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Abstract-An apparently new expansion of the exponential integral E 1 in incomplete gamma 
functions is pre.nted and shown to be a limiting case of a more general expansion given by 1iicomi 
in 1950 without proof. This latter expansion is proved here by interpreting it aa a "multiplication 
theorem". A companion result, not mentioned by 1iicomi, holds for the complementary incomplete 
gamma function and can be applied to yield an expansion connecting E1 of different arguments. A 
general method is deacribed for converting a power series Into an expansion in incomplete gamma 
functions. In a special cue, this provides an alternative derivation of 'Ilioomi's expansion. Numerical. 
properties of the new expansion for E1 are dlscussed. © 2003 Elsevier Ltd. All rights reserved. 

The exponential integral 

1. INTRODUCTION 

100 e-t 
E1(z) = -dt 

z t 
(1.1) 

occurs widely in applications, moat notably in quantum-mechanical electronic structure calcula
tions. In view of the extremely large number of evaluations that ace often required, there is a 
continuing interest in improving the efficiency of its calculation. In a search for better methods 
of evaluating Ei. one of us (F.E.H.) discovered the expansion 

~ -y(n,z) 
E1(z) =-'Y-lnz+ ~ nl' 

n=l 

(1.2) 
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where 
-y(a,z) = 1z e-tta-l dt 

is the inc0mplete gamma function (cf. [1, Section 6.5]). Another of us (W.G,) observed the 
relevance of an expansion given in 1950 by. Tricomi, of which (1.2) is a limiting case. 

2. AN EXPANSION OF TRICOMI 

In 1950, Tricomi [2, equation (45)] stated without proof the expansion 

(2.1) 

For any fixed complex a 'I: 0, -1, -2, ... , the left-hand side is analytic in the domain ,\z E C\llL, 
where llL is the negative real axis; it is an entire function if a is a positive integer. For fixed a 

and z, the series in (2.1) converges for arbitrary complex,\. 
An interesting proof derives from the observation that (2.1) is a ''multiplication theorem" 

(see [3, Volume 1, Section 6.14]). Such theorems can usually be obtained when all derivatives 
of the function to be expanded can be expressed in terms of the same family of functions [3, 
Volume 1, Section 6.14]. In the present instance, we have the relation 

d" 
-y(a+n,z) = (-l)"za+n dz" (z-a-y(a,z)), (2.2) 

which follows readily from the integral representation 

z-a-y(a, z) = 11 e-ztta-1 dt. 

When using (2.2) in the right-hand side of (2.1), one obtains 

h = (,\ - l)z. (2.3) 

The series can be seen to be the Taylor expansion of (z + h)-0 ')'(a, z + h). Since z + h = ,\z, 
expression (2.3) becomes 

A.0 za(z + h)-0 ')'(a, z + h) = -y(a, ,\z). 

This completes the proof of (2.1). 
Multiplication theorems (and related addition theorems) are available for many other special 

functions, such as Bessel functions [4, Chapter 11; 1, p. 363; 5, Section 4.10; 6, Chapter 5, Sec
tion 5, Chapter 8, Section 6] and orthogonal polynomials [5, Section 9.8; 7, Section 4.10{7)]. 
Equation (2.1) is a special case of a multiplication theorem for confluent hypergeometric func
tions [3, Section 6.14]. 

3. DERIVATION OF {1.2) FROM TRICOMI'S EXPANSION 

Separating out the first term on the right of (2.1) and bringing it to the left, we write Tricomi's 
result in the form · 

'i'(a,Az)-A.0 -y(a,z) =~ -y(a+n,z)(l-.X)". 
).a L....i n! ,..,,,,1 

From the power series of -y(a, .Xz) (cf. [1, equation 6.5.29]) one gets 

')'(a,Az)->.a-y(a,z) Z4 
[ a , a (' )2 ] ( ) 

~..;.._-'--,\-a-'"-'-"'--'- = -; 1 - -a -+-l AZ + -2a-+-4 AZ + · . · - 'Y a, z , 

(3.1) 
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which, as .Al 0, has the limit z0 /a -'Y(a,z). Thus, by (3.1), 

z4 
_ -y(a, z) = f: -y(a +1n, z). 

a n. 
n=l 

(3.2) 

If 'Y(a, z) on the left is replaced by r(a} - r(a, z) and I'(a) written as I'(a + 1)/a, equation (3.2) 
takes the form 

Z4 -r(a+1) r( ) - ~ 'Y(a+n,z) + a,z - L...J 1 • 
a n=l n. 

Now take the limit a .J.. 0. Applying Bemoulli-l'Hospital's rule to the first term on the left and 
noting that r'(l) = -'Y and r{O,z) = E 1(z), one gets 

lnz + -y + E1(z) = f: 'Y(n; z), 
1 n. 

n= 

which proves {1.2). 

4. A COMPANION TO TRICOMI'$ EXPANSION WITH AN 
APPLICATION TO THE EXPONENTIAL INTEGRAL 

There is a. companion result to (2.1), not mentioned by Tricomi, for the complementary incom
plete gamma function, 

1.x - 11 < i. (4.1) 

This follows from {2.1) by inserting the definition 'Y(a, z) = I'(a) - f(a, z) in both sides of the 
expansion and noting tha.t, by Taylor's series for .x-c a.t .A = 1, one has 

1.x-11<1. 

Equation (4.1) holds also for a= 0, by analytic continuation, and yields 

Ei(.Az) = Ei(z) + f: r(:jz) (1- .A)'\ 
n=-1 

Here, the coefficients a.re elementary functions 

r(n,z) 1 -· ( ) 
--1 - = - e en-1 z , n. n 

1.x - 11 < i. 

n;::: 1, 

(4.2) 

(4.3) 

where em(z) = 1 + z + z2 /2! + · · · + zm /m! a.re the partial sums of the exponential series. These 
can be generated by recursion in a. stable fashion, a.t least when z is real (cf. (8]). If .A= 1/2, for 
example, then 

For positive z, the sum converges more rapidly tha.n that of (2"n)-1 . 
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5. OTHER EXPANSIONS IN 
INCOMPLETE GAMMA FUNCTIONS 

We return to (3.2) and write it as 

za+k - ~ 'Y(a+n,z) 
a+k-L..J (n-k)!' 

n=k 

(5.1) 

We next form the following series, with arbitrary dk (subject to convergence), and insert (5.1) in 
it, 

(5.2} 

where 

Cn = t (~)dk. 
k=O 

(5.3) 

Any power series that can be cast in the form given in the left-hand side of (5.2) can therefore 
be written as a series in incomplete gamma functions. 

We illustrate the procedure by applying (5.2) to 'Y(a, >.z), which has the power series expansion 

In this example, dk = (-l)k ).4 +k, and from (5.3) we obtain en = >.0 (1 - >.)n, thereby recover
ing (2.1). 

6. NUMERICAL PROPERTIES OF (1.2) 

Tricomi [2, p. 148] expressed the thought that some of the series expansions he listed without 
proof, including (2.1), might prove useful also for computational purposes. We discuss here the 
computational merits of the series (1.2), which, as ha.s been shown, is a limiting case of (2.1). 

Compared with the power series in 

(6.1) 

the series in (1.2) has some definite drawbacks. In (6.1), the terms of the series can be generated 
recursively in forward direction, n = 1, 2, 3, ... , until they no longer contribute to the sum within 
the desired accuracy. This is not possible with (1.2). Although it is true that the terms in (1.2) 
also satisfy a. forward recursion, 

"Y(n + 1, z) = n")'(n, z) - zne-", 

"Y(l, z) = 1 - e-.z, 

n = 1, 2, 3, ... , · 
(6.2) 

the recursion becomes severely unstable as n exceeds lzl. (This can be shown by an analysis similar 
to the one in [9, Section 2.4].) To preserve numerical stability when n > lzl, one must generate 
"Y(v, z), "Y(v-1, z), ... , "Y(n, z) backwards with 11 chosen sufficiently large, whereby "Y(v+ 1, z) may 
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be replaced by zero. The choice ofy depends on the number of terms in {1.2) required for given 
accuracy, which has to be estimated a priori. Thus, summing the series to a prescribed accuracy' 
is considerably more involved for the series in {1.2) tha.n it is for the one in {6.1). 

Another important consideration is internal cancellation of terms in a series. In this regard, 
the series in (1.2) and {6.1) complement each other. There is no significant cancellation of terms 
in either series if JzJ is relatively small, say JzJ ~ 5. For larger values of jzJ, the severity of 
cancellation increases with increasing argz for the series in {1.2) and decreases with increasing 
argz for the series in {6.1). Near the positive real axis (argz ::::i 0) the series (1.2) is practically 
free of cancellation but subject to severe cancellation near the negative real axis (arg z ~ 11"), 
more so the larger JzJ. For the series (6.1), it is just the other way around. 

With regard to speed of convergence, the two series are comparable, since for bounded z, as 
n-+ oo, one has -y(n, z)/n! "'z"e-z /(nn!) (cf. (10, Section 4.3, equation (3)]). 

Another source of impaired accuracy is the cancellation that may occur when the series in (1.2), 
respectively, (6.1) is added to --y- lnz. This can be quite pronounced if JzJ is large and z near 
the positive real axis. The severity of the problem diminishes as arg z increases and becomes 
negligible near the negative real axis. 
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