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1mary. Integral representations are derived for the parabolic cylinder 
tions U (a, x), V (a, x) and W (a, x) and their derivatives. The new inte
; will be used in numerical algorithms based on quadrature. They follow 
L contour integrals in the complex plane, by using methods from asymp-
analysis (saddle point and steepest descent methods), and are stable 

ing points for evaluating the functions U (a, x ), V (a, x) and W (a, x) and 
derivatives by quadrature rules. In particular, the new representations 

:Je used for large parameter cases. Relations of the integral representa
: with uniform asymptotic expansions are also given. The algorithms will 
[ven in a future paper. 

1ematics Subject Classification (2000): 33Cl5, 41A60, 65020 

troduction 

solutions of the differential equation 

:ailed parabolic cylinder functions and are entire functions of z. As in 
Chapter 19, [7], and [9] we denote two standard solutions of ( 1.1) by 
, z), V(a, z). Another notation is D"(z) = U(-v - t z). Special cases 

Iermite polynomials, error functions and Fresnel integrals. 

•spondence to: N. M. Temme 
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Values at the origin are given by 

( 1.2) 

I. I I +3 
]( ?2°+:i . ]( 22" 4 

V(a 0) = - I I ' V'(a, 0) = I I . ? 3 I . 
' [f(~ -1a)J2f(4 + 2a) [r(4 - 2a)]-f'(4 + 2a) 

Then we have 

(l.3) U(a,z) = U(a,O)y1(a,z)+U'(a,O)y2(a,z), 

( l.4) V(a. z) = V(a, 0) Y1 (a, z) + V'(a, 0) Y2(a, z), 

where 

( 1.5) 

and the confluent hypergeometric function is defined by 

( 1.6) 
00 (a)" z" 

1F1(a,c:z)=2=---, 
(c)n n ! 

n=O 

with (a),,= f(a + n)/ f(a), n = 0, 1, 2, .... 
The functions y1 (a, z) and y2 (a, z) are the simplest even and odd solutions 

of ( 1.1) and the Wronskian of this pair is given by 

From a numerical point of view, the pair {y1, y2 } is not a satisfactory pair [4], 
because they have almost the same asymptotic behaviour at infinity. 

The behaviour of U (a. z) and V (a, z) is, for large positive z and z » ja I: 

( l.8) 
-!:2 -a-~ _? 

U(a,z)=e z -[1+0(z -)], 
!:2 a-~ -? 

V(a.z)=,j2Jiie z -[I+O(z -)]. 

Clearly, numerical computations of U (a, z) that are based on the representa
tions in ( 1.3) and ( 1.4) should be done with great care, because of the loss of 
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accuracy if z becomes large. Also, for large a these representations become 
useless. 

The Wronskian relation between U (a, z) and V (a, z) reads: 

( 1.9) W[U(a, z), V(a, z.)] = ..fijn. 

(l.10) v'21i 
W[U (a, z), U(a, -z)] = 1 • 

f'(a + 2) 

which shows that U (a, z) and V (a, z) are independent solutions of (1.1) for 
all values of a. Other relations are 

U(a, z) = 2 rr 1 [V(a, -z) - sin rra V(a, z)], 
cos rra f'(a + 2) 

f'(a + ~) (1.11) 

V(a,z)= rr - [sinrraU(a,z)+U(a,-z)]. 

Equation ( 1.1) has two turning points at ±2 Fa. For real parameters 
they become important if a is negative, and the asymptotic behaviour of the 
solutions of ( 1.1) as a -+ -oo changes significantly if z crosses the turning 
points. At these points Airy functions are needed for describing the asymptotic 
behaviour. 

The purpose of this paper is to give integral representations of U (a, x) 
and V(a, x) for real values of a and x. We use integral representations from 
the literature and modify these by saddle point methods. In this way we obtain 
integrands that are non-oscillating, also for the case a < 0. In particular, we 
can use the new representations for large parameter cases. In earlier papers 
[8] and [2] we have used these methods for obtaining stable integral repre
sentations for modified Bessel functions with pure imaginary order and for 
inhomogeneous Airy functions (Scorer functions). 

We give relations of the integral representations with uniform asymptotic 
expansions, which are taken from [ 6] and [I 0]. We only give the expansions in 
terms of elementary functions. Uniform expansions in terms of Airy functions 
can be found in [6], and a modified form in [10]. 

We also consider solutions W (a, ±x) of the differential equation 

( 1.12) W" + (~x2 - a) W = 0, 

a modified form of (1.1), again for real a and x. Properties of W(a, x) are 
given in §4, which can be found in [I] and [5]. 

In a future paper we give algorithms based on quadrature rules for eval
uating the integral representations of U(a, x), V(a, x) and W(a, x). 

In [ 1 O] numerical and asymptotic aspects of the parabolic cylinder func
tions have been discussed, and we refer to this paper frequently. The notation 
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of certain quantities is also as in [10]. The asymptotic methods referred to 
in this paper (saddle point methods) can be found in [7] and [ 11]. For an 
overview of the numerical aspects and software for the parabolic cylinder 
functions we refer to [3]. 

2 Integral representations for a > 0 

We derive integral representations for U(a, x) and U(a, -x). The computa
tion of V (a, x) for a > 0 can be based on the second relation in ( 1.11 ). For 
a> 0 the functions U(a, x) and U(a, -x) have a non-vanishing Wronskian 
relation (see (l.10)), and moreover, these functions constitute a numerically 
satisfactory pair of solutions of ( 1.1 ). 

2.1 The case x ;::: 0 

We take the integral (see[l], formula 19.5.4) 

(2. l) 

where C is a vertical line on which ms > 0. On C we have - ~ rr < ph s < -} rr, 
and the many-valued function s-a- 112 assumes its principal value. The trans
formations 

(2.2) x=2t,./a, s=Jaw 

give 

(2.3) 

where 

(2.4) </J(w) = kw 2 - 2tw - In w. 

The saddle points follow from solving 

(2.5) 
w2 - 2tw - l 

<f/(w) = = 0, 
w 

giving saddle points at t ± ,J t 2 + I. We take for the path C in (2.3) the vertical 
through the positive saddle point 

(2.6) Wo = t + Jt 2 + 1. 
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At this saddle point C coincides with the steepest descent path trough w0 • The 
complete steepest descent path follows from solving ~[<f:>(w)] = :S[<t>(w0)]. 

In the present case :S[</>(w0)] = 0 and we obtain for the saddle point contour 
the equation 

(2.7) 4r2 sin w - 2tr sine - e = 0, where w = reif], 

which can be solved for r = r(B): 

(2.8) 
t + Jt 2 + e cote 

Fig. 1. Steepest descent contour for the integral in (2.3) 

Then (2.3) can be written as 

(2.9) 

where 

(2.10) 

1/1(8) = ~)t[cj>(w) - </>(wo)] = 4r2 cos W - 2tr cos e - In r - </>(wo), 

and 

g(tl) = ~ [Ju;~~ J = :S [e1i& Jr (~~ + ir) J 
(2.11) (2cose + 1)r2 - 2tr +I 

= I . 
4,Jr cos 2eJ12 + e cote 
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The quantity ~ defined by 

(2.12) E = ~[rJtT+l + ln(t + /r 2 + 1)], 

is used in the asymptotic representation of U(a. x) in this case; see [10], 
formula (2.29). We have 

(2.13) 

1x 2 + cup(wo) =a[~ - t/t2 +I - ln(t + /t 2 + 1 )] = a(i - 2~). 

This gives 

(2.14) 

where 

(2.15) 

For the derivative U' (a. x) we can start from (2.1 ), and we have 

(2.16) 

This can be written as 

(2.17) 

where 

( 2.18) 

h(f}) = -:S [-l_dw (t _ w)] 
Fw de 

r 3 - tr 2(2 cos e - 1) + r(2t 2 + I + 2 cos f3) - t 

4JT cos te.Jr2 + e cote 

2.2 The case x ::=: 0 

This case can be done by using the representation of the previous section. 
However. when t is a large negative number. the saddle point w0 defined in 
(2.6) is close to origin, at which point the integrand of (2.3) is singular. As 
a consequence, the functions ifr(8) and g(e) in (2.9) have singularities close 
to the origin e = 0 when t is a large negative number. 

1 
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In the present case we start with the well-known integral representation 
(see [1], formula 19.5.3) 

(2.19) 

There are no oscillations, but it is convenient to transform the integral in 
such a way that the saddle point is at the origin and a suitable normalization 
is obtained. The transformations (2.2) give 

(2.20) 
a~a+~ e -!x2100 dw 

U(a -x) = e-a</>(w) --
, I r::;:' 

f'(a + z) O yW 

where </J(w) is given in (2.4). The positive saddle point w0 is as in (2.6). We 
transform this point to the origin by writing w = w0 (1 + u), which gives 

(2.21) 
I -

a4 JWO y(a) e211 ~ ! 00 du U(a, -x) = o I e-a1/J(u) , 

f'(a+7) -I .Jf+"'U 

where we have used (2.13), y(a) is defined in (2.15), and 

(2.22) 

For the derivative we have 

' a~ JWO y(a) e2a~ 
U (a -x) = -------

' f'(a + ~) 

(2.23) x loo e-a1/f(u) (Jt2+1 + wou) du ' 
-I .Jf+"'U 

To avoid numerical cancellation for small values of u in the computation 
of 1/;(u) defined in (2.22), a specific code is needed for the evaluation of 
ln(l + u) - u. 

2.3 A Wronskianfor the integrals 

When checking the numerical algorithms the Wronsk.ian relations in ( 1.9) and 
( 1.10) can be used. When the parameters are large it is more convenient to 
use a Wronskian relation that is based on the integrals derived in the section. 
This gives a better control of the errors that occur in the quadrature rules, 
because large and small factors are not present in the integrals. 
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We write (see (2.14), (2.17), (2.21), and (2.23), respectively) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

I -a:i e-2a~ 
U(a,x) = $ l(a,x), 

2n y(a) 

J ~a~ a:i e-- s 

U'(a, x) = - $ Id(a, x), 
2n y(a) 

I -
a4 .jWOy(a) e20~ 

U(a, -x) = 1 J(a, x), rca + 2) 

a~ .jWOy(a) e20¥ 
U'(a, -x) = - 1 Jd(a, x). 

['(a+ 2) 

Then the relation for the integrals reads 

(2.28) 
2n 

l(a, x) Jd(a, x) + ld(a, x) J(a, x) = ~· 
ayWO 

In Table 2.1 we give values of U(a, x) and V(a, x) for several values of 
a, with t = 1.2, x = 2t.j(i. The values of l(a, x), ld(a, x), J (a, x), Jd(a, x) 

of (2.24)-(2.27) are computed with double precision in one algorithm, with 
about 50 function evaluations for the trapezoidal rule for each value of a. We 
compared these values with those computed with the Maple 7 .0 functions 
CylinderU(a, x) andCylinderV(a, x), withDigits=20, and found agreement 
for a < 40. For the higher a-values, Maple's Digit parameter has to be 
increased. 

Table 2.1. Values of U (a, x) and V (a, x) for several values of a, with t = 1.2, x = 2t .j(i. 
We also give the Wronskian relation (1.9) (reduced to zero) 

a 

10.1 
20.l 
30.l 
40.l 
50.l 
60.l 
70.l 
80.l 
90.l 

100.l 

U(a,x) 

.87742145116891(-016) 

.28991030051243( -034) 

.76172124886582(-054) 

.37897794771218(-074) 

.54336492182121 (-095) 

.28814488246502(-116) 

.66706978761114(-138) 

.75880403194555(-160) 

.46343084237480(-182) 

. 16280901630040( -204) 

V(a,x) 

.915940854687909(+015) 

.196498319490114(+034) 

.611136504670193(+053) 

.106421744688740(+074) 

.664057299719702(+094) 

.114331948734753(+116) 

.457283270654938( + 137) 

.376070790125305(+159) 

.580588047014352(+181) 

.156790547971731 (+204) 

Wronskian 

.43(-17) 

.40(-17) 

.22(-15) 

.61(-14) 

.14(-16) 

.14(-16) 

.14(-16) 

.22(-16) 

.19(-16) 

.19(-16) 

l 
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2.4 Uniform asymptotic expansions for a > 0 

The quantities related with the integrals are closely related with the uniform 
asymptotic expansions given in formulas (2.29), (2.33) and (2.34) of [I O]. 
We have 

(2.29) 
fi - ,Jir(t2 + 1)1/4 -

I (a, x) = r;;( , 1 114 Fµ(t), /d(a, x) = _ r;; G 11 (t), 
...;a t- + ) 'Ya 

fi - ,Jir(r- + 1)1/4 -
J (a, x) = ,JciWo(t2 + l) 114 Pµ (t), Jd(a, x) = -fliWo Qµ (t), 

where Fµ(t), Gµ(t), Pµ(t), and Qµ(t) are supplied with asymptotic expan
sions that have a double asymptotic property: one of the parameters a or 
t (or both) should be large. Recurrence relations for the coefficients of the 
expansions are given in [ 10]. 

3 Integral representations for a < 0 

We give integral representations for U (-a, x) and V (-a, x ), with a > 0, and 
we consider three x-intervals. Let t = x / (2.ja). The differential equation 
(I.I) becomes for U(-a, 2t.ja) and V(-a, 2t.ja) in terms oft 

d2y ? ( ? ) 
(3.1) dt 2 -4a- r-1 y=O, 

which has turning points at t = ± 1. Consequently, we consider the intervals 
t :::: - 1, It I :::: 1 and t :'.'.'.: 1. We start with the middle interval, where the 
oscillations occur. 

3.1 The case - I ::: t ::: I 

We consider the integral 

(3.2) Y(a, x) = 100 e-1s"+xissa-1 ds, ma> -~. 

Using (2.19), we see that 

(3.3) Y(a, x) = r(a + ~)e-~x" U(a, -ix). 

We also have 

(3.4) fte-jrria+!1Ci U(a, -ix) = U (-a, x)/ r(a + ~) + i V (-a, x). 

This follows from using the initial values in ( 1.2) and those of Y (a. x). It also 
follows from the relations in (1.1 l) and 19.4.6 in [l]. 
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Hence, 

(3.5) (ie-iJTia+±rrie±x"Y(a, x) = U(-a, x) + if(a + ~)V(-a. x). 

We see that the single integral (3.2) produces U(-a, x) and V(-a, x) by 

taking real and imaginary parts. 

We proceed with Y(a, x), and the transformations x = 2.j{it, s =Jaw 

give 

(3.6) 

where 

(3.7) (j;(w) = ~w 2 - 2itw - In w. 

We consider a path through the saddle point 

(3.8) W+=it+/l-t 2 . 

We have 

(3.9) </>(w+) = t + t 2 + 2i ( rJ - ~n), rJ = ~ (arccos t - r/l=t2), 

where arccos t has values in [O, n] fort E [-1, l ]. 

The path of steepest descent starts at w = 0, runs through W+, and termi

nates at +oo; see Figure 2. The path follows from solving the equation 

(3.10) ~</>(w) = -:S</>(w+), 

that is, from solving 

(3.11) ~r 2 sin 28 - 2tr cos e - e - 2r7 + tn = 0, 

where w = re; 11 • The solution of (3.11) reads 

t cos e + (J jr2 cos2 e +sine cos ece + 2r] - tn) 
r= ~~~~~~~~~~~~~~~~~~~ 

(3.12) sine cos e 

where 80 = -2rJ + ~n; the square root is non-negative. The number rr 

equals -1 when ph W+ .::: e .::: eo, and + 1 when 0 .::: e .::: ph W+. Observe 

that ph W+ = ~JT -arccos t. When e = eo, we haver = O; when e = ph W+, 

we have r = I, and e = 0 gives r = oo. For t = 0 the path coincides with 

the positive real axis. When t < 0 the paths are in the lower half plane, and 

follow from those for t > 0 by symmetry. 
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1.5 
t= 0.9 

1.0 

t=0.5 
0.5 

t= 0.1 

2.5 

Fig. 2. Steepest descent contours for the integral in (3.6) fort = 0.1, 0.5, 0.9 

A simple approximation of the path is given by (we write w = u + iv) 

ut(l + U+) 
v= U+ =Ji - t 2 . (3.13) 

? ' u +u+ 
This path runs through the point W+ = u+ +it, and has the same slope at 
this point as the exact steepest descent path, that is, dv/ du = t /(1 + u+) for 
U = U+. 

For t = 1 the steepest descent path runs from the origin to w+ = i along 
the imaginary axis, and from i to 2i + oo. For more details on the case t ?::: 1 
we refer to§ 3.2. 

Integrating (3.6) with respect to() we obtain 

U(-a,x) + ir(a + ~)V(-a,x) 

(3.14) 

where y(a) is defined in (2.15), 

(3.15) I ? · ? I 1/J ( ()) = 2 r- cos W + 2t r sm e - ln r - r - 2, 

and 

(3.16) g ( ()) = - e;2 ( ~ ~ + i r) . 
We write the representations for U (-a, x) and V (-a, x) in real form, 

with trigonometric functions that correspond with those in [6] and [ 10]. We 
first write 

(3.17) 

where gj(()), j = 1, 2, are real. That is, by (3.16), 

(3.18) 
dr cos(~()) sin(~()) 

g1 (()) = - de jr + r jr , 
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(3.19) 

Then we have 

(3.20) 

(3.21) ft l y(a) . 
V(-a,x)= a-+ 1 [(cosA.)G 1 -(smA.)G2], 

r(a + 2) 

where 

(3.22) A.= 2ary + ~rr 

and 

(3.23) j = 1, 2. 

For the derivatives we find, using (3.2) and (3.5), 

U'(-a,x) + ir (a+ t) V'(-a, x) 

(3.24) = fia~y(a)e-i(2ary-inl 1130 e-a>/f(l:!)h(e)de. 

where 

(3.25) h(e) = (t + iw)g(e) = h1 ce) - ih2(e). 

That is, by (3.25), (3.18) and (3.19), 

(3.26) h I (8) = (t - r sin e)g1 W> + r cos eg2(e), 

Then we have 

(3.28) U' (-a, x) = fta~ y(a) [(sin A.) H1 + (cos A.) H2 ], 

' , ft a~y(a) 
V (-a, x) = =- . 1 [(cos A.) H1 - (sin.I...) H2]. 

nrca+ 2> 
(3.29) 

where ). is given in Eq. (3.22) and 

(3.30) Hj = r e-ul/t(I!) h j (e) de, j = 1, 2. 
lo 
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3.1.1 A Wronskianforthe integrals By using ( 1.9) and the integrals in (3.23) 
and (3.30), we find the relation 

(3.31) 

where 

(3.32) f(a + ~) = .J2ny2(a)f*(a + ~). f*(a + ~) = l + 0(1/a), 

as a -+ oo. Hence, for large a, the right-hand side in (3.31) is of order 
%[1+0(1/a)] (see also formula (3.28) in [10]). The relation in (3.31) can 
be used for testing the numerical algorithms. 

3.1.2 Uniform asymptotic expansions -1 < t < 1 The relationship of the 
integrals G j· Hj with uniform expansions follows from (2.23), (2.24) and 
(2.27) of [10]. These expansions are the same as in [6]. On the other hand, 
we can derive modified expansions (a main topic in [10]), by using (2.29) 
and (2.33) of that reference. From (3.4) and by changing t to -it in(2.29) of 
[10], we obtain 

U(-a, x) +if (a+ n V(-a, x) 

(3.33) = f* (a+ n ,J2y(a)e±iri-2im1 _ . 
I I Fµ(-tt), 

a4(1-t2)4 

U'(-a, x) +if (a+~) V'(-a, x) 

(3.34) = -r* (a+ t) J2a±y(a)e-±iri-2i,1110 - t2)± Gµ(-it), 

where Fµ(-it) and Gµ(-it) have the asymptotic expansions 

(3.35) F (-it) ~ ~(- l)s </>s(r*) 
µ L (2a)" ' 

s=O 

G (-it)~ ~(-l)s 1/Js(r*) 
µ L (2a)s , 

.1·=0 

as a -+ oo, uniformly fort E [-I + 8, l - 8]. The quantity r* is defined by 

(3.36) * I ( it ) T =-:; ~+l . 
- vJ-(2. 

The polynomials <Ps and 1/Js are given in (2.11) and (2.16) of [I O], with recur
sion relations. The first factor at the right-hand sides of (3.33) and (3.34) 
has the asymptotic estimate 1 + 0(1/a) (see (3.32)). 
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3.2 The case t ?: I 

We use the the integral for Y(a, x) given in (3.6) with ef>(w) given in (3.7). 

The saddle points are now purely imaginary: 

(3.37) 
. . r.:;--;l w_ = 1t - h/ r~ - 1, W+ =it+ iJt2.=l. 

We have 

(3.38) 
1; = ! [rJt2- I - ln (t +-Jt2=1)]. 

The quantity I; is also is used in the asymptotic representation of U (-a, x) 

for this case; see [6] and [10]. 
The path of steepest descent starts at w = 0, runs through w_ and w+ on 

the positive imaginary axis, and from w+ to +oo. The path from w+ to +oo 
follows from solving the equation 

(3.39) 

that is. from solving 

(3.40) ~r2 sinW - 2tr cose - e + 4rr = 0, 

where w = reiH. The solution of (3.40) reads 

tcose +Jt2 cos2 e +sin8cos8(8 - trr) 
(3.41) r = 0 < e < .!.n. 

sin e cos e ' - - 2 

The square root is positive, unless when t = l and e = ~ n. 
We obtain -

U(-a,x) +ir(a + l/2)V(-a,x) = fiaty(a)[e-2aH!rri 

I 

(3.42) x f !rr e-m/r(IJ) g(8) de+ ie2"~ r+ e";j,(v) :!.::__]' 
lo lo Ju 

where 'ji(v) = </>(w_) - </>(iv), g(8) as in (3.16), and i/f(8) = <f>(w) -
<P<w+) = ~H[</>(w) - <f>(w+)J. w = reifi, now with r defined in (3.41). 
Explicitly, 

(3.43) 
;/)( v) = ~v2 - 2tv +Inv - !r:. + 2t r _ - In r _, 

i/f(8) = ~r 2 cosW + 2tr sine - lnr - t - t 2 - 21;. 
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where 

(3.44) r_ = t - Jf:?=l. 
Considering the real and imaginary parts on both sides of (3.42), we see 

that for V (-a, x) we need the v-integral with the dominant factor e2a<; and 

part of the 8-integral. When t'""" I (in fact. when a~ is small) both integrals 
are of the same asymptotic importance. The dominant saddle point in the 

v-integral is r _; in the 8-integral the dominant point is the upper limit. 
When we write 

(3.45) 

where gi (8) and g2 (8) are real, we have 

(3.46) 

and 

(i_ l y (a )e2a~ -4a~ 
(3.47) V(-a, x) = y rra" r (a+~) (e G2 + G3). 

where (for j = 1, 2) 

(3.48) 1r+ aef;(v) dv 
G3 = e r:;· 

0 .yV 

For the derivatives we have 

U'(-a. x) + ir(a + ~) V'(-a, x) = fiaiy(a{e-2"H~rri 

(3.49) 1h 1r+ - dv] x - e-ai/!lfilh(8) d() + ie 2"~ e"'f>(vl(t - v)- , 
() () Ju 

where h(e) = (t + iw)g(e). When we write 

(3.50) 
I . 

e~rri h(8) = h 1 (8) + ih2(8). 

where h 1(8) and h2 (8) are real, we have 

(3.51) 

and 

(3.52) fi 
, y(a)e2a~ 

V'(-a x) = a~ . . [e-4"<; H7 +HJ. , r( i) - 3 a+2 

where (for j = 1. 2) 

(3.53) H3 = e"</>(v)(t - v)-. 1r+ - dv 

0 Ju 
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3.2. /A Wronskianf(>rthe intef{rals By using the Wronskian relation in ( 1.9) 

and the integrals in (3.48) and (3.53), we obtain (cf. (3.31)) 

e-4a~ (G1 H::. - H1 G2) + (G t H3 - Hi G3) 

(3.54) ft r (a + ~) n * ( I ) -------r a+-
= ay 2(a) - a 2 · 

The relation in (3.54) can be used for testing the numerical algorithms. 

3.2.2 Uniform asymptotic expansions fort > 1 We give the relationship of 

the integrals with the uniform expansions given in (2.9), (2.14), (2.18) and 

(2.29) of [10]. We have 

(3.55) 

ftr*(a + tl(t2 - l)t/4 
e-4a~ H1 + H,, = - Q (t), 

- . ,Ja µ 

where Fl'(t), G1,(t), P1,(t), and Qp(t) are supplied with asymptotic expan

sions that have a double asymptotic property: one of the parameters a or t (or 

both) should be large; t :::: I + 8. Recurrence relations for the coefficients of 

the expansions are given in [ 10]. 

3.3 The case t ......, I 

Fort ~ I the contours used in§ 3.1 becomes less suitable for numerical quad

rature. For example, we see in Figure 2 that the saddle point w+ approaches 

the imaginary unit when t t I, and that the path becomes non-smooth when 

t = l. For numerical calculations we may consider uniform Airy-type asymp

totic expansions if t ......, I, and we will investigate later if this is indeed the 

best approach. But we also investigate if a modified contour can be used for 

numerical quadrature. 

We use fort ......, 1 the representation of Y(a, x) in (3.6). We write w = 
u +iv, and integrate with respect to v along the line segment from the origin 
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to W+, and then along the horizontal path from w+ to w+ + oo with respect to 
u. In the first integral we substitute v = t (1 - p), and integrate with respect 
to p. Observe that fort ~ 1 the point w+ is on the imaginary axis, and for 
this case no difficulties arise when t "' 1, because the path is already split up 
into two parts; see § 3.2. 

It is not difficult to verify that the representations in (3.20), (3.21 ), (3.28) 
and (3.29) can be obtained, with G i, Hi replaced with G i, iij (j = I, 2 ), 
where 

(3.56) 

where 

(3.57) 

(3.58) 

(3.59) 

ut 
tj/2>(u) = arctan ,j'f-=-tI - tu, 

I 1 + U 1 - f-

I I· .• 1,11\( ) 
(l)( ) . ( )( ) _ e'1r-w'I'; p gl p - Ig1 p - - ' r = arcsint, 

I· ,,,t:!i( i+· arctan --"'~ ') --lT-lll'f' U l r:--:f 
(2)( ) • (_)(u) _ e :! I J+uy'(-t-gl u - 1g2 -

hil)(p) = tpg\l)(p) + Jl-720 - p)g~l\p), 

hil\p) = tpgil)(p) - Jl-720 - p)g\l\p), 

h\2l(u) = (u +Ji - t1)gi2\u), 

hi2\u) = -(u +Ji - t2)g\2l(u). 
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3.4 The case t s -/ 
We can repeat the analysis, starting with (3.2) with x < 0, but do not need 
new integral representations, algorithms or uniform asymptotic expansions 
for this case. For U (a. x) we can use the second relation in ( 1.11 ), and for 
\/(a. x) the first relation. 

When the parameter a is large these relations have to be used with care, 
because gamma functions with large negative arguments occur. It is better to 
use the quantities G j, Hj introduced in § 3.2. l. In the computer code these 
quantities will be given as output from the case t > 1. 

We have 

(3.60) 

U(-a. -x) = fia±y(a) {e-211 1; [cosrra G2 + sinna Gi] 

+e2"1; cos JT a G } 3 , 

U'(-a. -x) = -fia£y(a) { e-'.2al; [cos rra H2 +sin rra Hi] 

+e20.; cos 7f a H } 3 , 

I ft a4y(a) { _, 1; • 
V(-a, -x) = . 1 e -" [cosrra G 1 - smrra G1] 

r(a + -) -
2 

-e2at:. sin rra G } 3 ' 

ft 3 
, a4 y(a) _7 . . 

V(-a.-x)=- 1 {e -".;[cosrraH1 -smrraH2] 
r(a +-:;) 

- -e2ul:. sin rra H3}. 

4 The W - function 

In this section solutions of equation 

(4. I) d2 v ( J 1 ) ~ + -x- -a y = 0. 
dx- 4 

are considered, again for real a and x. For a < 0 the solutions oscillate on the 
real x-axis; for a > 0 there are turning points at ±2fa, and the oscillations 
occuroutside the interval [-2fa, 2fa]. From quantum mechanics we know 
that ( 4. I) is the equation for propagation through a potential barrier. 

4.1 The standard solutions 

We consider solutions W (a, x) and W (a, -x); these form a numerically sat
isfactory pair for -oo < x < oo; see [5]. The function W(a, x) has the 
initial values (see [I], p. 692) 
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(4.2) 
I 

f(i + ,\-ia) 2 

W'(a. 0) = -2-i 
rd + ~ia) 

The Wronskian of W(a, x) and W(a. -x) is 

(4.3) W[W(a. x), W(a. -x)] = 1. 

Power series expansions are 

(4.4) W(a, x) = W(a. 0) Wt (a. x) + W'(a. 0) w2(a, x), 

123 

where w 1 (a, x) and ui:2 (a, x) are the even and odd solutions of ( 4.1 ). We have 

(4.5) 
00 x2n 

wi(a,x) = La,,(a)--. 
n=O (2n) ! 

ex) . x2n+l 
w2(a. x) = L f311(a) • 

(2n + 1) ! 
11=0 

where a 11 (a), f3,, (a) satisfy the recursion 

<Yn+2 = aa,,+1 - ~(n + 1)(211 + l)a,,, 

(4.6) f3n+2 =a f311 +1 - ~(n +I )(2n + 3) {311 , 

ao(a) =I, a1(a) =a, f3o(a) =I. f31(a) =a. 

The relation with the function U (a, x) reads 

(4.7) 

I 
/T:T::\ W(a, x) + i~W(a. -x) 

v k(a) 

which follows from using the initial values of the functions, but also from [I] 
[19.17.6 and 19.17.9]. The quantities k(a) and p(a) are given by 

(4.8) k(a) = )1 +e2n:a -en:"= 1 , 
JI + eZn:a +en:" 

and 

(4.9) p(a) = ~rr + ~</>2(a). </>2(a) = ph r G + ia ); 

the branch is defined by <jJ2 (0) = 0 and by continuity elsewhere. 



124 A. Gil et al. 

Because we assume that a and x, and hence W (a, ±x ), are real, we have, 

using (4.7), that 

(4.10) 

These relations are convenient for numerical computations because for x :=::: 0 

and x :::: 0 we can use the same U -function . 

../.1.1 The jimction p (a) We give more details on the function p defined in 

( 4. 9 ). For large values of a it is convenient to use the representation 

( 4.11) p(a) = ~JT - ta+ ja In a2 + p*(a), 

where p* (a) = 0( I /a) as a -7 oo. An asymptotic expansion. Bi net's for

mula (see [9], p. 55, for an integrated version) 

H.12J 

where 

(4.13) 

In f(z + t) = z ln(t + z) - t - z +} ln(2n) 

(t) e - = t -- - - + - e 2 f3 -~I -1 ( 1 l l) _l.1 

e1 - 1 t 2 

x ck tk 

= L ( k + 2) ! ' It I < 2JT ' 
k=O 

with ck in terms of Bernoulli polynomials: 

(4.14) (1) 1 kk + 3 
Ck= B .. +,,(--) - (-1) -- k 0 l 2 

' - 2 2k+2 ' = ' ' ' .... 
This gives the asymptotic expansion 

(4.15) p*(a)"""' ja In (1 + - 1-) - ~ ~ !.!:__ 
4a2 2a ~ a2k, 

k=O 

as ±a -7 oo, where 

(4.16) d1.; = ( - l )k C2k k 
(2k + 1)(2k +2)' = O, l, 2, .... 

The tirst few coefficients are 

(4.17) do= -11,,_, d = _ _Q_ d,, = __}2_ f - _ 29 lf _ _ _J_Jl'!_ 
l 720' - 20160' l 3 - 26880' 4 - 1520640 · 
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4.2 Integral representations for a < 0 

For W (-a, ±x) we consider(2.l) for U (-ia, xe-rri 14 ) (see (4.7) and (4.10)), 
that is, 

(4.18) U ( . -rri/4) e-~i·'" 1 -··e-ni/40+1,.2 ,-,ds -1a, xe = -- e ·' ., 2· s' -
i v12if c .JS ' 

where C is a vertical line on which His > 0. On C we have - ~ n < ph s < ~ rr, 
. I - -

and the many-valued function sia-'i assumes its principal value. The trans-
formations 

( 4.19) x = 2t Ja, s = Jaw 
give 

(4.20) 

where 

(4.21) cp(w) = tw2 - 2te-rrif4w + i ln w. 

The saddle points follow from solving 

(4.22) 
w2 - 2te-rri/4 w + i 

cp'(w) = = 0, 
w 

giving saddle points 

(4.23) · -rr; I 4 ( ± r::;--:--;1 ) W± = U± + l V± = e I y t- + l , 

The relevant saddle point is w+. We have 

(4.24) 

where 'f is given in (2.12). The path of steepest descent through w+ is for 
1e1 < -in defined by 

(4.25) tr2 sin W - 2tr sin(e - ~rr) + lnr = ~cp(w+) = t 2 + 2~ - t. 
where w = rem. In rectangular coordinates w = u +iv this equation reads 

(4.26) 
r,;. I 1 ~ 1 ~ I 

uv + vL.t(u - v) + 2 ln(u- + v-) = t- +2~ - 2· 

We can solve equation (4.25) for sin(8 - in) (it is a quadratic equation for 
this quantity), giving e as function of r. This makes it possible to integrate 
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( 4.20) with respect tor, but this introduces singularities in the integral where 

r attains its minimal value, although the path itself is smooth. 

Integrating with respect to e or v is a better option. We can numerically 

determine the path in an algorithm, but this is not a very efficient method. 

Instead, we replace the steepest descent path defined in ( 4.26) by a path u ( v) 

such that 

I. u(v) is smooth for all v E IR; 
2. u(v) passes through the saddle point: u(v+) = u+; 

3. du/ dv at v+ has the same value as du/ dv for the steepest descent contour 

at W+; 

4. the path runs into the valleys of e</J(w) at ±ioo. 

From (4.26) we can show that du/dv = 0 at the saddle point w+. Hence, 

a simple path C that fulfills the four conditions is the vertical line u = u +. 

Introducing q = v - V+, using w = W+ + iq and (4.24) we obtain for (4.20) 

the representation 

(4.27) 

I I· !+! . 
. , e::j:no- 21t1a 4 2al ,...., loo 

u (-ia,xe-rrt/4) = e2ia~ -oo· e-m/;(lf)g(q)dq. 
J2nw+ .. 

The function ij; (q) is given by 

(4.28) ij;(q) = cp(w+) - efJ(w), 
I 

g(q) = JI . I . 
+tq W+ 

For small values of q we have 

'"( ) = 1+2~1~{,2 + J.=i_ 3 0( 4) 
'f' q 4u+ ? I 2u~ q + q ' 

(4.29) 

U+ = ~ (t + v0+1) . 
We conclude that W (-a, ±x) (see (4.7) - (4.11)) are given by 

(4.30) a±Jk(-a) [ . 100 J W(-a.x) = ~H e'X e-111/!«1Jg(q)dq , 
~ -co 

( 4.31) a± [ loo J W(-a, -x) = ~ eix e-ui/;l'f)g(q)dq , 
Jn lw+lk(-a) -oo 

where 

(4.32) * 1 ~ 
X = p (-a)+ 4rr + 2a~. 
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For the derivatives we find, starting with (4.18), 

(4.33) 

where 

(4.34) h(q) = ( Jt2+l _ e-rri/4q) g(q). 

It follows from ( 4.10) that W' (-a, ±x) are given by 

, a~Jk(-a) [ . Joo ,,, J (4.35) W (-a, X) = ffi i e'X e-av,(tf)h(q) dq , 
Jrr lw+I -oo 

(4.36) W'(-a, -x) = - a~ ~ [i eix J00 e-aif!<qlh(q)dq]. 
Jrr lw+lk(-a) -oo 

For large values of a and/or t the oscillatory behaviour of W(-a, ±x) and 
W' (-a, ±x) is mainly described by the exponential factor e2ia"€ contained in 
e; x. The other elements of these formulas are slowly varying. 

Asymptotic expansions follow from [10]. Formula (2.29) of that paper 
gives, withµ= .JiQ e-rri/4, 

(4.37) W(-a,x)....... I~ Im [eiX f (-i)s</>s(r)]' 
a:i(t2 + 1)4 s=O (2a}' 

where <Ps are polynomials given in (2.11) and r in (2.32) of [ 10]. 
Formula (2.33) of [ 10] gives 

(4.38) W'(-a, x) - /k(-a) al (!2 + l)l >H [i e'' ~ (-i;;:i:(T)] , 
where 1//s are polynomials given in (2.16) of [ 10]. 

For W(-a, -x) and its derivative we have 

(4.39) W(-a, -x)"' ~ 1 ~ [eix f (-i)s<Ps({)], 
a4(t2+J)4 s=O (2a)S 

and 

1 , 1 [ • 
00 (-iYif/s(r)] 

(4.40) W'(-a -x) .-.... -Jk(-a)a4(t- + 1)4 ~ i e'X '°' 2 , , ~ (a)-'" 
s=O 

The asymptotic expansions in (4.37)-(4.40) hold when a -+ oo, uni
formly with respect tot :::: -t0 , but also fort -+ oo, uniformly with respect 
to a :::: a0 , where ao and to are fixed positive numbers. 
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4.3 Integral representations for a > 0 

Because of the turning points we consider three cases. We write x = 2t ,Ja. 
We use the U-function in (4.7), and write (2.1) in the form 

( 4.41) 
.14) e-±ix" j . -Jri/.J + 1 2 . ds U (ia, xe-:m = -- e-.xe s :is s-w-, 

i./2ii c v's 
with conditions as in ( 4.18 ). The transformation s = Jaw gives 

(4.42) 

where 

(4.43) <f>(w) = ~w2 - 2te-rrif4 w - i In w. 

4.3. l The case t ::::: 1 The saddle points are now 

(4.44) · -rri /4 ( ± r:::;--;1) W± = U± + IV± = e t y t~ - l , 

The relevant saddle point is w+. and for numerical integration a convenient 
choice of C is the vertical line through W+. 

Using 

(4.45) 

where~ is given in (3.38), and writing in (4.42) w = w+ + iq, we obtain the 
analogue of (4.27) 

(4.46) 

where 

(4.47) 1/J(q) = cp(w+) - cp(w), 
I 

g(q)= JI+iq/w+· 

It follows that 

( 4.48) 

and 

(4.49) 

v'kTa) a! 
W(a, x) = ;:;;:-r;::-r ))t [G(a, x)] 

vrr lw+I 

v'kTa) a± 
W(a, -x) = ~ [G(a, x)]. 

Jrr lw+I 

1 
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where 

(4.50) G(a, x) = ei[p*(al+!ir+2ia~J 1: e-al/l(q)g(q) dq 

For the derivative we find, as in (4.33), 

(4.51) 

where 

(4.52) 

It follows that 

(4.53) 

and 

(4.54) 

where 

(4.55) 

h(q) = (e-.iri/4Jf2=1' + iq) g(q). 

I - ,Jk(Q)ai \\ 
W (a, x) - - c .h [G(a, x)] 

vrrlw+I 

3 
a:J 

W'(a, -x) = ../iik(G) ~ [G(a, x)]. 
rrk(a) lw+I 
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Asymptotic expansions follow from (2.9) of [10]. By changing µ ---+ 

µe-rri/4 in that formula we obtain 

(4.56) W(a, x)""' l Jk[Ci) l m [ei[p*(a)+~.ir+2a~] f is</Js(T)]' 
a 4 (t2 _ l) 4 s=O (2a Y 

where </Js(r) are the same polynomials as in (4.37), and 

(4.57) r - - -1 1 ( t ) 
- 2 Jt 2 - 1 . 

Formula (2.18) of [ 10] gives 
/ ~ l ~ l 

W (a,x) ""'-..;k(a)a4(t- -1)4 

(4.58) x~){ [ei[p*(aJ-!rr+2a~J ~ i"'i/ls(T)] 
L_, (2a)S ' 
s=O 

where l/;s(r) are the same as in (4.38). 
The asymptotic expansions in (4.56) and (4.58) hold when a ---+ oo, uni

formly with respect tot ~ 1 +to, but also fort ---+ oo, uniformly with respect 
to a ~ ao, where ao and t0 are positive numbers. 



130 A. Gil et al. 

4.3.2 The case -I ::: t < 1 We use (4.41), (4.42) and (4.43) with saddle 
points 

(4.59) W± = e-rci/4 (t ± iJl=t2) = e-:n:i/4±il!, t =COS 8, 

which are located on the unit circle. We have 

(4.60) 

where T/ = ~ (8 - sine cos 8) is also used in §3. l and defined in (3.9). We see 
that the imaginary parts of c/> ( W±) are equal. As a consequence, the steepest 
descent path may go (and in fact in the present case does go) through both 
saddle points. 

In Figure 3 we have shown the paths for three values oft. The contours run 
from -i oo tow_, then along the arc tow+ (in the direction of the arrows), and 

t = 0.99 t = 0.50 

-1 

t= 0 
t = -0.99 

-1 

\"-. 

-I -I 

Fig. 3. Steepest descent contours for the integral in ( 4.61) for several t-values. The con
tours run from -ioo to w_, then along the arc to w+ (in the direction of the arrow), 
and from W+ to +i oo. Through each saddle point the local contours of steepest ascent 
and steepest ascent are shown. The complete contours include steepest descent parts and 
steepest ascent parts 
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from w+ to +i oo. Through each saddle point the local contours of steepest 
ascent and steepest ascent are shown. The complete contours include steepest 
descent parts and steepest ascent parts. 

From (4.60) we see that w+ is dominant for 0 ~ t < 1 ("f) is positive 
for these values oft). Another point of interest is that the oscillatory factor 
e-±ix2 = e-iat 2 in (4.42) is nullified when we put <f> (w_) or <{>(w+) in front 
of the integral, because r::J<f>(w±) = ~ + t2 • This explains that the function 
W(a, x) does not oscillate if t E [-1, 1]. 

When we write w = u +iv and integrate in (4.42) with respect to v we 
obtain 

where 

(4.62) o/1 (v) =</>Cw+) - <f>(w), o/2(v) = <f>(w_) - <f>(w), 

and 

(4.63) 1 ( du,) /1 ( v) = - 1 - i - ' 
.jW dv 

1 ( du2) 
fz(v) = .jW 1 - i dv . 

We may assume different relations between u and v in both integrals; this 
explains u 1 and u2 , which are functions of v. 

It follows from (4.10) that 

(4.64) 
a± e2m1 i 

W(a, -x) = ,,/iik(Ci) ~ [ei[p*(al+snl K(a, x)], 
rr k(a) 

where K (a, x) denotes the sum of the integrals between the square brackets 
in (4.61). 

For the derivatives we find, starting with (4.42), 
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and using ( 4.10), 

(4.66) 
a~e2a1/ 1 

W'(a, -x) = - ,,/Tik((i) ~ [ei[p*(al-gnJ Kd(a, x) J, 
where Kd(a, x) denotes the sum of the integrals between the square brackets 

I . 
in (4.61) with fi(v) replaced with gi(v) = (te-4m - w)fi(v). 

The asymptotic expansions follows from (2.29) and (2.33) of [10]. We 
change t -+ -it and J.l -+ µe!ni in these formulae and obtain 

(4.67) . a-!ia+!e!ia+~ni-!na+2a11(1_ 12)! 
U' (ia, xe-mf4 ) "' - .J2 

~ ·v 'tfisCr*) 
XL!"---

s=O (2a)s ' 

where rJ is defined in (3.9) and </>s(r*) are the same as in (3.35). 
It follows from (4.10) that 

W( ) ,.._, ../k({i) 2a1)ru [ ip*(a) ~ i 5 </>s(r*)] a,x 1 1 e a1 e L , 
a:i (l - t2)4 s=O (2a)S 

(4.68) I ~I ? I? 
W (a,x)"' -vk(a)a4(1-r)4e-alJ 

x m [ei[p*(aJ+!n I f. is l/Js ( r*)] . 
s=O (2a)s 

The asymptotic expansions in (4.68) hold when a -+ oo, uniformly with 
respect to t E [ - I + 8, I - 8], where 8 is a fixed positive number. 

4.3.3 Unstable representations For large values of a17 the representations 
for W(a, -x) and W'(a, -x) in (4.64) and (4.66) are unstable. To see this, 
observe that ( 4.68) can be used fort E [ - 1 + 8, 1 - 8]. The dominant behav
iour comes from ft(Q)e 2w1. Since (see (4.8)) k(a) "' 4e-na, the dominant 

behaviour comes from eax, where x = arcsin t - t .Jl=t2, an odd func
tion that is positive on (0, l]. This dominant behaviour does not appear in 
the representations for W(a, -x) and W'(a, -x) in (4.64) and (4.66). There 
we see the dominant parts e2"'1 / ../k({i); in 17 we use positive t when x is 
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positive. It follows that the imaginary parts in the right-hand sides of (4.64) 
and (4.66) have to be very small when a71 is large. In fact, the first integral in 
( 4.61) should be of order e-4aTJ in that case, which is not apparent from this 
representation. 

A possible solution to this problem is using the representations for W (a, x) 
and W'(a, x) in (4.64) and (4.66) fort E [-1, O]. However, when t i -1 the 
phase of w+ becomes 3rr /4 and that of w_ becomes -5rr /4, which is outside 
the standard interval (-rr, rr] of the phase of win (4.42); that is, w is outside 
the standard Riemann sheet. In Figure 3 the path for the case t = -0.99 is 
shown. The technical details will be worked out when writing the numerical 
algorithms. 

5 Concluding remarks 

In a future paper we will discuss the numerical aspects and describe computer 
algorithms based on the integral representations given in this paper. Several 
quantities have to be calculated with great care. For example, straightforward 
use of l/J (e) defined in (2. IO) when e is small, that is, at the saddle point, 
will give cancellation of leading digits. Also, to represent the functions for a 
large range of the parameters scaling is needed. 

When implementing the representations we will decide if the steepest 
descent paths will be used or approximations of these paths, as we suggested 
for the W-function in§ 4.2. For example, integrating in (2.3) along the verti
cal line through the saddle point w0 gives a simpler representation than (2.9). 
However, the integral along the vertical line has a non-real phase function. 
Another approximation of a steepest descent contour is given in (3.13). We 
will investigate efficiency aspects in combination with programming aspects 
in deciding which representation in these examples should be used. 

This also holds for the quite complicated steepest descent paths in§ 4.3.2. 
We have not indicated in ( 4.61) the relation between v and u on the differ
ent parts of the path. This will be done during the implementation of the 
algorithms. 
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