STRONG T-PERFECTION OF BAD- K_{4}-FREE GRAPHS*

ALEXANDER SCHRIJVER ${ }^{\dagger}$

Abstract

We show that each graph not containing a bad subdivision of K_{4} as a subgraph is strongly t-perfect. Here a graph $G=(V, E)$ is strongly t-perfect if, for each weight function $w: V \rightarrow \mathbb{Z}_{+}$, the maximum weight of a stable set is equal to the minimum (total) cost of a family of vertices, edges, and circuits covering any vertex v at least $w(v)$ times. By definition, the cost of a vertex or edge is 1 , and the cost of a circuit C is $\left\lfloor\frac{1}{2}|V C|\right\rfloor$. A subdivision of K_{4} is called bad if each triangle has become an odd circuit and if it is not obtained by making the edges in a 4 -circuit of K_{4} evenly subdivided, while the other two edges are not subdivided.

The theorem generalizes earlier results of Gerards [J. Combin. Theory Ser. B, 47 (1989), pp. 330348] on the strong t-perfection of odd- K_{4}-free graphs and of Gerards and Shepherd [SIAM J. Discrete Math., 11 (1998), pp. 524-545] on the t-perfection of bad- K_{4}-free graphs.

Key words. t-perfect, graph, stable set, polytope
AMS subject classifications. $05 \mathrm{C} 69,90 \mathrm{C} 27,90 \mathrm{C} 57$
PII. S0895480101401101

1. Introduction. A graph $G=(V, E)$ is called t-perfect if the stable set polytope of G ($=$ the convex hull of the incidence vectors in \mathbb{R}^{V} of stable sets) is determined by
(i) $0 \leq x_{v} \leq 1 \quad$ for each $v \in V$;
(ii) $x_{u}+x_{v} \leq 1 \quad$ for each edge $u v \in E$;
(iii) $\quad x(V C) \leq\left\lfloor\frac{1}{2}|V C|\right\rfloor$ for each odd circuit C.

Here $x(U):=\sum_{v \in U} x_{v}$ for any $U \subseteq V . ., V . .$, and E.. denote the sets of vertices and edges, respectively, of .. . A circuit C is odd (even) if $|V C|$ is odd (even).

A motivation for the concept of t-perfection lies in the fact that a linear function $w^{\top} x$ can be maximized over (1.1) in strongly polynomial time (with the ellipsoid method, since the separation problem over (1.1) is polynomial-time solvable). Hence a maximum-weight stable set in a t-perfect graph can be found in strongly polynomial time.
G is called strongly t-perfect if system (1.1) is totally dual integral-that is, if for each weight function $w: V \rightarrow \mathbb{Z}_{+}$, the linear program of maximizing $w^{\top} x$ over (1.1) has an integer optimum dual solution. This implies that it also has an integer optimum primal solution. In particular, all vertices of the polytope determined by (1.1) are integer, and hence the polytope is the stable set polytope. So strong tperfection implies t-perfection.

Strong t-perfection can be characterized equivalently as follows. For any $w: V \rightarrow$ \mathbb{Z}_{+}, let $\alpha_{w}(G)$ denote the maximum weight of a stable set in G. Define a w-cover as a family of vertices, edges, and odd circuits such that each vertex v is covered at least $w(v)$ times. (In a family, repetition is allowed.) By definition, the cost of a vertex or edge is 1 , the cost of a circuit C is $\left\lfloor\frac{1}{2}|V C|\right\rfloor$, and the cost of a w-cover is the sum

[^0]of the costs of its elements (counting multiplicities). Let $\tilde{\rho}_{w}(G)$ denote the minimum cost of a w-cover. Then
a graph G is strongly t-perfect if and only if $\alpha_{w}(G)=\tilde{\rho}_{w}(G)$ for each $w: V \rightarrow \mathbb{Z}_{+}$. (1.2)

The classes of t-perfect and strongly t-perfect graphs are closed under taking induced subgraphs. However, no characterization is known in terms of forbidden induced subgraphs.

If we also take noninduced subgraphs, the situation is clearer (although it does not yield a characterization). Here subdivisions of K_{4} come in. A K_{4}-subdivision H is called odd, or just an odd K_{4}, if each triangle of K_{4} has become an odd circuit in H. It was shown by Gerards [6] that each graph without odd K_{4} is strongly t-perfect.
(By "a graph without" odd K_{4} we mean a graph not containing an odd K_{4} as subgraph.) It extends an earlier result of Gerards and Schrijver [7] that such graphs are t-perfect.

There exist, however, odd K_{4} 's that are t-perfect. Following Gerards and Shepherd [8], we call an odd K_{4}-subdivision a bad K_{4} if it does not have the following property:
(1.4) the edges of K_{4} that have become an even path form a 4-cycle in K_{4}, while the two other edges of K_{4} are not subdivided.

This name is motivated by the fact, shown by Barahona and Mahjoub [1], that a subdivision of K_{4} is t-perfect if and only if it is not a bad K_{4}. Gerards and Shepherd [8] proved that

$$
\begin{equation*}
\text { each graph without bad } K_{4} \text { is t-perfect. } \tag{1.5}
\end{equation*}
$$

(Gerards and Shepherd [8] also showed that graphs without bad K_{4} can be recognized in polynomial time.)

In the present paper, we show more strongly that these graphs are strongly tperfect. This generalizes (1.3) and (1.5), and implies for any graph G that

> each subgraph of G is t-perfect
> \Longleftrightarrow each subgraph of G is strongly t-perfect
> $\Longleftrightarrow G$ has no bad K_{4} as subgraph.

On the other hand, there exist strongly t-perfect graphs that contain a bad K_{4}; see Figure 1.1.

Our proof method was inspired by a method of Geelen and Guenin [5] for proving a special case of a theorem of Seymour [12] on packing the edge sets of odd circuits in odd- K_{4}-free graphs.

The above results contain the strong t-perfection of series-parallel graphs, which are, as is well known, those graphs not containing any K_{4}-subdivision (Boulala and Uhry [2]), and of almost bipartite graphs-graphs G having a vertex v with $G-v$ bipartite (Fonlupt and Uhry [4], Sbihi and Uhry [10]).

Fig. 1.1.

A related theorem was proved by Sewell and Trotter [11]. A K_{4}-subdivision is called a totally odd K_{4} if it arises from K_{4} by replacing each edge by an odd path. The theorem says that a graph G without totally odd K_{4} satisfies $\alpha_{1}(G)=\tilde{\rho}_{1}(G)$, where 1 denotes the all-one weight function. This result does not follow from our methods.

The totally odd K_{4} 's are precisely those K_{4}-subdivisions G with $\alpha_{1}(G)<\tilde{\rho}_{1}(G)$. So the theorem of Sewell and Trotter and the theorem presented in this paper suggest the question of whether, for each graph G and each $w: V G \rightarrow \mathbb{Z}_{+}$with $\alpha_{w}(G)<$ $\tilde{\rho}_{w}(G), G$ contains a K_{4}-subdivision H as subgraph such that $\alpha_{w^{\prime}}(H)<\tilde{\rho}_{w^{\prime}}(H)$, where $w^{\prime}:=w \mid V H$. The answer is unknown.

To complete the picture, it was shown by Zang [15] and Thomassen [13] that $\chi(G) \leq 3$ for any graph G without totally odd K_{4}. This was conjectured by Toft [14], and was proved by Hadwiger [9] for series-parallel graphs, by Catlin [3] for odd-K_{4}-free graphs, and by Gerards and Shepherd [8] for bad- K_{4}-free graphs. (However, there exist strongly t-perfect graphs G with $\chi(G)>3$.)
A.M.H. Gerards and P.D. Seymour proved in 1991 (personal communication) that if G contains no odd K_{4}, then the stable set polytope of G has the integer decomposition property. In other words, any $w: V G \rightarrow \mathbb{Z}_{+}$is the sum of the incidence vectors of k stable sets, where k is the minimum integer for which $\frac{1}{k} w$ belongs to the stable set polytope. It implies the result of Catlin mentioned above.
2. Graphs without bad $\boldsymbol{K}_{\mathbf{4}}$. In this section we prove a technical lemma on bad- K_{4}-free graphs. Let G be graph without bad K_{4}, and let C be an even circuit in G. Let e_{1}, \ldots, e_{n} be chords of C such that e_{i} has ends s_{i} and s_{n+i} (say) (for $i=1, \ldots, n)$, such that $s_{1}, \ldots, s_{2 n}$ are distinct and occur in this order clockwise along C, and such that, for each $i=1, \ldots, 2 n$, the clockwise $s_{i-1}-s_{i}$ path R_{i} along C has even length. (We take indices $\bmod 2 n$ and set $e_{n+i}:=e_{i}$ for $i=1, \ldots, n$.) Define $D:=\left\{e_{1}, \ldots, e_{n}\right\}$.

Call a path B in G a bow if B is simple, has length at least 2 , and intersects C precisely in its end vertices. We call a bow an odd bow if it forms with a subpath of C an odd circuit and an even bow if it forms with a subpath of C an even circuit. (So an odd (even) bow need not be an odd (even) path. To avoid confusion, we therefore do not use the more familiar term "ear.")

We will study in particular the occurrence of odd bows. We say that a bow B crosses an edge $e \in D$ (and conversely) if e is disjoint from the ends a, b (say) of B
and connects distinct components of the graph $C-a-b$. Then
an odd bow B does not cross any edge e in D.
Otherwise, C, B, and e form a bad K_{4}, a contradiction.
Equation (2.1) implies that the ends of any odd bow belong to $V R_{j}$ for some $j=1, \ldots, 2 n$. Define
(2.2) $J:=\left\{j \in\{1, \ldots, 2 n\} \mid\right.$ there exists an odd bow with ends in $\left.V R_{j}\right\}$.

We prove the following lemma.
Lemma 2.1. There exists an $i \in\{1, \ldots, 2 n\}$ such that $i+1, i+2, \ldots, i+n-1 \notin J$.
Proof. Consider a counterexample with n as small as possible. Define $L:=$ $\{i \mid i+2, \ldots, i+n-1 \notin J\}$. Then, for each i,

$$
\begin{equation*}
i \in L \text { or } i+n \in L \tag{2.3}
\end{equation*}
$$

To see this, by symmetry it suffices to show this for $i=n$. Delete e_{n}. By the minimality of n, the lemma holds for the new structure. In the new structure, the paths R_{n} and R_{n+1} have merged to one path, and similarly the path $R_{2 n}$ and R_{1} have merged to one path. If (2.3) does not hold for the original structure, then, for some $i \in\{2, \ldots, n-1\}$, there is no odd bow with ends in one of $V R_{i+1}, \ldots, V R_{n-1}, V R_{n} \cup$ $V R_{n+1}, V R_{n+2}, \ldots, V R_{i+n-1}$ or there is no odd bow with ends in one of $V R_{i+n+1}, \ldots$, $V R_{2 n-1}, V R_{2 n} \cup V R_{1}, V R_{2}, \ldots, V R_{i-1}$. Either case implies the lemma for the original structure, a contradiction. So we have (2.3).

We derive from this that $n=2$. As the lemma does not hold, we know that $i \notin L$ or $i+1 \notin L$ for each i. Hence, by (2.3), $i \in L$ or $i+1 \in L$ for each i. So the indices i are alternatingly in and out of L. If $n \geq 4$, then we can assume that each even i belongs to L, and hence, by the definition of $L, J=\emptyset$, a contradiction.

So $n \leq 3$. Suppose $n=3$. We may assume $J=\{1,3,5\}$. For $j=1,3,5$, let B_{j} be an odd bow with ends in $V R_{j}$. Then B_{1}, B_{3}, B_{5} are pairwise disjoint, for suppose that (say) B_{1} and B_{3} have a vertex in common. Choose an end a of B_{1} with $a \neq s_{1}$. Follow B_{1} from a until we reach B_{3}. We can continue along B_{3} so as to create an odd bow B (as B_{3} is an odd bow). As B crosses e_{1}, this contradicts (2.1).

So B_{1}, B_{3}, B_{5} are pairwise disjoint. Let R_{j}^{\prime} be obtained from R_{j} by replacing part of R_{j} by B_{j}. Then $R_{1}^{\prime}, R_{2}, R_{3}^{\prime}, R_{4}, R_{5}^{\prime}$ and e_{1}, e_{2}, e_{3} form a bad K_{4}, a contradiction.

So $n=2$. As the lemma does not hold, we know $J=\{1,2,3,4\}$. For $j=1, \ldots, 4$, let B_{j} be an odd bow with ends in $V R_{j}$. If the B_{j} are pairwise internally vertexdisjoint, we obtain a bad K_{4}, a contradiction. So at least two of the B_{j} have an internal vertex in common. Define $S:=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$. To analyze this, we first prove the following:

Let B be a bow with ends a, b and $a \in V R_{1} \backslash S$ and $b \notin V R_{1}$.
Then a and b are equal to the middle vertices of R_{1} and R_{3}, respectively.
By (2.1), B is an even bow. By symmetry, we can assume that $b \in V R_{2} \cup V R_{3} \backslash\left\{s_{1}, s_{3}\right\}$. Let C^{\prime} be the (even) circuit obtained from C by replacing the $a-b$ path P along C that traverses s_{1}, by B. Let e_{1}^{\prime} be the extension of e_{1} with the $s_{1}-a$ part of R_{1}. So e_{1}^{\prime} is an odd bow of C^{\prime}. If $b \in V R_{2}$, then e_{2} is a chord of C^{\prime} that crosses e_{1}^{\prime}, contradicting (2.1). So $b \in V R_{3} \backslash S$.

Let e_{2}^{\prime} be the extension of e_{2} with the $s_{2}-b$ part of R_{3}. Again, e_{2}^{\prime} is an odd bow of C^{\prime}. Then $C^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}$ form an odd K_{4}-subdivision H, with trivalent vertices a, b, s_{3},

FIG. 2.1.
and s_{4}. As H is not bad, and as s_{4} is nonadjacent (in H) to b and s_{3}, we know that s_{4} is adjacent (in H) to a. By symmetry, a is adjacent to s_{1}, and b to s_{2} and to s_{3}. This gives (2.4).

From this we derive the following:
Let T be a tree with three end vertices a, b, c, and trivalent vertex v such that T has only its end vertices in common with C and such that a, b, c do not all belong to some $V R_{i}(i=1, \ldots, 4)$. Then for some $i,\{a, b, c\}=\left\{s_{i-1}, s_{i}, s_{i+1}\right\}, s_{i}$ is adjacent to v, and the $v-s_{i-1}$ and $v-s_{i+1}$ paths along T are even.

We first show that $a, b, c \in S$. Suppose not. Then we can assume $a \in V R_{1} \backslash S$. Since a, b, c not all belong to $V R_{1}$, we can assume that $b \notin V R_{1}$. Then by (2.4), a and b are the middle vertices of R_{1} and R_{3}, respectively. By symmetry of a and b, we can assume that $c \notin V R_{1}$, implying similarly that $c=b$, a contradiction. So $a, b, c \in S$.

Next we can assume that $\{a, b, c\}=\left\{s_{1}, s_{2}, s_{3}\right\}$. Let P_{i} be the $v-s_{i}$ path in T (for $i=1,2,3$) (cf. Figure 2.1(a)). As P_{1} and P_{3} form a bow connecting s_{1} and s_{3}, it is an even bow and we have $\left|E P_{1}\right| \equiv\left|E P_{3}\right|(\bmod 2)$. If, moreover, $\left|E P_{1}\right| \equiv\left|E P_{2}\right|$ $(\bmod 2)$, then $P_{1}, P_{2}, P_{3}, R_{1}, R_{4}, e_{1}$, and e_{2} form a bad K_{4}. So $\left|E P_{1}\right| \not \equiv\left|E P_{2}\right|(\bmod$ 2). Then $P_{1}, P_{2}, P_{3}, R_{2}, R_{3}$, and e_{1} form an odd K_{4}. As it is not bad and as e_{1} has length 1, we have $\left|E P_{2}\right|=1$, implying (2.5).

This implies that

$$
\begin{equation*}
G-V C \text { has no component } K \text { with } s_{1}, s_{2}, s_{3}, s_{4} \in N(K) \tag{2.6}
\end{equation*}
$$

Otherwise, there is a tree T intersecting $V C$ only in its end vertices $s_{1}, s_{2}, s_{3}, s_{4}$. By (2.5), the neighbor v_{i} of any s_{i} in T has degree at least 3 (by considering a subtree with ends s_{i-1}, s_{i}, s_{i+1}). It also follows from (2.5) that $v_{i} \neq v_{i+1}$ for each i. So $v_{1}=v_{3}$, contradicting (2.5) (by considering a subtree with ends s_{1}, s_{2}, s_{3}). This gives (2.6).

This implies that B_{1} and B_{3} are disjoint. Otherwise, by (2.5), the ends of B_{1} and B_{3} are $s_{1}, s_{2}, s_{3}, s_{4}$, contradicting (2.6). Similarly, B_{2} and B_{4} are disjoint.

So we can assume that B_{2} and B_{3} have a vertex in common, and hence, by (2.5), that there is a vertex $v \notin V C$ adjacent to s_{2} and a $v-s_{1}$ path Q_{2} and a $v-s_{3}$ path Q_{3} such that, for $i=2,3, B_{i}$ is the concatenation of the edge $s_{2} v$ and Q_{i} (cf. Figure 2.1(b)).

By (2.6), neither B_{1} nor B_{4} has an internal vertex in common with B_{2} and B_{3}. If B_{1} and B_{4} are internally vertex-disjoint, then $B_{1}, B_{4}, e_{1}, e_{2}, v s_{2}, Q_{1}, Q_{2}$, and parts of R_{1} and R_{4} form a bad K_{4}.

So B_{1} and B_{4} are not internally vertex-disjoint. Hence, by (2.5), there is a vertex $u \notin V C$ adjacent to s_{4} and a $u-s_{1}$ path Q_{1} and a $u-s_{3}$ path Q_{4} such that, for $i=1,4, B_{i}$ is the concatenation of the edge $s_{4} u$ and Q_{i} (cf. Figure 2.1(c)). Then $Q_{1}, \ldots, Q_{4}, v s_{2}, u s_{4}, e_{2}$, and e_{1} form a bad K_{4}, a contradiction.
3. Strong t-perfection of bad- $K_{\mathbf{4}}$-free graphs. We now prove our main theorem.

Theorem 3.1. A graph without bad K_{4} is strongly t-perfect.
Proof. Let $G=(V, E)$ be a counterexample with $|V|+|E|$ minimum. For any weight function $w: V \rightarrow \mathbb{Z}_{+}$, denote $\alpha_{w}:=\alpha_{w}(G)$ and $\tilde{\rho}_{w}:=\tilde{\rho}_{w}(G)$. For any subset U of V let χ^{U} be the incidence vector of U. So for an edge $e=u v, \chi^{e}$ is the 0,1 vector in \mathbb{R}^{V} having l's in positions u and v.

We first show the following claim.
Claim 1. There is a $w: V \rightarrow \mathbb{Z}_{+}$and an edge f such that

$$
\begin{equation*}
\tilde{\rho}_{w+\chi^{f}}=\alpha_{w}+1=\tilde{\rho}_{w} \tag{3.1}
\end{equation*}
$$

and such that

$$
\begin{equation*}
\alpha_{w-\chi^{V C}}=\tilde{\rho}_{w-\chi^{V C}} \tag{3.2}
\end{equation*}
$$

for each odd circuit C.
Proof of Claim 1. Choose a vertex u. For any $w: V \rightarrow \mathbb{Z}_{+}$with $\alpha_{w}<\tilde{\rho}_{w}$ one has

$$
\begin{equation*}
w(u)<w(N(u)) \tag{3.3}
\end{equation*}
$$

(where $N(u)$ denotes the set of neighbors of u). Otherwise, by the minimality of G, setting $G^{\prime}:=G-u-N(u)$ and $w^{\prime}:=w \mid V G^{\prime}$,

$$
\begin{equation*}
\alpha_{w}(G)=w(u)+\alpha_{w^{\prime}}\left(G^{\prime}\right)=w(u)+\tilde{\rho}_{w^{\prime}}\left(G^{\prime}\right) \geq \tilde{\rho}_{w}(G), \tag{3.4}
\end{equation*}
$$

since $G[\{u\} \cup N(u)]$ has a $w \mid N(u) \cup\{u\}$-cover of cost $w(u)$ (as $w(u) \geq w(N(u)))$. Equation (3.4) contradicts our assumption, which proves (3.3).

By (3.3), we can choose w such that $\alpha_{w}<\tilde{\rho}_{w}$ and such that $w(V \backslash\{u\})-w(u)$ is as small as possible. Then
(3.5) there exists a $z \in \mathbb{Z}_{+}^{\delta(u)}$ such that for $\tilde{w}:=w+\sum_{e \in \delta(u)} z_{e} \chi^{e}$ we have $\alpha_{\tilde{w}}=\tilde{\rho}_{\tilde{w}}$.

To see this, it suffices to show that
there exists a $z \in \mathbb{Z}^{\delta(u)}$ and a stable set S such that $\tilde{w}:=w+\sum_{e \in \delta(u)} z_{e} \chi^{e}$ is nonnegative and such that $\tilde{w}(S)=\tilde{\rho}_{\tilde{w}}$ and S intersects each edge incident with u.

This suffices, since if z^{\prime} arises from z by replacing the negative entries by 0 , and

$$
\begin{equation*}
w^{\prime}:=w+\sum_{e \in \delta(u)} z_{e}^{\prime} \chi^{e}, \tag{3.7}
\end{equation*}
$$

then $w^{\prime}(S)=\tilde{w}(S)-\sum\left(z_{e} \mid z_{e}<0\right)$ and $\tilde{\rho}_{w^{\prime}} \leq \tilde{\rho}_{\tilde{w}}-\sum\left(z_{e} \mid z_{e}<0\right)$, as $w^{\prime}=\tilde{w}-$ $\sum\left(z_{e} \chi^{e} \mid z_{e}<0\right)$. This implies (3.5).

To prove (3.6), first suppose that $N(u)$ is a stable set. Let G^{\prime} be the graph obtained from G by contracting the edges in $\delta(u)$. Then G^{\prime} contains no bad K_{4}. Let t be the new vertex. Let $w^{\prime}: V G^{\prime} \rightarrow \mathbb{Z}_{+}$be defined by $w^{\prime}(t):=w(N(u))-w(u)$ and $w^{\prime}(v):=w(v)$ if $v \neq t$. Since G^{\prime} is smaller than G, we know $\alpha_{w^{\prime}}\left(G^{\prime}\right)=\tilde{\rho}_{w^{\prime}}\left(G^{\prime}\right)$.

Consider a w^{\prime}-cover \mathcal{F}^{\prime} in G^{\prime} of cost $\tilde{\rho}_{w^{\prime}}\left(G^{\prime}\right)$. Let λ be the number of circuits in \mathcal{F}^{\prime} that are not circuits in G. So they traverse t and can be made to circuits in G by adding two edges incident with u. It gives, for some \tilde{w}, a \tilde{w}-cover \mathcal{F} in G of cost $\tilde{\rho}_{w^{\prime}}\left(G^{\prime}\right)+\lambda$ such that \tilde{w} coincides with w on $V \backslash(N(u) \cup\{u\})$ and such that $\tilde{w}(u)=\lambda$ and $\tilde{w}(N(u))=w^{\prime}(t)+\lambda$. Hence the cost is $\tilde{\rho}_{w^{\prime}}\left(G^{\prime}\right)+\tilde{w}(u)$ and $\tilde{w}(N(u))-\tilde{w}(u)=w(N(u))-w(u)$. This last implies that $\tilde{w}=w+\sum_{e \in \delta(u)} z_{e} \chi^{e}$ for some $z \in \mathbb{Z}^{\delta(v)}$.

Now let S^{\prime} be a stable set in G^{\prime} with $w^{\prime}\left(S^{\prime}\right)=\alpha_{w^{\prime}}\left(G^{\prime}\right)$. If $t \in S^{\prime}$, define $S:=$ $\left(S^{\prime} \backslash\{t\}\right) \cup N(u)$, and if $t \notin S^{\prime}$, define $S:=S^{\prime} \cup\{u\}$. So S is a stable set in G. Then $w(S)=w^{\prime}\left(S^{\prime}\right)+w(u)$ and S intersects each edge incident with u. So

$$
\begin{equation*}
\tilde{w}(S)=w^{\prime}\left(S^{\prime}\right)+\tilde{w}(u)=\tilde{\rho}_{w^{\prime}}\left(G^{\prime}\right)+\tilde{w}(u) \geq \tilde{\rho}_{\tilde{w}}(G) \tag{3.8}
\end{equation*}
$$

This gives (3.6) in case $N(u)$ is a stable set.
If $N(u)$ is not a stable set, let $G^{\prime}:=G-u-N(u)$ and $w^{\prime}:=w \mid V G^{\prime}$. By the minimality of $G, \alpha_{w^{\prime}}\left(G^{\prime}\right)=\tilde{\rho}_{w^{\prime}}\left(G^{\prime}\right)$. Let \mathcal{F}^{\prime} be a w^{\prime}-cover in G^{\prime} of cost $\tilde{\rho}_{w^{\prime}}\left(G^{\prime}\right)$. By adding to \mathcal{F}^{\prime} a number of times a triangle incident with u we obtain a \tilde{w}-cover \mathcal{F} in G for some $\tilde{w}: V \rightarrow \mathbb{Z}_{+}$, where \tilde{w} coincides with w on $V \backslash(\{u\} \cup N(u))$, where $\tilde{w}(N(u))-\tilde{w}(u)=w(N(u))-w(u)$, and where \mathcal{F} has cost $\tilde{\rho}_{w^{\prime}}\left(G^{\prime}\right)+\tilde{w}(u)$.

Now let S^{\prime} be a stable set in G^{\prime} with $w^{\prime}\left(S^{\prime}\right)=\alpha_{w^{\prime}}\left(G^{\prime}\right)$. Define $S:=S^{\prime} \cup\{u\}$. So S is a stable set in G. Then $w(S)=w^{\prime}\left(S^{\prime}\right)+w(u)$ and S intersects each edge incident with u. Moreover, $\tilde{w}(S)=w^{\prime}\left(S^{\prime}\right)+\tilde{w}(u)=\tilde{\rho}_{w^{\prime}}\left(G^{\prime}\right)+\tilde{w}(u) \geq \tilde{\rho}_{\tilde{w}}(G)$. So we have (3.6), and hence (3.5).

Choose z in (3.5) with $z(\delta(u))$ as small as possible. Choose $f \in \delta(u)$ with $z_{f} \geq 1$. We can assume that $z_{f}=1$ and $z_{e}=0$ for all other edges e, as we can reset $w:=$ $\tilde{w}-\chi^{f}$. (This resetting does not change the value of $w(V \backslash\{u\})-w(u)$.) Then (3.2) follows from the minimality of $w(V \backslash\{u\})-w(u)$.

We finally show (3.1). By the definition of $z, \tilde{\rho}_{w+\chi^{f}}=\alpha_{w+\chi^{f}}$. Also we have $\alpha_{w+\chi^{f}} \leq \alpha_{w}+1$, since any stable set S satisfies $\left(w+\chi^{f}\right)(S) \leq w(S)+1$. As $\tilde{\rho}_{w} \leq \tilde{\rho}_{w+\chi^{f}}$, this implies (3.1).

End of Proof of Claim 1.
As of now we assume that w and f satisfy (3.1) and (3.2). Let f connect vertices u and u^{\prime}. Since by the minimality of G, G has no isolated vertices, there exists a minimum-cost $w+\chi^{f}$-cover consisting only of edges and odd circuits, say, e_{1}, \ldots, e_{t}, C_{1}, \ldots, C_{k}. We choose f and $e_{1}, \ldots, e_{t}, C_{1}, \ldots, C_{k}$ such that

$$
\begin{equation*}
\left|V C_{1}\right|+\cdots+\left|V C_{k}\right| \tag{3.9}
\end{equation*}
$$

is as small as possible. Then

$$
\begin{equation*}
\text { at least two of the } C_{i} \text { traverse } f \text {. } \tag{3.10}
\end{equation*}
$$

To see this, let $G^{\prime}:=G-f$. If $\alpha_{w}\left(G^{\prime}\right)=\alpha_{w}(G)$, then by induction G^{\prime} has a w-cover of cost α_{w}. As this is a w-cover in G as well, this would imply $\alpha_{w}=\tilde{\rho}_{w}$, a contradiction.

So $\alpha_{w}\left(G^{\prime}\right)>\alpha_{w}(G)$. That is, there exists a stable set S in G^{\prime} with $w(S)>\alpha_{w}$. Necessarily, S contains both u and u^{\prime}. Then, for any circuit C traversing f,

$$
\begin{equation*}
|V C \cap S| \leq\left\lfloor\frac{1}{2}|V C|\right\rfloor+1 \tag{3.11}
\end{equation*}
$$

Also, f is not among e_{1}, \ldots, e_{t}, since otherwise $\tilde{\rho}_{w} \leq \tilde{\rho}_{w+\chi^{f}}-1$, contradicting (3.1). Setting l to the number of C_{i} traversing f, we obtain

$$
\begin{align*}
& \tilde{\rho}_{w+\chi^{f}} \leq \alpha_{w}+1 \leq w(S)=\left(w+\chi^{f}\right)(S)-2 \leq-2+\sum_{j=1}^{t}\left|e_{j} \cap S\right|+\sum_{i=1}^{k}\left|V C_{i} \cap S\right| \\
& \quad \leq-2+t+\sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left|V C_{i}\right|\right\rfloor+l=\tilde{\rho}_{w+\chi^{f}}+l-2 \tag{3.12}
\end{align*}
$$

So $l \geq 2$, which is (3.10).
By (3.10) we can assume that C_{1} and C_{2} traverse f. It is convenient to assume that $E C_{1} \backslash\{f\}$ and $E C_{2} \backslash\{f\}$ are disjoint; this can be achieved by adding parallel edges. So $E C_{1} \cap E C_{2}=\{f\}$.

Then,
if C is an odd circuit with $E C \subseteq E C_{1} \cup E C_{2}$, then $f \in E C$ and $E C_{1} \triangle E C_{2} \triangle E C$ again is an odd circuit.

To see this, define $C_{1}^{\prime}:=C$. As $E C_{1} \triangle E C_{2} \triangle E C$ is an odd cycle (a cycle is an edge-disjoint union of circuits), it can be decomposed into circuits $C_{2}^{\prime}, \ldots, C_{p}^{\prime}$, with $C_{2}^{\prime}, \ldots, C_{q}^{\prime}$ odd and $C_{q+1}^{\prime}, \ldots, C_{p}^{\prime}$ even ($q \geq 2$). Choose for each $i=q+1, \ldots, p$ a perfect matching M_{i} in C_{i}^{\prime}. Let $e_{1}^{\prime}, \ldots, e_{r}^{\prime}$ be the edges in the matchings M_{i} and in $\{f\} \backslash E C$. Then

$$
\begin{equation*}
\chi^{V C_{1}}+\chi^{V C_{2}}=\sum_{i=1}^{q} \chi^{V C_{i}^{\prime}}+\sum_{j=1}^{r} \chi^{\chi_{j}^{\prime}} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{align*}
\left\lfloor\frac{1}{2}\left|V C_{1}\right|\right\rfloor+\left\lfloor\frac{1}{2}\left|V C_{2}\right|\right\rfloor & =\frac{1}{2}\left|E C_{1}\right|+\frac{1}{2}\left|E C_{2}\right|-1=r-1+\frac{1}{2} \sum_{i=1}^{q}\left|E C_{i}^{\prime}\right| \\
& \geq r+\sum_{i=1}^{q}\left\lfloor\frac{1}{2}\left|V C_{i}^{\prime}\right|\right\rfloor . \tag{3.15}
\end{align*}
$$

So replacing C_{1}, C_{2} by $C_{1}^{\prime}, \ldots, C_{q}^{\prime}$ and adding $e_{1}^{\prime}, \ldots, e_{r}^{\prime}$ to e_{1}, \ldots, e_{t} again gives a $w+\chi^{f}$-cover of cost at most $\tilde{\rho}_{w+\chi^{f}}$.

If $f \notin E C$, then f is among $e_{1}^{\prime}, \ldots, e_{r}^{\prime}$. Hence deleting f gives a w-cover of cost at most $\tilde{\rho}_{w+\chi^{f}}-1 \leq \alpha_{w}$, contradicting (3.1). So $f \in E C$. As this is true for any odd circuit in $E C_{1} \cup E C_{2}$ we know that $f \in E C_{i}^{\prime}$ for $i=1, \ldots, q$ and that $q=2$.

If $p \geq 3$ or $r \geq 1$, then $\left|E C_{1}^{\prime}\right|+\left|E C_{2}^{\prime}\right|<\left|E C_{1}\right|+\left|E C_{2}\right|$, contradicting the minimality of (3.9). This proves (3.13).

First, it implies
a circuit in $E C_{1} \cup E C_{2}$ is odd if and only if it contains f.
A second consequence is as follows. Let P_{i} be the $u-u^{\prime}$ path $C_{i} \backslash\{f\}$. Orient the edges occurring in the path $P_{i}:=C_{i} \backslash\{f\}$ in the direction from u to u^{\prime} for $i=1,2$. Then

> the orientation is acyclic.

For suppose there exists a directed circuit C. Then $\left(E C_{1} \cup E C_{2}\right) \backslash E C$ contains a directed $u-u^{\prime}$ path, and hence an odd circuit C^{\prime}. Hence, by (3.13), $E C_{1} \triangle E C_{2} \triangle E C^{\prime}$ is an odd circuit, however, containing the even circuit $E C$, a contradiction.

Let A and B be the color classes of the bipartite graph $\left(V P_{1} \cup V P_{2}, E P_{1} \cup E P_{2}\right)$ such that $u, u^{\prime} \in A$. So
$A:=\left\{v \in V P_{1} \cup V P_{2} \mid\right.$ there exists an even-length directed $u-v$ path $\}$, $B:=\left\{v \in V P_{1} \cup V P_{2} \mid\right.$ there exists an odd-length directed $u-v$ path $\}$.

Define

$$
\begin{align*}
X & :=V P_{1} \cap V P_{2} \tag{3.19}\\
\text { and } U & :=\left\{v \in V\left|w(v)=\sum_{j=1}^{t}\right| e_{j} \cap\{v\}\left|+\sum_{j=1}^{k}\right| V C_{j} \cap\{v\} \mid\right\} .
\end{align*}
$$

We next show the following technical, but straightforward to prove, claim.
$\operatorname{Claim} 2$. Let $z \in A$, let Q be an even length directed $u-z$ path, and let S be a stable set in G. Then

$$
\begin{equation*}
\left(w-\chi^{V Q}\right)(S) \geq \alpha_{w}-\left\lfloor\frac{1}{2}|V Q|\right\rfloor+1 \tag{3.20}
\end{equation*}
$$

if and only if
(i) $\left|e_{j} \cap S\right|=1$ for each $j=1, \ldots, t$,
(ii) $\left|V C_{j} \cap S\right|=\left\lfloor\frac{1}{2}\left|V C_{j}\right|\right\rfloor$ for $j=3, \ldots, k$,
(iii) $S \subseteq U$,
(iv) S contains $B \backslash V Q$ and is disjoint from $A \backslash V Q$,
(v) S contains $B \cap X$ and is disjoint from $A \cap X$.

Proof of Claim 2. We can assume that $E Q \subseteq E C_{1}$. Set $W:=V C_{1} \backslash V Q$. So $|W|$ is even. Consider the following sequence of (in)equalities:

$$
\begin{aligned}
& \left(w-\chi^{V Q}\right)(S)=w(S)-|V Q \cap S| \leq\left(w+\chi^{f}\right)(S)-|V Q \cap S| \\
& \leq \sum_{j=1}^{t}\left|e_{j} \cap S\right|+\sum_{j=1}^{k}\left|V C_{j} \cap S\right|-|V Q \cap S|=\sum_{j=1}^{t}\left|e_{j} \cap S\right|+\sum_{j=2}^{k}\left|V C_{j} \cap S\right|+|W \cap S| \\
& \leq t+\sum_{j=2}^{k}\left\lfloor\frac{1}{2}\left|V C_{j}\right|\right\rfloor+|W \cap S|=\tilde{\rho}_{w+\chi^{f}}-\left\lfloor\frac{1}{2}\left|V C_{1}\right|\right\rfloor+|W \cap S| \\
& \leq \tilde{\rho}_{w+\chi^{f}}-\left\lfloor\frac{1}{2}\left|V C_{1}\right|\right\rfloor+\frac{1}{2}|W|=\alpha_{w}+1-\left\lfloor\frac{1}{2}|V Q|\right\rfloor . \\
& (3.22)
\end{aligned}
$$

Hence (3.20) holds if and only if equality holds throughout in (3.22), which is equivalent to (3.21).

End of Proof of Claim 2.
By (3.17), we can order the vertices in X as $v_{0}=u, v_{1}, \ldots, v_{s}=u^{\prime}$ such that both P_{1} and P_{2} traverse them in this order. For $j=0, \ldots, s$, let \mathcal{P}_{j} be the collection of directed $u-x$ paths, where $x=v_{j}$ if $v_{j} \in A$ and x is an in-neighbor of v_{j} if $v_{j} \in B$. So $x \in A$.

Let j be the largest index for which there exists a path $Q \in \mathcal{P}_{j}$ with

$$
\begin{equation*}
\alpha_{w-\chi^{v Q}} \leq \alpha_{w}-\left\lfloor\frac{1}{2}|V Q|\right\rfloor \tag{3.23}
\end{equation*}
$$

Such a j exists, since (3.23) holds for the trivial directed $u-u$ path, as $\alpha_{w-\chi^{u}} \leq \alpha_{w}$. Also, $j<s$, since otherwise $V Q=V C$ for some odd circuit C, and hence with (3.2) we have

$$
\begin{equation*}
\tilde{\rho}_{w} \leq \tilde{\rho}_{w-\chi^{v c}}+\left\lfloor\frac{1}{2}|V C|\right\rfloor=\alpha_{w-\chi^{v c}}+\left\lfloor\frac{1}{2}|V C|\right\rfloor \leq \alpha_{w} \tag{3.24}
\end{equation*}
$$

contradicting (3.1).
Let Q_{1} and Q_{2} be the two paths in \mathcal{P}_{j+1} that extend Q. By the maximality of j, we know

$$
\begin{equation*}
\alpha_{w-\chi^{v Q_{i}}} \geq \alpha_{w}-\left\lfloor\frac{1}{2}\left|V Q_{i}\right|\right\rfloor+1 \tag{3.25}
\end{equation*}
$$

Hence there exist stable sets S_{1} and S_{2} with

$$
\begin{equation*}
\left(w-\chi^{V Q_{i}}\right)\left(S_{i}\right) \geq \alpha_{w}-\left\lfloor\frac{1}{2}\left|V Q_{i}\right|\right\rfloor+1 \tag{3.26}
\end{equation*}
$$

for $i=1,2$. So, for $i=1,2,(3.21)$ holds for Q_{i}, S_{i}. By (3.21)(iv), S_{1} and S_{2} coincide on $V P_{1} \cup V P_{2}$ except on $V Q_{1} \cup V Q_{2}$. In other words,

$$
\begin{equation*}
\left(S_{1} \triangle S_{2}\right) \cap\left(V P_{1} \cup V P_{2}\right) \subseteq V Q_{1} \cup V Q_{2} \tag{3.27}
\end{equation*}
$$

By (3.21)(v), S_{1} and S_{2}, moreover, coincide on X.
Let H be the subgraph of G induced by $S_{1} \triangle S_{2}$. So H is a bipartite graph, with color classes $S_{1} \backslash S_{2}$ and $S_{2} \backslash S_{1}$. Define

$$
\begin{equation*}
Y_{i}:=V Q_{i} \backslash V Q \tag{3.28}
\end{equation*}
$$

for $i=1,2$. Then

$$
\begin{equation*}
H \text { contains a path connecting } Y_{1} \text { and } Y_{2} . \tag{3.29}
\end{equation*}
$$

For suppose not. Let K be the union of the components of H that intersect Y_{1}. So K is disjoint from Y_{2}. Define $S:=S_{1} \triangle K$. Then $S \cap Y_{1}=S_{2} \cap Y_{1}$ and $S \cap Y_{2}=S_{1} \cap Y_{2}$. This implies that Q, S satisfy (3.21). Hence (3.20) holds, contradicting (3.23). This proves (3.29).

Let C be the (even) circuit formed by the two directed $v_{j}-v_{j+1}$ paths. So Y_{1} and Y_{2} are subsets of $V C$. Let R be a shortest path in H that connects Y_{1} and Y_{2}; say it connects $y_{1} \in Y_{1}$ and $y_{2} \in Y_{2}$.

Since $y_{1}, y_{2} \in S_{1} \triangle S_{2}$, we know by (3.21)(v) that $y_{1}, y_{2} \notin X$. By (3.21)(iv), if $y_{1} \in S_{1} \backslash S_{2}$, then $y_{1} \in A$ and if $y_{1} \in S_{2} \backslash S_{1}$, then $y_{1} \in B$. Similarly, if $y_{2} \in S_{2} \backslash S_{1}$, then $y_{2} \in A$ and if $y_{2} \in S_{1} \backslash S_{2}$, then $y_{2} \in B$.

So if R is even, then y_{1} and y_{2} belong to different sets A, B, and if R is odd, then y_{1} and y_{2} belong to the same set among A, B. Hence R forms with part of C an odd circuit.

By (3.27) and as ($\left.S_{1} \triangle S_{2}\right) \cap X=\emptyset$, there exist a directed $u-v_{j}$ path N^{\prime} and a directed $v_{j+1}-u^{\prime}$ path $N^{\prime \prime}$ that are (vertex-)disjoint from $S_{1} \triangle S_{2} . N^{\prime}, N^{\prime \prime}$, and f make a $v_{j+1}-v_{j}$ path N. Then N, R, and C make an odd K_{4}, with 3 -valent vertices $v_{j}, v_{j+1}, y_{1}, y_{2}$.

By assumption, it is not a bad K_{4}; that is, it satisfies (1.4). Suppose first that R has even length. Then by (1.4) N also has even length. Hence v_{j} and v_{j+1} belong to different sets A, B. Then by (1.4) and the symmetry of y_{1} and y_{2}, we may assume that y_{1} is adjacent to v_{j} and that y_{2} is adjacent to v_{j+1}. Hence, as $y_{1}, y_{2} \in S_{1} \cup S_{2}, v_{j}$ and v_{j+1} do not belong to $S_{1} \cap S_{2}$, and so $v_{j}, v_{j+1} \notin B$ (by (3.21)(v)), a contradiction.

So R has length 1 . Hence N has length 1 as well, and $v_{j}, v_{j+1}, y_{1}, y_{2}$ lie in the same color class of the bipartition A, B of C. So we know that

$$
\begin{equation*}
v_{j}=u, v_{j+1}=u^{\prime}, y_{1}, y_{2} \in A, \text { and } R \text { has length } 1 . \tag{3.30}
\end{equation*}
$$

Let D be the set of edges of G connecting two vertices in A. So $f \in D$ and $y_{1} y_{2} \in D$. Hence $|D| \geq 2$. We consider the edges in D as chords of the circuit C with $E C=$ $E P_{1} \cup E P_{2}$.

Now any edge d in D can play the same role as f, since, if C_{1}^{\prime} and C_{2}^{\prime} denote the two odd circuits in $E C \cup\{d\}$, then

$$
\begin{equation*}
C_{1}^{\prime}, C_{2}^{\prime}, C_{3}, \ldots, C_{k}, e_{1}, \ldots, e_{t} \text { form a } w+\chi^{d} \text {-cover of cost } \tilde{\rho}_{w+\chi^{d}}=\tilde{\rho}_{w+\chi^{f}} . \tag{3.31}
\end{equation*}
$$

Indeed, as $\chi^{C_{1}^{\prime}}+\chi^{C_{2}^{\prime}}=\chi^{d}+\chi^{C_{1}}+\chi^{C_{2}}-\chi^{f}$, the collection $C_{1}^{\prime}, C_{2}^{\prime}, C_{3}, \ldots, C_{k}, e_{1}, \ldots, e_{t}$ is a $w+\chi^{d}$-cover of cost $\tilde{\rho}_{w+\chi^{f}}$ with $\left|V C_{1}^{\prime}\right|+\left|V C_{2}^{\prime}\right|+\left|V C_{3}\right|+\cdots+\left|V C_{k}\right|$ at most (3.9). Hence (3.31) follows from the choice of f.

So each $d \in D$ has all the properties derived for f so far, and it would lead to the same circuit C and to the same bipartition A, B of C.

This is used to prove that

$$
\begin{equation*}
\text { any edge in } D \text { crosses any chord of } C \text {. } \tag{3.32}
\end{equation*}
$$

Indeed, we need only to prove this for f. However, by the minimality of (3.9) all circuits among C_{1}, \ldots, C_{k} are chordless, so each chord of C crosses f.

Let $n:=|D|$, and let $s_{1}, s_{2}, \ldots, s_{2 n}$ be the ends of the edges in D, in cyclic order. Let $f_{1}, \ldots, f_{2 n}$ be the edges in D incident with $s_{1}, \ldots, s_{2 n}$, respectively. So $f_{n+j}=f_{j}$ for all $j($ taking indices $\bmod 2 n)$. For $j=1, \ldots, 2 n$, let R_{j} be the $s_{j-1}-s_{j}$ path along C that does not contain any other of the vertices s_{i}.

By Lemma 2.1, we can assume that $2, \ldots, n \notin J$, where J is as defined in (2.2). Let Q_{1} be the path of the form $Q=R_{j+1} R_{j+2} \cdots R_{n}$ with $0 \leq j \leq n$ such that

$$
\begin{equation*}
\alpha_{w-\chi^{V Q}} \geq \alpha_{w}-\left\lfloor\frac{1}{2}|V Q|\right\rfloor+1 \tag{3.33}
\end{equation*}
$$

and such that j is maximal. This path exists, since for $j=0$ we have (3.33), as otherwise (3.24) would again yield a contradiction.

Trivially, $j<n$, since the empty path does not satisfy (3.33). Let $Q_{2}:=$ $R_{j+2} R_{j+3} \cdots R_{j+1+n}$. Since Q_{2} also satisfies (3.33) (as, again, (3.24) would yield a contradiction otherwise), there exist stable sets S_{1} and S_{2} with

$$
\begin{equation*}
\left(w-\chi^{V Q_{i}}\right)\left(S_{i}\right) \geq \alpha_{w}-\left\lfloor\frac{1}{2}\left|V Q_{i}\right|\right\rfloor+1 \tag{3.34}
\end{equation*}
$$

for $i=1,2$. So, for $i=1,2,(3.21)$ holds for Q_{i}, S_{i} where we can take for f any edge not incident with an internal vertex of Q_{i}. By (3.21)(iv),

$$
\begin{equation*}
\left(S_{1} \triangle S_{2}\right) \cap V C \subseteq V Q_{1} \cup V Q_{2} \tag{3.35}
\end{equation*}
$$

We (re)define H as the subgraph of G induced by $S_{1} \triangle S_{2}$. Define

$$
\begin{equation*}
Y_{1}:=V R_{j+1} \text { and } Y_{2}:=V R_{n+1} \cup V R_{n+2} \cup \cdots \cup V R_{n+j+1} . \tag{3.36}
\end{equation*}
$$

Then

For suppose not. Let K be the union of the components of H that intersect Y_{1}. So K is disjoint from Y_{2}. Define $S:=S_{1} \triangle K$. Then $S \cap Y_{1}=S_{2} \cap Y_{1}$ and $S \cap Y_{2}=S_{1} \cap Y_{2}$. This implies that $Q:=R_{j+2} R_{j+3} \cdots R_{n}$ and S satisfy (3.21), taking $f:=f_{n}$. Hence (3.20) holds for Q, contradicting the maximality of j. This proves (3.37).

Let R be a shortest path in H that connects Y_{1} and Y_{2}; say it connects $y_{1} \in Y_{1}$ and $y_{2} \in Y_{2}$. By (3.35), any internal vertex of R that is on C is an internal vertex of $R_{j+2} R_{j+3} \cdots R_{n}$. If $y_{1} \in S_{1} \backslash S_{2}$, as y_{1} is not an internal vertex of Q_{2}, we know $y_{1} \in A$. Similarly, if $y_{1} \in S_{2} \backslash S_{1}$, then $y_{1} \in B$. Similarly, if $y_{2} \in S_{2} \backslash S_{1}$, then $y_{2} \in A$, and if $y_{2} \in S_{1} \backslash S_{2}$, then $y_{2} \in B$. So R together with the $y_{1}-y_{2}$ part of $R_{j+1} R_{j+2} \cdots R_{n+j+1}$ forms an odd cycle. Hence it contains an odd circuit, and so R contains an odd bow. By (2.1), this bow connects two vertices in some R_{j+2}, \ldots, R_{n}. This contradicts the fact that $j+2, \ldots, n \notin J$.

Figure 1.1 gives a strongly t-perfect graph that contains a bad K_{4}. So the implication in Theorem 3.1 cannot be reversed. However one has the following corollary.

Corollary 3.2. For any graph G, the following are equivalent:
(i) G contains no bad K_{4};
(ii) each subgraph of G is t-perfect;
(iii) each subgraph of G is strongly t-perfect.

Proof. The implication (i) \Rightarrow (iii) follows from Theorem 3.1, while the implication (iii) \Rightarrow (ii) follows by the observations made in section 1 .

The implication (ii) \Rightarrow (i) was proved by Barahona and Mahjoub [1]. It suffices to show that a bad K_{4} is not t-perfect. Choose a smallest counterexample G. As G is t-perfect, $G \neq K_{4}$. If (1.4) does not hold, then G has a vertex v such that contracting the edges in $\delta(v)$ gives an odd K_{4}-subdivision G^{\prime} that again does not satisfy (1.4). As G^{\prime} again is a t-perfect odd K_{4} (as one easily checks), this contradicts the minimality of G.

Acknowledgment. I am very grateful to a referee for very carefully reading the manuscript and for giving several excellent suggestions for improving the presentation.

REFERENCES

[1] F. Barahona and A.R. Mahjoub, Compositions of graphs and polyhedra III: Graphs with no W_{4} minor, SIAM J. Discrete Math., 7 (1994), pp. 372-389.
[2] M. Boulala, J.-P. Uhry, Polytope des indépendants d'un graphe série-parallèle, Discrete Math., 27 (1979), pp. 225-243.
[3] P.A. Catlin, Hajós' graph-coloring conjecture: Variations and counterexamples, J. Combin. Theory Ser. B, 26 (1979), pp. 268-274.
[4] J. Fonlupt and J.P. Uhry, Transformations which preserve perfectness and h-perfectness of graphs, in Bonn Workshop on Combinatorial Optimization, Bonn, Germany, 1980, Ann. Discrete Math. 16, A. Bachem, M. Grötschel, and B. Korte, eds., North-Holland, Amsterdam, 1982, pp. 83-95.
[5] J.F. Geelen and B. Guenin, Packing odd-circuits in Eulerian graphs, J. Combin. Theory Ser. B, to appear.
[6] A.M.H. Gerards, A min-max relation for stable sets in graphs with no odd- K_{4}, J. Combin. Theory Ser. B, 47 (1989), pp. 330-348.
[7] A.M.H. Gerards and A. Schrijver, Matrices with the Edmonds-Johnson property, Combinatorica, 6 (1986), pp. 365-379.
[8] A.M.H. Gerards and F.B. Shepherd, The graphs with all subgraphs t-perfect, SIAM J. Discrete Math., 11 (1998), pp. 524-545.
[9] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljschr. Naturforsch. Ges. Zürich, 88 (1943), pp. 133-142.
[10] N. Sbihi and J.P. Uhry, A class of h-perfect graphs, Discrete Math., 51 (1984), pp. 191-205.
[11] E.C. Sewell and L.E. Trotter, Jr., Stability critical graphs and even subdivisions of K_{4}, J. Combin. Theory Ser. B, 59 (1993), pp. 74-84.
[12] P.D. Seymour, The matroids with the max-flow min-cut property, J. Combin. Theory Ser. B, 23 (1977), pp. 189-222.
[13] C. Thomassen, Totally odd K_{4}-subdivisions in 4-chromatic graphs, Combinatorica, 21 (2001), pp. 417-443.
[14] B. Toft, Problem 10, in Recent Advances in Graph Theory (Proceedings Symposium Prague, 1974; M. Fiedler, ed.), Academia, Prague, 1975, pp. 543-544.
[15] W. Zang, Proof of Toft's conjecture: Every graph containing no fully odd K_{4} is 3-colorable, J. Combin. Optim., 2 (1998), pp. 117-188.

[^0]: *Received by the editors July 24, 2001; accepted for publication (in revised form) September 21, 2001; published electronically June 5, 2002.
 http://www.siam.org/journals/sidma/15-3/40110.html
 ${ }^{\dagger}$ CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, and Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands (lex@cwi.nl).

