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I= b(x+a]2ai[b-x]2bi dx f x-a b+x x 
a 

is considered for large positive values of a and lY, the parameters tend to 
infinity in such a manner that the quotient b!a = c is a constant greater than 
1 . In a recent paper, Mahler showed that the integral tends more rapidly to O 
than any finite negative power of a and he gives an upper bound of the 
integral. As Mahler admitted, his results do not imply estimates of the form 
I= e(e- 8 ). Our results give I= e(e- 2" 8 ). Mahler's technique is based on 
integration by parts. Here we use a different technique, based on complex 
variables, and we construct the leading term and the first terms in the asymp
totic expansion. 

1 - MAHLER'S APPROACH 
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Quite recently the physicist J. Lekner of the Victoria University of Willington, 
New Zealand presented K. Mahler of the Australian National Univeristy of 
the following integral 

b [ ]2ai [ ]2bi 1 = J x +a b-x dx. 
x-a b+x x 

a 

(Ll) 

Lekner was interested in the behaviour of I for large values of the parameters 
a, b. He used this integral for describing the Rayleigh approximation for a 
reflection amplitude in the theory of electromagnetic and particle waves. See 
formula 6.64 in [2]. MAHLER [3] proved the following two theorems. 

'r:HEoR.EM 1. Assume that the two positive parameters a and b tend tp + oo in 
such a manner that the quptient b I a = c remains equal to a constant c > 1. Then 
the integral I in (1.1) tends more rapidly to 0 than any finite, negative, power of a 

In other words, the integral I is asymptotically equal to zero with respect to 
the scale {a-n}, as a~oo. That is, 

I ,....., 0 {a-n}, as a~oo. 

For this notation we refer to LAUWERIER [l]. 
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Another theorem appeared in the second part of [3]: 

THEOREM 2. Denote by A(a) a monotone, increasing, positive-valued continuous 
function of a which tends arbitrarily slowly to + oo as a tends to + oo; further let 
f>O be an arbitrarily large positive constant. Then for all sufficiently large posi
tive a the integral (1.1) satisfies the inequality 

[-afl lll<exp A(a) (1.2) 

Mahler suggests to take for A them-times iterated logarithm 

hl.n(a) = ln(ln( ... (ln a) ... )), (m logs), 

where m is any positive integer. Observe that in (1.2) r I A (a) tends to 0. As 
Mahler admits, his result does not quite imply the estimate I/ I = e(e- 0 ), and 
he concludes his paper with the words 'and I do not know whether it is true'. 
From our results it follows that I I I = e(e - 2"'0 ), and the purpose of the paper 
is to give a complete description of the asymptotic behaviour of I. 

Mahler proved his result by considering 

I= fF(uf'ddu, F(u) = u+l [c-ulc· (1.3) 
1 u u-1 c+u 

This representation easily follows by using b = ac and introducing a new vari
able of integration u by writing x = au. Then Mahler used integration by 
parts to prove the theorems. 

2. CoMPLEX V ARlABLE APPROACH 

As remarked earlier, the above theorems give only a partial result, since no 
information is given on the leading term of the asymptotic estimate and of the 
terms in the asymptotic expansion. It does not seem possible that one can 
obtain these leading terms by using only real integration variables. Therefore 
we replace (1.1) by a loop integral in the complex plane, which gives the 
required information. But first we transform (1.1) into an integral on the inter
val [O, oo ). It is easier to handle then the various branch-points of the 
integrand, since one of them is sent to oo by this transformation. 

Let us write t = (x-a)l(b-x). Then we obtain 

00 t-2ai(t +t \laidt 
I= A f IJ (21) 

0 (t +t2)2bi(t +tXl +et)' · 

where 

(2.2) 

and 

A = (2c)-2bi(c + tf'd(c -1)2bi-2ai +1• (2.3) 



Recall that c > 1. Hence we have the inequalities 

O<l<_2_<e+l <l 
e e+l 2c · 
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This shows that the five singular points 0, - lie, -ti. -t2, -1 of the above 
integral satisfy -1 < - t 2 < - t 1 < -1 I e <0. Since e is assumed to be fixed, 
no confiuence of singularities can happen. Otherwise the problem would be 
much more difficult. 

Before choosing a proper loop integral based on (2.1), we compute the sta
tionary point(s) of the integrand. 

We write 

r'].aj(t + t1'f"' 
----- = e-1.ai9<,t) 

(t + t2)U'i ' 

introducing the function 

q,(_t) = lnt-ln(t+t 1)+eln(t+t2). (2.4) 

For t >0 we assume real values of the logarithms. It is straightforward to ver
ify that 

cf>'(t) = e(t +lief 
t(t +t1Xt +t2). 

(2.5) 

Hence q, has a (double) stationary point at -1/c. It follows that we can 
expand 

q,(_t) =«_-lie)+ !cf>'"(-lleXt+lle)3+0(t+lle)4• (2.6) 

A few computations give 

4>"'(-lle) = 4c4(c + 1) 
(e-1)2 · 

(2.7) 

We observe that (2.1) has a double stationary point outside the interval of 
integration, and that this point coincides with a single pole of the integrand. 
From an asymptotic point of view, this combination of phenomena is not just 
trivial. However, in Lauwerier's book the theory needed to handle this problem 
is presented for an analogue case. 

3. A LOOP INTEGRAL 

The final preparatory step is to introduce a suitable loop integral of which the 
path of integration can be shifted to the stationary point at - lie. We intro
duce 

-8+ioo (-t)-1.ai(t +ti')2aidt 

J = -8Loo (t +t2fbi(l +tXl +et)' 
(3.l) 

where 8 is a positive number satisfying 0<8< II e. It is not difficult to verify 
that the integral is convergent at oo. The phase of the complex parameter t is, 



l - -:~" 
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initially, between w/2 and 3'1T/2. The minus-sign in (-t) is interpreted as e-,,; 
(this choice is irrelevant, but it brings a nice symmetry in the relation between 
I and J). Hence we assume that for negative values of t the phase of - t equals 
zero. The branches of the remaining many-valued functions are chosen in the 
normal way: we assume that the phases of t + t 1 and t + t 2 are zero for posi
tive values oft. 

Our procedure is as follows. First we show, by modifying the vertical path of 
integration, that J equals I (up to a simple function of a and b). On the other 
hand, we can shift the vertical path to the left until it meets the real negative 
axis at -11 c; that is, we let s~ 11 c. Then we apply the method of stationary 
phase from asymptotics. 

To recover I from the complex integral, we bend the vertical path around 
the interval [O, oo ). At the upper side of this interval, where argt = 0, we have 

(-t)-2ai = (e-"iltl)-2" 0 ltl-2ai. 

At the lower side, where argt = 2wi, we have 

(-t)-2ai = (e-.,,.; It I e 2ffi)-2ai = e2" 0 It1-2ai. 

The integration near the origin gives no problems. So we arrive at the result 

J = -2sinh(2wa)I IA, (3.2) 

where A is given in (2.3). 

4. AsYMP'I'OTIC EXPANSION 

We slightly change the phase function introduced in (2.4) by writing 

t/>(,t) = ln(e-trit)-ln(t +t 1)+cln(t +t2). (4.l) 

The formulas (2.5), (2.6) and (2. 7) also hold for this new q,. We have 

J - f -2ia4>(.t) dt 
- e e (l+tXI+ct)' 

where e is the above introduced vertical, now with 8 = I I c and with a small 
semi-circle at the right of the pole at -lie. We introduce the transformation 
of variables (see (2.6)) 

w3 = p(t)-c:J>(-1/c) 
<?"'(-1/c)/6 ' (4.2) 

and we choose the branch that satisfies w "' t + 1 I c in a neighborhood of the 
stationary point - 11 c. 

On using (4.1), (4.2) in (3.1), we obtain 

(4.3) 

where 

B = e-2ai4>(.-l!c) = (c-1)/A, (4.4) 
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- w dt 
j(w) - (1 +t)(l +et) dw' (4.5) 

µ = -cp"'(-1/c). (4.6) 

Sinceµ is positive (see (2.7)), the 'best' path in (4.3) is the steepest descent 
path defined by the rays 

argw = -'IT/2, argw = 'ITl6. (4.7) 

Locally, the same holds for the t-plane near t = -1/ c. In order to avoid the 
pole, the path in the w-plane has a small circular arc near the origin. The 
integration runs from - i oo to ooexp( wi 16), and the pole at the origin is at the 
left hand side of the contour.*> 

We substitute the MacLaurin series 

(4.8) 

in (4.3), and we interchange summation and integration. The result is the 
asymptotic expansion 

00 .l..;paw) 
J,...., B ~ ckFk. Fk = je 3 wk-ldw, 

k=O 
(4.9) 

as a~oo. To compute Fk we use the path described by (4.7). F0 needs some 
special care. We write 

-ir ooexp(iw/6) 1 • , dw w/6 1 • , I J -1paw I -1par . Fo=[ + ]e 3 -+i e 3 e318d8 
-ioo rexp(iw/6 W -w/2 

for any positive number r. The first two integrals cancel. The third one 
assumes in the limit r~O the value 2'1Til3, which is 1/3 of the residue of the 
pole. Hence F0 = 2'1Til3. The remaining integrals follow straightforwardly: 

00 I l 

Fk = [eiwkt6_e-iwkl2]j e -Tpaw wk-ltJw 
0 

= ~ e-iwkl6sin(k'IT/3)T(k!3)(µa/3)-k 13 , k = 1,2,3, .. _ 

Observe that this result can also be interpreted for k = 0. Combining (3.2), 
(4.4) and (4.9) we obtain the final result 

c-1 00 

I,....,- 2sinh(2'1Tah~ockFk, as a~oo. (4.10) 

The dominant term in this expansion reads very simple. We have from (4.5) by 

*) We do not prove that the function f admits such a contour; to do so, we should examine the 
.mapping (4.2) more globally. For the construction of the asymptotic expansion we only need a lo
cal analysis around the origin. 
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using l'Hopital' s rule 
dt c . w __ I_ 

co = /(0) = dw lw=O c-1 ~I +et - c -1. 

This gives 

'Tl'i I ,....,- as a~oo. 
3sinh2'1Ta' 

We conclude this section by giving the first few coefficients ck. They are 
obtained by using (4.2), (4.5), and (4.8). Thus we obtain 

1 2c2(c2+1) - 4c3(c2+1) 
- C - 0 C - - - C3 -co - c -1' 1 - ' 2 - S(c -1)3 ' S(c -1)4 

__ 2c4(3c4 +17c2 +24) 8c5(3c4 +3c2 +10) 
c4 - 35(c -1)5 ' Cs = 35(c -1)6 

5. A FOURIER INTEGRAL 

When we take in (1.3) 

t = -lnF(u) = ln(u -1)-ln(u + l)+cln(c +u)-cln(c -u) (5.1) 

as a new variable of integration, we obtain the Fourier integral 

I= fooe-2ai1 (t)dt (t) = .li!i.. = (u2-1xc2-u2)_ (5.2) 
_ 00 g ' g u du 2u3(c2 -1) 

By considering the mapping ui-+t in more detail, we see that it is one-to-one on 
[l,c], and that, consequently, g is a C00 -function on IR. Moreover, g is 
exponentially small at +oo. That is, 

g(t) = O(e11c), as t~-oo, g(t) = O(e-1), as t~+oo. 

This easily follows from (5.1) and (5.2). By using these properties, Theorem 1 
can be proved immediately. 

The function g is singular at u = 0, that is, at t = - i'IT. Hence, we can 
shift the contour of integration in (5.2) downwards to this point, and we can 
expand the function g at this singularity. Observe that the exponential func
tion in (5.2) assumes the value exp(-2'1Ta) at this point. This dominant factor 
also occurs in (4.10), and we expect that (5.2) can be used to obtain the same 
or a similar expansion. 
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