) we see 
that the rank of the matrix (4.13) is n. Using row operations and ( 4.12) for r ~ q -1 (in­
duction hypothesis) we see that the rank of ( 4.13) is also equal to the rank of 

Ao Aq 

(4.14) 

0 0 0 0 x 

where X is the matrix Aj + q + 1 - T 0 Aq - ... - TjAj + q· Now use column operations and 
( 4.10), ( 4.11) to see that the rank of ( 4.14) is also equal to the rank of 

Ao 0 0 0 

(4.15) Aj Ai+j 0 0 0 
~~~~~~~!--~~~~~~~ 

0 0 0 0 x 

It follows that X = 0. 
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4.16 Proof of theorem 4.2 (first step: existence of a co and er realization; [10]): Let 
r E IN be such that r ;;;i. n and rank H5 (A) = n for all s ;;;i. r- 1. We write 

(

Ao 
H=Hr-1(A)= : 

Ar-1 

and for all s, t E IN we define 

Es X t = (Is X s I Os X (t-s)) if S < t 
Es X s = Is X s if S = t 

E, x , = ( oc.~: : , ) if s > t , 

Ar+k-1 ) 

Azr~k-1 

where la x a is the a X a identity matrix and Oa x b is the a X b zero matrix. Because H 
is of rank n, there exist an invertible pr X pr matrix P and an invertible mr X mr matrix 
M such that 

(4.17) PHM= (
lnx n Onx (mr-n) ) 

= EprXnEnxmr · 

O(pr-n) X n o(pr-n) x (mr-n) 

Now define 

(4.18) F =En x prPH<1>M Emrx n• G = Enx prPHEmrx m• 

H = Ep x prHMEmrx n 

We claim that then (F, G, H) realizes A, i.e. that 

(4.19) Ai= HFiG, i = 0, 1, 2, ... 

To prove this we define 

0 0 So o' 
I 

D= 0 C= . . o' . 0 . 
0 ••. 0 I si-1 To 

I' o' 

o' 

o' . 
o' 
I' 

Tr-1 

where 0, I, O', I' are respectively the m X m zero matrix, the m X m identity matrix, the 
p X p zero matrix and the p X p identity matrix and where the S0 , ••• , Sr-l and 
T0 , •.• , Tr-l are such that (4.S) holds for all i. Then 

(4.20) H~> = CkH = HDk, k = 1, 2, .... 
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Let H * = MEmr x n En x pr P. Then H * is a pseudoinverse of H in that 

(4.21) HH*H=H 

(Indeed using (4.17) we H H* H = p-n Epr x nEn x mr MEmrX nEn x prP 
p-l Epr x nEn x mrM-1 = H because M-1 M = I, pp-l = I, En x mr Emr x n = In x n• 
En X prEpr X n = In X n.). 
We now first prove that 

( 4.22) En x prP Ck H M Emr x n = Fii:, k = 1, 2, ... 

In view of (4.20) this is the definition of F (cf. ( 4.18)} in the case k = 1. So assume (4.22) 
has been proved fork~ t. We then have 

En x prPCt + 1 HM Emil" x n = E11 x pirPCt HD M Emr x n (by (4.20) 

= Enx pirP CtH H* HD M Emrx n (by (4.21)) 

= Enx prPCtHMEmrx nEnx prPHDMEmrx n 
(by the definition of H*) 

= Ft En x prP CH MEmr x n (by the induction hypothesis 
and (4.20)) 

= FtF (by the definition of F. cf. (4.18) and (4.20)). 

We now have for all k ~ 0 

A11: = Ep x prH(k)Emr x m (definition of H (k)) 

= Ep x prcK HEmr x m (by (4.20)) 

= Ep x prCkHH*HEmrX m (by (4.21)) 

= Ep x prCk HM Emr x n En x prP HEmr x m (by the definition of H *) 

= Ep x prHDkMEmr x nG {by the definition of G and (4.20)) 

= Ep x prHH*HDkMEmrx nG (by (4.21)) 

= Ep x prHMEmr x nEn x prP HDkMEmr x nG (by the definition of H*) 

= HEnx prPCkHMEmrX nG (by the definition of Hand (4.20)) 

= HFkG (by (4.22)). 

This proves the existence of an n-dimensional system l: = (F, G, H) which realizes A. Now 
for all s = 0, 1, 2, ... 

where H 

HF Q5(F, H) = , Rs(F, G) = (G FG .... F8G). 
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Both Os (F, H) and R8 (F, G) have necessarily rank~ n. It follows via the Cayley-Hamilton 
theorem that (F, G, H) is completely reachable and completely controllable, because 
rank H s (A) = n for s ~ r - 1. 

4.23 Proof of the uniqueness statement of theorem 4.2: Let :E = (F, G, H) and 
f = (F, G, H) be two co and er realizations of A. Then dim(:E) =rank Hn-l (A)= dim(f). 
By hypothesis we have 

(4.24) Ai= HFiG = HFiG, i = o, 1, 2, .... 

According to lemma 3.2 and 3.11 there exists a nice selection a (of size n) of I(n -1, m), 
the set of column indices of Rn_ 1 (F, G) and H n _ 1 (F, G, H), and there exists a nice selec- · 
tion f3 (of size n) of I(n -1, p), the set of row indices of On-I (F, H) and Hn-l (F, G, H), 
such that 

rank(Rn-1 (F, G)0) = rank:(On-1 (F, H)p) = n. 

(Note that a nice selection in I(n, m) (or I(n, p )) is always contained in I(n - I, m) 
(or I(n-1, p).) Let Hn-l (F, G, H)a,iJ be the matrix obtained from Hn-l (F, G, H) by 
removing all rows whose index is not in (3 and all columns whose index is not in a. Then 

Hn-1 (F, G, H)a,J3 = On-1 (F, H)p Rn-1 (F, G)a: 

so that Hn-l (F, G, H)a:,J3 is an invertible n X n matrix. Also 

Hn-1 (F, G, H)a,J3 = Hn-1 (F, G, H)a,iJ = On-1 (F, H)pRn-1 (F, G)a: 

so that On-l (F, H)13 and Rn-l (F, G)a: are also invertible. Now let 

:E1 = (F1, G 1 , Hi)= (F, G, H)T, T = On-1 (F, H)p 
- - - - - -1' - - -:E1 =(Fi. Gi, H1) = (F, G, H) : T = On-1 (F, H)13. 

Then of course :E1 and 1:1 also realize A. Moreover, using (2.4) we see 

On-1(F1> Hi)13 =In= On-1 (Fi. Hi)13. 

It follows that 

R(F1, Gi) = HnC'E-1)13 = Hn(:E)13 = Hn(f)p = Hn(fi)fJ = R(Fi. Gi) 

and, in turn, this means that F 1 = F 1 and G1 = G1 by lemma (3.7) (i) combined with 
lemma (3.4). Further the matrix. consisting of the first prows of Hn(Li) = Hn(f1) is 
equal to 

H1R(F1, G1) = H1R(F1, G1) 

so that also H1 = H1 because R(F i. G1) = R(F 1, G1) is of rank n. This proves that indeed 
f = :E8 With S=T-1T. 
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4.25 A realization algorithm. Now that we know that A is realizable by a co and er sy­
stem of dimension n iff rank H8 (A) = n for all large enough s it is possible to give a rather 
easier algorithm for calculating a realization than the one used in 4.16 above (which is the 
algorithm of B.L. Ho). It goes as follows. Because A is realizable by a LE L~;~~P (IR) 
there exist a nice selection a C I(n, m), the set of column indices of R(F, G) and Hn (L), 
and a nice selection /3 c I(n, p), the set ofrow indices of Q(F, H) and Hn(L), such that 

(4.26) Hn(A)a,{j = S 

is an invertible n X n matrix. Consider 

s-·1 Hn(A)p. 

This n X (n + 1) m matrix is necessarily of the form R(F, G) for some (F, G) E L~,n(IR) 
and moreover by (4.26) 

(S-1 Hn (A)13)a = In 

so that F, G can simply be written down from s-1 H n (A )13 as in the proof of lemma 3 .4. 
The matrix H is now obtained as the matrix consisting of the first p rows of Hn (A)a· 
After choosing a, this algorithm describes the unique triple (F, G, H) which realizes A 
such that moreover R(F, G)a =In· 

*4.27 Relation with rational fwictions. Suppose that Hk(A) is of rank n for all sufficiently 
large k. Then by theorem 4.2 the sequence A is realizable. Using Laplace transforms (cf. 
1.8 above) we see that this means that the p X m matrix of power series 

00 

L Ais-i-l is in fact a matrix of rational functions. 
i=O 

00 

( 4.28) L Ais-i-l = (sn - an-1 sn-l - ... - al s - aof1 B(s) = d(s)-1 B(s)' 
i= 0 

where B(s) is a p X m matrix of polynomials in s of degree ~ n -1. 
Inversely if 

00 

(4.29) LAis-i-I = d1(sf1 B1(s) 
i:::: 0 

for a matrix of polynomials B1(s) and a polynomial d'(s) = sr - a1r-l sr-l - ... - a~ s- a~ 
with r =degree (d1(s)) >degree B1(s), then 

for all i = 0,1,2, .... And this, in turn implies that 

rankHk(A) = rankHr-1(A) 
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for all k;;;;a. r-1, so that A is realizable. It follows that A is realizable iff I:Ais- 1- 1 

represents a rational function which goes to zero as s ~ 00• 

5 Feedback splits the external description degeneracy 
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In this section we shall prove the result described in section 1.6. To do this we first discuss 

still another local canonical form. 

5.1 The Kronecker nice selection of a system. Let (F, G, H) E L~,n,p (IR). We proceed 

as follows to obtain a "first" nice selection K such that (F, G, H) E U i<· 

Consider the set of column indices I(m, n) in the order (0, l) < (0, 2) < ... < (0, m) < 

(1, 1) < ... < (1, m) < ... < (~, 1) < ... <(n, m). For each (i,j) we set (i,j) E 1< ~ F1~ 
is linear independent of the F1 Sf with (i',j') < (i,j). We shall call the subset K ofl(n,m) 

thus obtained, the Kronecker selection of (F, G, H) and denote it with K (F, G, H). It is 

obvious that K has n elements if (F, G, H) E L~,n,p (IR). 

5.2 Lemma: The Kronecker selection " defined above is a nice selection. 

Proof: Let (i, j) E K and suppose i ;;i. 1. Suppose that (i1, j) $ 1<., i' <i. This means that 

there is a relation 

pi'gj = L b(k, l)Fkgl. 

(k,l) < (i',j) 

Multiplying with pi-i' on the left one obtains 

Figj = L b(k, l)Fi-i'+kgl 

(k, l) <(i, ,j) 

showing that pi&.i is linearly dependent on the F8gj', with (s, j') < (i, j). A contradiction, 

q.e.d. 

5.3 Lemma. Let(F, G, H) E L~,n,p(IR) and SE GLn(IR), then 

K(F, G, H) = 1<.((F, G, H)s). 

5.4 Lemma: Let (F, G, H) E L~,n,p(IR) and let L be an m X n matrix. Then 

K(F, G, H) = K(F + GL, G, H). 
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The proof of lemma 5.3 is immediate, because the dependency relations between the 
(SFs-1 YCSgj) = S(Figj), (i,j) E I(n, m), are precisely the same as those between the 
Figj, (i, j) E I(n, m). As to lemma 5.4 we define 

(5.5) 

X 0 ('£) =subspace of X = IRn generated by g1, .•. ,gm 

X 1 ('£) =subspace of X = IRn generated by&!> ... , gm, Fgi. ... , Fgm 

Xn ('£)=subspace of X E IRn generated by g1, .•. , &m, 
Fgi, ... , Fgm, ... , Fngl, ... , Fngm . 

/\ 
Let 'L(L) = (F + GL, G, H) and let F = F + GL. Then one easily obtains by induction 
that 

(5.6) Xi('L(L)) = Xi('L), i = 0, ... , n 

and that 

(5.7) Fig(= Figj modxi-l ('£), i = 0, 1, ... , n 

(where, by definition, x-1 ('£) = {O}). Lemma 5.4 is an immediate consequence of (5.7). 
(Note that a basis for Xi (L) is formed by the vectors Fkg1 with (k, l) E "('£) and k < i; 
the classes of the Fk g1 with (k, l) E /< ('£), k = i are a basis for the quotient space 
Xi('L)/Xi-1 ('£), i = 0, ... , n). 

If'£= (F, G, H) E L%::~P(IR) then i<(F, G, H) can be calculated from Hn(F, G, H). 
Indeed in that case Q(F, H) is of rank n. Therefore, because Hn (F, G, H) = Q(F, H)R(F, G), 
the dependency relations between the columns of H n (F, G, H) and between the columns 
of R(F, G) are exactly the same. 

5.8 Remark: If (F, G, H) E Lfil,n,p(IR) then also (F + GL, G, H) EL: n p(IR) as is easily 
co ' ' checked. But if (F, G, H) E L;,n,p(IR), then (F + GL, G, H) need not also be completely 

observable. Though of course this will be the case for sufficiently small L (because 
L:,n,p(IR) is an open subset of Lm,n,p(IR)). 

*S.9 The Kronecker control invariants. The invariant "(F, G, H) depends only on F and 
G, so that we can also write /< (F, G). For each j = 1, ... , m, let kj be the number of ele-
ments (i, 1) in i<(F, G) such that I= j. Let K 1 (F, G) ~ ... ~ Km•(F, G), m' = rank(G), be 
the sequence of those kj which are -::/= 0 ordered with respect to size. It follows from 
lemma's 5.3 and 5.4 that the Ki (F, G) are invariant for the transformations 

(5.10) (F, G) '"""* (F, G)8 = (SFS-1 , SG) (base change in state space) 

(5.11) (F, G) 1-+ (F + GL, G) (feedback). 
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One easily checks that the K1(F, G) are also invariant under 

(5.12) (F, G) 1-+ (F, GT), TE GLmOR) (base change in input space). 

This can, e.g., be seen as follows. Let A.1(1:) = dimX1(l::)-dimX1- 1 (:!:) for i = 0, l, ... , n. 
Consider an rectangular array of (n + 1) X m boxes with the rows labelled 0, ..• , n. Now 
put a cross in the first ~(:!:)boxes of row i for i = 0, .. ., n. Then Kj(l::),j = l, .. ., m' is 
the number of crosses in column j of the array. Obviously the >.t(l::) do not change under 
a transformation of type (5.12), proving that also the KJ(F, G) are invariant under 5.12. 

The group generated by all these transformations is called the feedback group, Thus the 
Ki(F, G) are invariants of the feedback group acting on L:.n(IR). It now turns out that 
these are in fact the only invariants. I.e. if (F, G), (F, G) E ·L: n (IR) and 1<1 (F, G) = 
Ki(F, G), i = 1, ... , m', then (F, G) can be obtained from (F, G) by means of a series of 
transformations from (5.10)-{5.12). Cf. [11] for a proof,or cf. 5.30 below. 

The Ki(F, G) are also identifiable with Kronecker's minimal column indices of the singu­
lar matrix pencil (zin - F I G), cf. [ 11 ]. 
Still another way to view the Ki(F, G) is a follows. 

Consider the transfer matrix T(s) = H(sln - Ff1 G of the er and co linear dynamical 
system :!: = (F, G, H) considered as a p X m matrix valued function of the complex 
variable s. One can now prove (cf. [14]): 

Theorem: There exist matrices N(s) and D(s) of polynomial functions of s such that 
(i) T(s) = N(s)D(sr1, (ii) there exist matrices of polynomials such that X(s)N(s) + 
Y(s)D(s) =Im, (iii) N(s) and D(s} are unique up to multiplication on the right by a unit 
from the ring of polynomial m X m matrices. Moreover degree (det D(s)) = n = dim(:!:). 
Now for each s E IC, one defines 

<P:r. (s) = {(N (s)u, D(s)u) I u E ICm} C 1CP + m . 

Ifs E IC is such that D(sf1 exists, then also </>:r. (s) = {(T(s)u, u) I uE ICm} C JCP + m. In 
any case <PE (s) is a p-dimensional subspace of ICP + m. In addition one defines <J>E (00) = 
{(O, u)I u E ICm} C ICp+ m, which is entirely natural because lim T{s) = 0. This gives a 

s-+ao 

continuous map of the Riemann sphere ICU {00} = S2 to the Grassmann manifold 
Gm,p+ m (IC) of m-planes in p + m space. Let ~m-+ Gm,p+ m {IC) be the canonical complex 
vector bundle whose fibre over z E Gm,p+ m (IC) is them-plane represented by z. Pulling 
back ~m along </>:r. gives us a holomorphic complex vector bundle Hl::) over S2 • 

Now holomorphic vectorbundles over the sphere S2 have been classified by Grothendieck. 
The classification result is: every holomorphic vectorbundle over S2 is isomorphic to a 
direct sum of line bundles and line bundles are classified by their degrees. 

It now turns out that the numbers classifying H~). the bundle over S2 defined by the 
system ~.are precisely the - Ki(:E), i = l, .. ., m, where Ki(l:) = 0 for i > m' =rank (G). 
One also recovers n = dim(:!:), if:!: E L::~~P {IR), as the intersection number of <1>'1: (S2) 

with a hyperplane in Gm,m +p{IC). 
These observations are due to Clyde Martin and Bob Hermann, cf. (13]. 
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As we have seen the 1<.iO:;) are invariants for the transformations (5.10), (5.11), (5.12). 
Being defined in terms of F and G alone they are also obviously invariant under base 
change in output space: (F, G, H) 1-+ (F, G, SH), SE GLp {IR). The Ki(~) are, however, 
definitely not a full set of invariants for the group <§acting on Lm, n, P (IR), where f§ is 
the group generated by base changes in state space, input space and output space and the 
feedback transformations. 

5.13 The canonical input base change matrix T(:k). Let!:= (F, G, H) E L~,n,p{IR) and 
let 1<. = 1<. (:k) be the Kronecker nice selection of !:. Let (i, j) = s(1<., j) be a successor index 
of 1<.. By the definition of 1<. we have a unique expression of the form 

(5.14) Figj = L ajG')Figj' + L a(k, l)Fkg1 

{i, j') E /< (k, l) EK 
j' <j k < i 

(where the a(k, l) in the second sum also depend on i and j of course). Now define recur­
sively 

(5.15) gj = gj - L 31G')gj', e = (gi, ... ,gm) 
j' <j 

and 

(5.16) T(:k) = (bjk), 

where bjk = 1 if j = k, bjk = - ak 0), if j < k, and bjk = 0 if j > k. 
/\ 

Then G = GT(!:), and T (:k) is an upper triangular matrix of determinant 1. 

5.17 Lemma: Let !: E (F, G, H) E L~,n,p(IR), then 

T(!:) = T(!:~), T(!:(L)) = T(L:) 

for all SE GLn (IR) and all feedback matrices LE IRm x n. 

Proof Obvious. (Use (5.7)). 

5.18 Example: Let m = 5, n = 9, and let (F, G, H) E L~:9 ,p (IR) have Kronecker selection 
1<. (F, G, H) equal to 

x x x x 

x x x 

x 

where we have omitted the last five rows of dots. 
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Then T(:1:) is an upper triangular matrix of the form 

1 0 * 0 * 
0 1 * * * 

T(:1:) = 0 0 1 0 0 

0 0 0 1 * 
0 0 0 0 1 

Note that T (:1:)-1 is of precisely the same form. 

This is a general phenomon. Indeed by (5.14) and (5.15) (cf. also example (5.18)) gj is of 
the form 

(5.19) gj = gj + L bijgio T(k) = (bij) . 
kj>k· 

i <j J 

So that bij = 0 unless i = j (and then bij = 1) or i <j and ki > kj 
Let t 1, ••. , tm be the columns of T(k) and el> ... , em the standard basis for IRm. Then 

(5.20) tj = ej + L bijei 
kj> kj 

i <j 

Using induction with respect to an ordening of the { l, ... , m} satisfying i < j => ki ~ kj it 
readily follows that 

ej = tj + I bijti . 
i < j 

kj> kj 

which proves that T(:1:f 1 also has zero entries at all spots (i, j) with i > j or (i < j and 
ki ~ kj)· 

5.21 The block companion canonical form. Let K be a nice selection. We are going to 
construct a canonical form on the subspace W" of all k E L:::.P (IR) with K (k) = K. We 
shall do this only in full detail for the case that K is the nice selection of example 5.18. 
This special case is, however, general enough to see that this construction works in general. A A 
Let (F, G, H) E W" and let G =GT(}.;). Now consider the system (F, G, H) which is also 
in W" as is easily checked. This system has the property that for each successor index 
s(K, j) = (i, j) of K with i =/= 0 we have 

(5.22) Figj = L a' (k, l)Fkg1 

(k,l) EK 
k<i 
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/\ 

(i.e. T(F, G, H) =Im)· Indeed, using (5.14) 

(k,l)E1< 
k<i 

(k,l)EK 
k<i 

/\ 
because, clearly, Xi (F, G, H) = Xi (F, G, H) for all i = 0, l, 2, ... , n, cf. ( 5.5), and cf. also 
the remarks just below ( 5. 7). 

Now define a new basis for IRn as follows. Let " = {(O, h ), ... , (ii. j 1); ••• ; (0, jr), ... , Cir. jr)· 
Then kt =it + l, t = 1, ... , r, and k 1 + ... + kr = n. For the successor indices 
s(K, j) = (kt, jt), t = 1, ... , r, write 

(5.23) pkrgh = - L bt (k, l)Fkgl . 
. (k, l)E1< 

k<kt 

Setting bt (k, l) = 0 for all (k, I) <$ 1<. we now define a new basis for IRn by 

(5.24) 

m t 

e1 =Fk1-1gh + L b 1 (k1 -1,j)Fk1 - 2 gj+ ... + L b1(l,j)gj 
j=l i=l 

m t 
- pk1 - 2/\ " b (k - 1 ") pki - 3 I\ " b (2 ") I\ ez - gh + L i i , J gj + ... + L 1 , J gj 

j=I i=I 

m t 

ek1 +I= pk2-1-gh + L b2 (k2 -1,j) pkz-2 gj + ... + L b2 (l,j) gj 

/\ 

ekt + ..• +kr = gir. 

j=l i=l 

n " "· (/\) Let X0 C IR be the space spanned by the vectors gil' ... , gjr 1.e. X0 = Xo F, G, H = 
X0 (E). Then we see from (5.23) that for the vectors defined by (5.24) above we have 

Fe1 EX0 , F(ei) = ei-l modXo for i = ki,k1 -1, ... , 2 

Fek1 + 1 EX0 , F(ei) =:= ei-l modXo for i = k1 + kz, ... , ki + 2 

Fek1 + ... +kr-l EX0 , F(ei) = ei-l modXo for i = k1 + ... +kn ... , k1 + ... + kr-1 +2. 
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It follows that which respect to the basis ei, ... , e0 , F and G are of the fonn 

0 l 0 ... 0 0 0 0 0 . . . . . . 
0 

. . . 
k1 

0 0 1 i 0 0 I 0 0 
* * I * * I * * 
0 0 l 0 l 0 ... 0 0 0 

I 

. . . . . . 0 k2 
F= 0 0 0 0 1 0 0 

* * * * * * 

(5.25) 
0 0 0 0 0 l 0 ... 0 

I 0 k3 
0 0 0 1 
* I * * I * * 

0 0 0 

* 

G = (gi, li. ... , gm), with 

(5.26) 
/\ .f\ /\ 

gh = ek1• gh = ek1+k2' ... , gh = ek1 + ... +kr =en' 
gj = 0 for j E { 1, ... , m} \ Oi. ... , jr}. 

In particular in the case that 1' is the nice selection of example 5.18 we see that with 
respect to the basis e1 , ••. , en defined by 5.24 the matrices F and G take the form ( cf. 
5.18, the inverse of T(~) is of the same form as T(E)). 

0 1 0 0 0 0 0 0 I 0 

a1 a2 a3 a4 as a6 a1 as a9 

0 0 0 l 0 0 0 0 0 

0 0 0 0 0 0 0 0 
F'= 

0 0 0 0 0 1 0 0 0 

b1 b2 b3 b4 bs b6 b1 bs b9 

0 0 0 0 0 0 0 1 0 

C1 C2 C3 C4 Cs c6 C7 Cs C9 

di d2 d3 d4 ds d6 d7 ds d9 
(5.27) 
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0 0 0 0 0 
I 0 • 0 • 
0 0 0 0 0 
0 0 0 0 0 

G'= 0 0 0 0 0 
0 1 * • • 
0 0 0 0 0 
0 0 0 1 • 
0 0 0 0 

This does not yet define a canonical fonn on W i<· True, for every l: E W K there exists an 
S EGl..n (IR) such that (F, G)5 takes the fonn (5.27). But for two pairs (F, G) :#= (F, G), 
both of the form (5.27), there may very well exists an S :#=In such that (F, G'/' = (F, G). 

In fact, it is now not difficult to check that if S is an n X n matrix of the form 

1 0 S13 814 0 0 0 0 0 

0 1 0 S13 S14 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

S= 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 Sn S74 0 0 1 0 0 

0 0 0 873 S74 0 0 1 0 

ScJ1 0 Sg3 ~ S95 0 Sg7 0 1 

then SG = G and SFS-1 is of the same general form as F, if F and G are of the form 
(5.27). Choosing 813, S14, s73, 874, ScJi. Sg3, ScJ4, s95 and ScJ7 judiciously we see that for every 
l: = (F, G, H) E W IC• there exists an SE GLn (IR) such that SFs-1 and SG take the forms 

0 1 0 0 0 0 0 0 0 

a1 a2 a3 ~ 0 0 a1 as a9 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

SFS-1 = 0 0 0 0 0 1 0 0 0 

bi b2 b3 b4 bs b6 b1 bs b9 

0 0 0 0 0 0 1 0 

C2 C3 ~ 0 0 C7 Cg ~ 

(5.28) 
1 0 d3 0 0 0 d1 0 d9 
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where 

0 0 0 0 0 

1 0 

0 0 

0 0 

C13 0 

0 0 

0 0 

0 

0 

SG= 0 0 0 0 0 

Q 1 C23 C24 C25 

0 0 0 0 0 

OOO 1 C4s 

0 0 0 1 

1 0 C13 Q C15 

0 1 

To::r1 = o o 1 
~ C25 

0 0 

0 0 0 1 C45 

0 0 0 0 1 

391 

The general pattern should be clear: the off-diagonal blocks have zero's in the last row iff 
there are more columns than rows, in fact in that case the last row ends with (number of 
columns) - (number of rows) zero's; the structure of the diagonal blocks is clear. 

Now suppose that (F', G', H') and (F", G", H") are two systems such that (F', G')8 = 
(F", G") for some S and such that (F', G') and (F", G") are both of the forms (5 .28). 
One checks easily that then necessarily S =In. We have shown 

S.29 Proposition; Let " be the nice selection of example 5.18. Then for every 
:I:= (F, G, H) E W" there is precisely one SE GLn (IR) such that SFS-1 and SG have the 
forms (5.28). 

'This means in particular (in view of the results of section 4 above) that if 
:I: E W" n L~~:P (IR), then the real numbers ai. ... , a4, a7 , ••• , a9 , bi. ... , b9 , ci. ... , C4, 
c7 , ••• , c9 , di. d3 , d7, d9 can be calculated from f(l::) (or A0 , ••• , A2n_1). Of course these 
results hold quite generally for all nice selections ". We note that in general W" is not an 
open subspace of L~m,p(IR). In fact W"/GLn(IR) is a linear subspace ofU"/GLn(IR) = 
IRmn+ np =::-. V". In case" is the nice selection of example 5.18 the codimension of 
Wic/GLn(IR) in Uk/GLn (IR) is 12. (This number can immediately be read off from K: g3 

linearly dependent on g1 , g2 causes 9 - 2 = 7 linear restrictions; Fg5 linearly dependent 
on g1 , g2, S4, g5 , Fg1 , Fg2 , FS<J causes 9 - 7 = 2 extra linear restrictions; F 2 g1 linearly 
dependent on Si. g2, g4, g5 , Fgi. Fg2, Fg4 causes 9 -7 = 2 more linear restrictions; and 
finally F2g4 dependent on g1 , g2, g4, g5 , Fgi, Fg2, Fg4, F 2g2 causes 9-8=1 more linear 
restriction; 7 + 2 + 2 + 1=12). 
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*5.30. Using the results above, it is now easy to prove that the 1< 1 (F, G), ... , Km•(F, G) 
are the only invariants of the feedback group acting on L: n (IR ). Indeed, we have already 
shown that the Ki(F, G), i = l, ... , m' are invariants. ' 
Inversely, using first of all a transformation of type ( 5 .12) we can see to it that (F, GT) has 
k1 ;;;;,:: k2 ;;;;,:: ••• ;;;;,:: km, and then 1<1 (F, G) = ki. ... , Km·(F, G) =km·, ki = 0 for i > m'. Then, 
using transformations of type (5.10) and (5.12), we can change (F, GT) into a pair (F', G') 
with F' and G' ofthe type (5.25), (5.26). A final transformation of type (5.11) then 
changes F' into a matrix of type (5.25) with all stars equal to zero. The final pair (F", G") 
thus obtained depends only on the numbers 1< 1 (F, G), ... , K m·(F, G). 

5.31 Feedback breaks all symmetry: We are now in a po.sition to prove the result menti­
oned in 1.6 that feedback splits the degenerate external description of systems. We shall 
certainly have proved this if we have proved. 

5.32 Theorem: Let l: E L:;~~P(IR). Then l: is completely determined by the input-o~t­
put maps f(~(L)) for small L. More precisely let ~ = (F, G, H) and Ai(L) = H(F + GL)1G 
for i = 0, 1, ... , 2n -1. Then the entries of Ai(L) are differentiable functions of L, and 
F, G and H can be calculated from A0 , ... , A2 n-l and the numbers 

a~(W . . 
al I , 1=0, ... ,2n-l,J=l, ... ,m,k=l, ... ,n. 

jk L=O 

Proof: Let"= 1<(~). Recall that" can be calculated from A0 , ••• , A2 n-l (because l: is 
co and er). Now assume that " is the nice selection of example 5.18. (This is sufficiently 
general, I hope, to make it clear that the theorem holds in general). Let ~, = (F', G', H') be 
the block companion canonical form of (F, G, H) (l:' is obtained as follows: first calcu­
late any realization l:" = (F", G", H") of A0 , ••• , A2n-i. e.g. by means of the algorithm 
of 4.25 above and then put l:" in block companion canonical form as in 5.21 above). 
Then 

for a certain SE GLn(IR), and it remains to calculate S. With this aim in mind we examine 
l:(L) = (F + GL, G, H) and its block companion canonical form. Consider 

-1 
l:(L)8 = (S-1 FS + s-1 GLS, s-1 G, HS) 

= (F' + G'LS, G', H') . 

Now assume that L is of the form 

0 . 0 

121 • 129 

(5.33) L = 0 0 

0 0 

0 0 
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Then if F' is of the form ( 5 .28) we see that if S = (Si;) 

0 1 0 0 0 0 0 0 0 

ai a2 a3 3.<i 0 0 a7 as ag 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

F' + G'LS = 0 0 0 0 0 1 0 0 0 

b~ b~ b; b~ b~ b~ b; b~ b~ 

0 0 0 0 0 0 1 0 

C2 C3 C4 0 0 C7 Cs C9 

0 d3 0 0 0 d7 0 dg 

9 

with b~ = bi(L) =bi+ L Z2;s;i, i = 1, ... , 9. Thus the block companion canonical form of 
j=l 
-1 

!:(L) is always !:(L)8 if Lis of the form (5.33). Note that the number of the row which 
has nonzero entries is determined by /<. (!:); it is the smallest i for which ki is maximal; 
note also that if j is such that k; is maximal then the j-th vector of G' is always the 
(k1 + ... + kj)-th standard basis vector (cf. just below (5.19). 

So to find S we proceed as follows. Calculate the block companion canonical forms of 
!:(L) from A0 (L), ... , A2n-l (L) for small L. (This can be done because for small enough 
L, !:(L) is still co). This gives us in particular the functions bi(L). Then 

abi(L) 
sji = a Z2j I L = o . 

This determines S and gives us ~ as !: = (!:')8 . q.e.d. 

6 Description of L~;~:P (IR)/GLn (IR). Invariants 

6.1 Local structure of L::~:P (IR). Let a c I(n, m) be a nice selection. We recall that 
Ua = {(F, G, H) E Lm,n,p (IR) I detR(F, G)a :fa O}, that Va= {(F, G, H) E Lm,n,p (IR) I 
R(F, G)a =In} and that Ua/GLn(IR) '.::::'.Va~ IRnm + np, cf. section 3. 

For each xE IRnm+np let (Fa(x), Ga(x), Ha(x)) EVa be the unique system correspon­
ding to x according to the isomorphism of 3.7 above. 

6.2 The quotient manifold M~,n,p(IR) = L:,n,p(IR)/GLn(IR). Now that we know what 
Ua/GLn(IR) looks like it is not difficult to describe L~ n p(IR)/GLn(IR). Recall that the 

er ' ' union of the Ua for a nice covers Lm,n,p(IR)). We only need to figure out how the 
Va'.::'. IRmn+ np should be glued together. This is not particularly difficult because if 
(F, G, H)8 = (F', G', H') for some S and (F, G, H) E Ua then S = R(F', G')aR(F, G);1 • It 
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follows that the quotient space M:,n,p (IR) = L:,n,p (IR)/GLn (IR) can be constructed as 
follows. 

For each nice selection a let Va = IR mn + np and for each second nice selection {3 let 

V af3 = [x E Va I det R(F a(x), Ga (x))f3-=/= O} . 

We define 

</> a.{3 : v 0!{3 -+ v {3 Ct 

by the formula 

(6.3) </>a.f3(x) = y ~ R(F a (x), Ga(x))~ 1 R(F a(x), Ga (x)) = R(F 13(y), Gf3(y)) . 

Let M~,n,p (IR) be the topological space obtained by glueing together the Va by means 
of the isomorphisms </>afJ· 

Then Af~ n P (IR) = L: n P (IR)/GLn (IR). If we denote also with Va the isomorphic 
~ " er '(1' ) er er image of Va in Mrn,n,p R then the quotient m;p 1T: Lrn,n,p(IR)-+ Mrn,n,p (IR) can be 

described as follows. For each ~ = (F, ~; H) E Lm,n,p (IR), choose a nice selection a such 

t~~ ~ E U a· Then 1T (I:) = x E .v a c_M m, n, P (I~) where x is such that 
~ - (Fa (x), G 0/x), Ha (x)) with S - R(F, G)a . 

6.4 Theorem: Af~,n,p (IR) is a differentiable manifold and TT: t:,n,p (IR)-+ M~,n,p(IR) 
is a principal G Ln (IR) fibre bundle. · 

For a proof, cf. [ 5]. 

6.5 The quotient manifold M::~~P (IR) = L::~~P {IR)/GLn (IR). Let 

M::~:P(IR) = 7T(L::~~p(IR)). Then M~~~~~ (IR) is an open ~~0manifold_of M:,n,p(IR). 
It can be described as follows. For each nice selection a let Va = {x E Va l(F a(x), Ga (x), 
Ha (x)) is completely observable}, and for each second nice selection {3 let 
V~~ = V~0 n V a.f3· Then </>a.f3(V~) = V'/f'a and Af;·~rP(IR) is the differentiable manifold 

-co ' ' -co -co 
obtained by glueing together the Va by means of the isomorphisms </>Otf3 : V a.f3 -+ V f3a. 

6.6 M::~~P(IR) as a submanifold of IR 2nmp. Let (F, G, H) EL~~~P(IR). We associate 
to (F, G, H) the sequence of 2n p Xm matrices (A0 , ••. , A2n_1) E IR2runp, where 
Ai= HFiG, i = 0, .. ., 2n -1. The results of section 4 above (realization theory) prove 
that this map is injective and prove that its image consists of those elements 
(A0 , •. ., A2n_1) E IR 2 nrnp such that rankHn-l (A)= rankHn(A) = n. We thus obtain 
M:;~:P (IR) as a (nonsingular algebraic) smooth submanifold of IR2nmp. 

6.7 Invariants. By definition a smooth invariant for GLn(IR) acting on Lm,n,p(IR) is a 
smooth function f: U -+ IR, defined on an open dense subset U C Lm, n, p (lR) such that 
f (:I:)= f (~8 ) for all ~EU and SE GLn (IR) such that ~s EU. 
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Now ~::.rp (IR) is open and dense in Lm,n,p(IR). It now follows from 6.6 that every 
invariant can be written as a smooth function of the entries of the invariant matrix valued 
functions Ao, ... , Azn-1 on Lm,n,p(IR). 

7 On the (non) existence of canonical forms 

7.1 Canonical forms: Let L' be a GLn(IR)-invariant subspace of Lm,n,p(IR). A canonical 
form for G Ln (IR) acting on L' is a mapping c : L' ~ L' such that the following three pro­
perties hold 

(7.2) c(1:8) = c(:E) for all 1: EL', SE GLn(IR) 

(7.3) for all 1: EL' there is an & E GLn (IR) such that c(:E) = ~s . 
(7.4) c(:E) = c(:E') '*3S E GLn(IR) such that 1:1 = 1:8 

(Note that (7 .4) is implied by (7.3)). 

Thus a canonical form selects precisely one element out of each orbit of GLn (IR) acting 
on L'. We speak of a continuous canonical form if c is continuous. 

Of course, there exist canonical forms on, say L:·~r P (IR), e.g. the following one, 
- co er ( ) co er ( ) ' ' co er ( ) c": Lm;n,p I~ ~ Lm:n,p IR which is defined as follows: let 1: E Lm;n,p IR , calculate 
1<. (1:) and let c" (1:) be the block companion canonical form of 1: as described in section 
5.21 above. 

This canonical form is not continuous, however (, though still quite useful, as we saw in 
section 5.31). As we argued in 1.15 above, for some purposes it would be desirable to 
have a continuous canonical form (cf. also [2]). In this connection let us also remark that 
the Jordan canonical form for square matrices under similarity transformations (M ~ SMS-1) 

is also not continuous, and this causes a number of unpleasant numerical difficulties, cf. 
[16]. 

*7.5 Continuous canonical forms and sections. Let L' be a GLn (IR)-invariant subspace 
of L~,n,p (IR). Let M' = 7r(L:) C ~%,n,p (IR) be the image of L' under t

1
he projection 1T 

(cf. 6.2 above). Now let c: L ~ L be a continuous canonical form on L. Then c (1:8 ) = 
c (1:) for all 1: E L' so that c factorizes through M' to define a continuous map s : M' ~ L' 
such that c = s o 1T. Because of (7 .3) we have 1T o c = 1T so that 1T = 1T o so 1T. Because 1T is 
surjective it follows that 1T o s = id, so that s is a continuous section of the (principal 
GLn (IR)) fibre bundle 1T: L' ~ M'. Inversely let s: M' ~ L' be a continuous section of 1T. 

Then so 1T: L' ~ L' is a continuous canonical form on L'. 

7 .6 (Non) existence of global canonical forms. In this section we shall prove theorem 
1.17 which says that there exists a continuous canonical form on all of L:.~.P (IR) if and 
only if m = 1 or p = 1. 
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First suppose that m = 1. Then there is only one nice selection in I(n, m), viz. ((0, 1), 
(1, 1), ... , (n -1, 1)). We have already seen that there exists a continuous canonical form 
cQ : UQ -+ UQ for all nice selections a. ( cf. 3.10). This proves the theorem for m = 1. The 
case p = 1 is treated similarly (cf. 3.11). It remains to prove that there is no continuous 
canonical form on L'::::P(IR) if m;;;;i. 2 and p ;;i. 2. To do this we construct two families 
oflinear dynamical systems as follows for all a E IR, b E IR (We assume n ;;i. 2; if n = 1 the 
examples must be modified somewhat). 

a 1 0 0 1 b 0 0 

1 1 0. 0 1 1 0 0 
Gl (a)= 

2 1 
G2 (b) = 

2 1 
B B 

2 1 2 1 

where B is some (constant) (n-2) X (m-2) matrix with coefficients in IA 

F1 (a)= ( i 0 

~)=F2~) 2 

0 

Y1 (a) 1 2 2 X1 (b) 1 2 2 

Y2(a) 1 1 1 X2(b) 1 1 1 
H1 (a)= 

0 0 
H2(b) = 

0 0 
c c 

0 0 0 0 

where C is some (constant real (p - 2) X (n - 2) matrix. Here the continuous functions 
Y1 (a), Y2 (a), X1 (b), X2 (b) are e.g. y 1 (a)= a for la I ~ l, y1 (a)= a-1 for I a I ;;i. 1, 
y2(a) = exp(-a2), x 1 (b)=1 for I b I~ 1, x 1 (b) = b-2 for I b I ;;;;i.1, x2 (b) = b-1 exp(-b-2) 
for b =I= 0, x2 (0) = 0. The precise form of these functions is not important. What is impor­
tant is that they are continuous, that x1 (b) = b-1y 1 (b-1 ), x2 (b) = b-1 y2 (b-1) for all 
b =I= 0 and that y2 (a) =I= 0 for all a and x 1 (b) =I= 0 for all b. 

For all b =I= 0 let T (b) be the matrix 

(7.7) b 0 0 

0 1 
T(b) = 

0 

0 0 1 
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Let :E1 (a)= (F 1 (a), G1 (a), H1 (a)), :E2 (b) = (F 2 (b), G2 (b), H2 (b)). Then one easily checks 
that 

(7 .8) ab = 1 => :E1 (a?(b) = :E2 (b). 

Note also that :E1 (a), :E2 (b) E L::~~P (IR) for all a, b E IR; in fact 

(7 .9) :E1 (a) E Ua:, a= ((0, 2), (1, 2), ... , (n -1, 2)) for all a E IR 

(7.10) :E2 (b) E D,i~, (3 = ((0, 1), (1, 1), ... , (n-1, 1)) for all b E IR 

which proves the complete reachability. The complete observability is seen similarly. 

N_:>w sup~ose t~t c is a continuous ~anonic~ form -~m L::~~P (IR). Let c(:E1 (a)) = 
(F 1 (a), G 1 (a), H1 (a)), c(:E2 (b)) = (F2 (b), G2 (b), H2 (b)). Let S(a) be such that 
c(:E1 (a))= :E1 (a)S(a) and let S(b) be such that c(:E2 (b)) = :E2 (bf(b)_ 

It follows from (7 .9) and (7 .10) that 

S(a) = R(F 1 (a), G1 (a))a: R(F 1 (a), G 1 (a))~1 

(?.l l) S(b) = R(F2 (b), G2 (b)),s R(F2 (b), G2 (b)),S1 • 

Consequently S( a) and S (b) are (unique and are) continuous functions of a and b. 
Now take a= b = 1. Then ab = 1 and T(b) =In so that (cf (7.7), (7.8) and (7.11)) 
S(l) = S(l). It follows from this and the continuity of S(a) and S(b) that we must have 

(7.12) sign(detS(a)) = sign(detS(b)) for all a, b E IR. 

Now take a= b = - 1. Then ab = 1 and we have, using (7 .8), 

:Ei (- l)(S(-l)T(-1)) = (:Ei (- ll(-l)f(-1) 

= :E2 (- lf(-l) = c(:E2 (-1)) 

= c(:E1 (-1)) = L1 (- l)S(-l) . 

It follows that S(- 1) = S(- l)T(- 1), and hence by (7 .7), that 

det(S(-1)) = - det(S(-1)) 

which contradicts (7 .12). This proves that there does not exists a continuous canonical 
form on L:1: ~~P (IR) if m ~ 2 and p ~ 2. 

*7.13 Acknowledgement and remarks. By choosing the matrices B and C in G1 (a), 
G2 (b), H1 (a), H2 (b) judiciously we can also ensure that rank(G1 (a)= m = rankG2 (b) 
if m < n and rankH1 (a)= p = rankH2 (b) if p < n. 
As we have seen in 7.5 above there exists a continuous canonical form on r;;::~:P (IR) if 
and only if the prinicpal GLn (IR) fibre bundle 1T: L:1:~~P (IR) ~ M;:::~:P (IR) admits a 
section. This, in tum is the case if and only if this bundle is trivial. The example on which 
the proof in 7 .6 above is based is precisely the same example we used in [ 5] to prove that 
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the fibre bundle n is in fact nontrivial if p ~ 2 and m ~ 2, and from this point of view 
the example appears somewhat less "ad hoe" than in the present setting. The idea of 
using the example to prove nonexistence as done above is due to R. E. Kalman. 

8 On the geometry of M~0:~~ P (IR ). Holes and (partial) compactifications 

As we have seen in the introduction (cf. 1.19) the differentiable manifold M:,'~,rp(IR) is 
full of holes, a situation which is undesirable in certain situations. In this section we prove 
theorems 1.22and1.23 but, for the sake of simplicity, only in the case m = 1 and p = 1.1) 

8.1 An addendum to realization theory. Let T(s) = d(s)-1 b(s) be a rational function, with 
degree d(s) = n >degree b(s). Then we know by 4.27 that there is a one input, one output 
system L with transfer function T:E (s). We claim that we can see to it that dim (L) < n. 
Indeed if 

T:E(s) = a0 s-1 + a1 s-2 + a2 s-3 + ... 

then, if d(s) = sn - dn-1 sn-l - d1 s - do, we have 

for all i ~ 0. It follows that if A= (a0 , ai, a2 , ••• ),then rankHr(A) = rankHn-l (A) for 
all r ~ n -1. But Hn-l (A) is an n X n matrix and hence rankHr(A) < n for alls, which 
by section 4 means that there is a realization of A (or T(s)) of dimension< n. 
It follows that a er and co system L of dimension n has a transfer function T ~ (s) = 
d(s)-1 b(s) with degree (d(s)) = n and no common factors in d(s) and b(s), and inversely 
if T(s) = d(s)-1 b(s), degree b(s) < n =degree (d(s)), and b(s) and d(s) have no common 
factors, then all n-dimensional realizations of T(s) are co and er. 
Indeed if d(s) and b(s) have a common factor, then T :E (s) = d'(s)-1 b'(s) with degree 
(d'(s)) =< n - 1 and it follows as above that rankHr(A) < n -1 so that Lis not er and co. 
Inversely if L is not er and co there is a L 1 of dimension =< n - 1 which also realizes A so 
that T(s) = T:E'(s) = h'(sI -F')-1 g' = det (sl -F')-1 B(s) = d'(s)-1 B(s) with degree 
(d'(s)) < n -1. 

*8.2. There is a more input, more output version of 8.1. But it is not perhaps the most 
obvious possibility. E.g. the lowest dimensional realization of s-1 (~ ~) has dimension 2. 
The right generalization is: Let T(s) = D(sr1 N(s), where D(s) and N(s) are as in the theo­
rem mentioned in section 5.9. Then there is a co and er realization of T(s) of dimension 
degree (det(D(s)). 

1) Added in proof. For the analogous results in the multivariable case and a more careful, easier and 
more detailed treatment cf. M. Hazewinkel, "Families of systems: degeneration phenomena", 
Report 7918. Econometrie Inst., Erasmus Univ. Rotterdam. 
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n-1 
8.3 Theorem: Let D = ao + ai ddt + ... + an-l ~. ai E IR be a differential operator of 

dt -

order ~ n - 1. Then there exists a family of systems (l:z)z C Li~~~~ (IR) such that the 
f (~J converge to D in the sense of definition 1.20. 
To prove this theorem we need to do some exercises concerning differentiation, deter­
minants and partial integration. They are 

(8.4) Let k E 2, k ;;;i: -1 an~ lyt Bn, k be the n X n matrix with (i, j)-th entry equal to the 
binomial coefficient (~:r+~). Then det(Bn,k) = 1. 

. t 
. dtu(t) J (8.5) Let u(i) (t) = -.- . Then zne-z(t-r)u(r)dr = 

dt1 
0 

= zn- 1u(t) + ... + (- l)n-lu(n-l)(t) + O(z-1) 

if supp(u) c (O, 00), where 0 is the Landau symbol. 

(.) dict>(r) (") 
(8.6) Let cf>(r) = (t - r)mu(r), et> 1 (r) = -.- . Then ef> 1 (t) = 0 for i < m and 

dr1 

q,Ci>(t) = (- l)mi(i-1) ... (i-m + l)u(i-m)(t) if i ;;;i: m. 

And finally, combining (8.5) and (8.6), 

t 
n 

(8.7) S e-z(t-r)zn(t-r)mu(r)dr = (- l)mm! L (- l)i+Izn-i(i~l) u(i-l-m)(t) + O(z-1). 

0 i=m+l 

8.8 Proof of theorem 8.3: We consider the following family of n dimensional systems 
(with one output and one input), 

~=G). 
-z z 0 0 
0 -z 

F = 0 , hz = (0, ... , 0, Xm, ... , X1) z 
z 

0 0 -z 

where the x1, ... , Xm, m ~ n, are some still to be detennined real numbers. One calculates 

1 
s2z2 (sz)n -1 

sz 
2! (n-:-1)! 

0 1 . 
esFz = s2z2 

2! 
1 sz 

0 0 1 



400 IX On the (Internal) Symmetry Groups of Linear Dynamical Systems 

Hence 

m 
hze(t-r)Fzgz = L XiZm+i(i!)-l(t-r)ie-z(t-r) 

i = 1 

and, using (8.7), 

t m m +i . 
Jhze(t-r)Fzgzu(r)dr=.L (i!F1xi. ~ (-l)i(i!)(-1y+1 e~l) zm+i-j 
0 1=1 . j=1+1 

uO-i-1) (t) + O(z-1) 

m-1 

= L (-l)m-1+1 21( .f: xi(m+i~l-1) u<m-l-l)(t)+O(z-1) 
l= 0 i = 1 

((m + i-/-1) ) ~ow, by (8.4) we know that det i i./ = 1, so that we can choose x1, ... , Xm 

m such a way that 

t 

S h2 e(t-r)Fzg2 u(r) dr = am-1 u<m-l)(t) + O(z-1) 

0 

where am-l is any pregiven real number. 

am-1 
It follows that lim f (I:z) = am - 1 dtm -1 

z-+ oo 

Let 1:2 (i) = (F 2 (i), g2 (i), h2 (i)), i = 0, .. ., n -1 be systems constructed as above with limi­
ting input/output operator equal to ai d

1
1 • Now consider the n2-dimensional systems i:2 

dt 
defined by 

0 0 

0 

F2 (n- l) 

Then clearly fun f (i;J =D. Let T~i) (s) be the transfer function of ~z(i). Then forcer­
tain polynomiJs 00B~i) (s) we have 

(8.9) T~i) (s) = d2 (s)-1 B~i\s), with d2 (s) independent of i 
/\ 

The transfer function of 1:2 is clearly equal to 

n-1 n-1 

(8.10) T2 (s) = L T~i)(s) = d2 (s)-1 B2 (s), B2 (s) = L B~i)(s) 
i=O i= 0 


