
Europ. J. Combinatorics (2000) 21, 487-502 
doi:l0.1006/eujc.1999.0355 
Available ooline at http://www.idealibrary.com on llE~L® 

Adjacency, Inseparability, and Base Orderability in Matroids 

J. KEIJSPER, R. PENDAVINGH AND A. SCHRIJVER 

Two elements in an oriented matroid are inseparable if they have either the same sign in every 
signed circuit containing them both or opposite signs in every signed circuit containing them both. 
Two elements of a matroid are adjacent if there is no M(K4)-minor using them both, and in which 
they correspond to a matching of K4. 

We prove that two elements e, { of an oriented matroid are inseparable if and only if e, f are 
inseparable in every M(K4) or V4 -minor containing them. This provides a link between insepara
bility in oriented matroids (introduced by Bland and Las Vergnas) and adjacency in binary matroids 
(introduced by Seymour). 

We define the concepts of base orderable and strongly base orderable subsets of a matroid, general
izing the definitions of base orderable and strongly base orderable matroids. Strongly base orderable 
subsets can be used to obtain packing and covering results, generalizing results of Davies and McDi
armid, as was shown in a previous paper. 

In this paper, we prove that any pairwise inseparable subset of an oriented matroid is base order
able. For binary matroids we derive the following characterization: a subset is strongly base orderable 
if and only if it is pairwise adjacent. 
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1. INTRODUCTION 

In this paper, we discuss two notions of 'closeness' of elements in a matroid, show how 
they are related, and give further relations to (strong) base orderability in matroids. 

The first notion is inseparability in oriented matroids, introduced by Bland and Las 
Vergnas [2]. Two elements of an oriented matroid are inseparable if they have either the 
same sign in every signed circuit containing them both or opposite sign in every signed circuit 
containing them both. 

The other notion is adjacency in matroids. This concept was introduced by Seymour [14], 
to generalize the adjacency relation in a graph (edges of a graph are adjacent if they have a 
common vertex). Two elements of a matroid are adjacent if the matroid has no M (K4)-minor 
using these elements as 'opposite' edges of K4 . 

In Section 3, we prove that two elements of an oriented matroid are inseparable if and only 
if they are adjacent in the underlying matroid, and they are inseparable in every (oriented) 
Uf-minor that contains them. Hence, for regular (binary orientable) matroids, the notions of 
inseparability and adjacency are equivalent. 

In the later sections of the paper, we use this result to study two properties that a subset F 
of the ground set of a matroid can have. (We abbreviate B U {x} by B + x and B \ {x} by 
B-x.) 

(1) Fis base orderable if for every pair of bases B, B', there is an injection rr:B n F-+ B', 
such that B - x + re (x) and B' - rr (x) + x are bases, for every x E B n F. Such an 
injection Jr is called a ho-injection. 

(2) F is strongly base orderable if for every pair of bases B, B', there is an injection 
JC: B n F-+ B', such that (B \ X) U rr(X) and (B' \ rr(X)) U X are bases for all X ~ 
B n F with lrr(X) \FI :5 1. Such an injection x is called an sbo-injection. 

These definitions extend the definitions of base orderable and strongly base orderable matroids 
(cf. [16]): a matroid M is (strongly) base orderable if E(M) is (strongly) base orderable. A 
strongly base orderable subset is trivially base orderable as well. 
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It is not difficult to see that any strongly base orderable subset is pairwise adjacent (a subset 
F of the ground set of a matroid is pairwise adjacent if every pair of elements from F is 
adjacent). The main result of Section 7 is that for binary matroids the converse also holds. 
This generalizes the fact that a binary matroid is strongly base orderable if and only if it 
does not have an M(K4)-minor. It also extends the result from [7] that a set of edges with a 
common vertex in a graph is strongly base orderable in the cycle matroid of the graph. 

To prove that any pairwise adjacent subset in a binary matroid is strongly base orderable, 
we first show that we can essentially restrict ourselves to regular matroids (Section 6), and 
then we use the fact that regular matroids are orientable. This seems to be a detour, but for 
an oriented matroid it appears to be surprisingly easy to prove that any pairwise inseparable 
subset is base orderable (Section 5). From this proof we obtain a ho-injection re, which in the 
binary case can be proved to be an sbo-injection. 

Familiarity with matroid theory is assumed (for background information, see [ 11] or [ 16)). 
The necessary preliminaries on oriented matroids are summarized in Section 2. 

2. PRELIMINARIES 

In this section, we give a short summary of oriented matroid theory, which is sufficient for 
our purposes. For more information, the reader is referred to [l]. 

Let Ebe a finite set. A signed subset of E is a pair X = (X+, x-), where x+ (the set of 
positive elements of X) and x- (the set of negative elements of X) are disjoint subsets of E. 
The set X := x+ U x- is called the set underlying the signed set X. The notation -X is used 
for the signed set (X-, x+) 'opposite' to X. Signed sets are identified with signed incidence 
vectors. That is, we will think of a signed subset of E as an element of{+,-, O}E. In this 
notation, we have for any signed set X, and e EE that Xe =+if e E x+, Xe = - if e E x
and Xe =Oife ~X. 

An oriented matroid M is a pair (£, C), where E is a finite set called the ground set of M, 
and C, the set of signed circuits of M, is a collection of signed subsets of E satisfying the 
following (signed circuit) axioms. 

(CO) 0 ~C. 

(Cl) X EC ::} -X EC (symmetry). 
(C2) X, YE C, K £ X. ::} X = Y or X = -Y (incomparability). 
(C3) X, y EC, x i- -Y, e Ex+ n y- ::} 3Z E c: 

z+ s; (X+ Ur+)\ {e} and z- s; (X- U r-) \ {e} (weak elimination). 

Note that the collection k = {K I X E C} satisfies the the circuit axioms for a matroid. 
The matroid M = (E, g is called the underlying matroid of M. A matroid Mis orientable if 
there is an oriented matroid with underlying matroid M. A binary matroid is orientable if and 
only if it is regular [2]. 

Reorientation of an element in an oriented matroid means flipping its sign in every signed 
circuit containing it. If an oriented matroid can be obtained from another by reorientation of 
some set of elements, the two oriented matroids are said to be in the same reorientation class 
of the matroid underlying both. 

Any oriented matroid M with set of signed circuits C has a unique signature C* of the 
cocircuits of M (that is, a signing of all the cocircuits of MJ such that 

(.l) for all C E C and D E C*: C .l D. 
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Here, C ..L D means 

The set C* then satisfies the signed circuit axioms, and hence if E is the ground set of M, 
then M* := (E, C*) is an oriented matroid, the dual of M (so by definition, the matroid 
underlying M* is the dual of MJ. The signed circuits of M* are the signed cocircuits of M. 
We have M** = M. The fundamental property (..L) of a pair of dual-oriented matroids is 
called orthogonality. If Mis a binary oriented matroid (regular matroid), then it satisfies an 
even stronger orthogonality property: for any circuit C and cocircuit D of M, 

C n Di= 0 =} l{e E E(M) : CeDe =-}I= l{e E E(M): CeDe =+}i. 

Minors of oriented matroids are defined similarly to minors of ordinary matroids. If M = 
(E, C) is an oriented matroid, and X s;; E, then M\X is the oriented matroid on E \ X with 
set of signed circuits { C E C I C £;; E \ X}; the contraction M / X on the same ground 
set is defined by the collection of signed circuits consisting of the signed sets with mimimal 
nonempty support among 

{D I D £; E \ X and 3C E C : Ce = De Ve E E \ X}. 

The bases of an oriented matroid are the bases of the underlying matroid. If M is an oriented 
matroid on E, B is a basis of M, and e E E \ B, then the fundamental circuit of e with respect 
to B is the unique signed circuit C of M with s;;_ contained in B + e such that Ce = +.It is 
denoted by C(B, e).Similarly, if f E B, then C*(B, f), the fundamental cocircuit off with 
respect to B is the unique signed cocircuit D of M with D ~ (E \ B) + f and D f = +.Now, 
for e E E \ B and f E B we have 

f E C(B, e) # e E C*(B, f) <=? C(B, e)1C*(B, f)e = -
(for the last equivalence, use (..l) and the fact that C(B, e) n C*(B, f) = {e, f}). 

Hereafter, given an oriented matroid M, E(M) will denote the ground set of M, and C(M), 
C*(M), 13(M) will denote the collections of signed circuits, signed cocircuits, and bases of 
M, respectively. The same notation will be used for the ground set, circuits, cocircuits and 
bases of an ordinary (unoriented) matroid. 

3. SEPARABILITY IN ORIENTED MATROIDS 

Given an oriented matroid M, two elements e, f E E(M) are said to be separated by a 
pair of circuits C, C' E C(M) if e, f E C n C' and CeC I = -c;c[. If circuits separating 
e, f exist, e and fare separable. Otherwise, they are inseparable. The inseparable pair e, f is 
covariant if Ce = C I for all circuits containing both e and f, and contravariant if Ce = -C I 
for all circuits containing both e and f. 

For any circuit C with e, f Es;;_ we can find a cocircuit D with C n D = {e, f}, and since 
C ..l D, we must have CeC f = -DeD f for such a cocircuit. Hence, from a pair of circuits 
C, C' separating e, f we can construct a pair of cocircuits D, D' with -De DJ = CeCJ = 
-C~C/ = D~D/. This shows that e, fare separable in M if and only if they are separable in 
M*, and that e, f are covariant in M if and only if they are contra variant in M*. 

Clearly, reorienting any element of M does not affect separability (note that it does affect 
covariance and contravariance). If an orientable matroid has only one reorientation class, then 
separability of elements is a property of the underlying unoriented matroid. Regular matroids 
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FIGURE 1. Orientations of uf and M(K4) in which e, fare separable. 

have exactly one reorientation class [2]. Since graphic matroids are regular, separability is a 
property of the graph from which the graphic matroid is constructed. For example, two edges 
of K4 are separable exactly when they have no vertex in common. 

For matroids having more than one reorientation class, such as Uf, the situation is different. 
The unoriented matroid Uf does not distinguish between any pair of elements from its ground 
set E. A reorientation class of Uf determines, and is determined by, an embedding of E in 
the projective line. In an orientation of Uf, a pair of elements is separable exactly when they 
are not consecutive on the projective line. 

Figure 1 shows affine pictures of M(K4) and uf, with a separable pair indicated in both 
matroids. A signed circuit in the affine picture of an oriented matroid is a minimal signed set 
of points such that the convex hull of the positive elements intersects the convex hull of the 
negative elements. 

Let Mand M' be oriented matroids, and let F s; E(M), F' s; E(M'). We say that (M', F') 
is a minor of (M, F) if M' is a minor of M, and F' s; F. By the definitions of separability 
and minor, if e and fare separable in M' and (M', {e, f}) is a minor of (M, {e, f}), then e 
and f are separable in M. 

We now characterize separability. 

THEOREM 1. Let M be an oriented matroid. The following are equivalent for e, f E 

E(M): 

(i) e and fare separable in M. 
(ii) (M, {e, f}) has a minor (N, {e, f}) such that e and f are separable in N, and N is 

isomorphic to Uf or M(K4). 

PROOF. It suffices to show that (i) => (ii), since the reverse implication is clear from the 
remark above. So assume that (M, {e, f}) is minor-minimal with the property that e, f are 
separable in M. Let C, C' be circuits with Ce = C f and c; = -Cj. Then 

g_ n C' = {e, f}, g_ UC'= E(M), and Mis simple and cosimple, 

since elements common to C and C', other than e, f, can be contracted and elements not in C 
or C' can be deleted. In particular, this eliminates loops and coloops. From each parallel class, 
we need only one element, hence each parallel class has only one element (note that the pair 
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e, f is not parallel or coparallel). As separability is closed under duality, this also eliminates 
coparallel elements. It follows that: 

if C" is a circuit containing e and f, then C" = s;;_ or C" = C'. 

If c; = C'j then C", C' separates e, f, so C" = E (M) \ C' + e + f = s;;_. A similar argument 
shows that c; = -C'j implies C" = C'. 

There exists a cocircuit D with D n s;;_ = {e, f), hence De= -DJ and D s:; C'. Similarly 
we have a cocircuit D' with D~ = D/ and D' s:; {;_. If one of these inclusions were proper, 

the dual M* would have circuits separating e, f but with DUD' -:f. E(M), contradicting the 
minimality of M. Thus D = C' and D' =C. We claim that: 

S2 - a is a basis of M for all a E C. 

As C is a circuit, S2 - a is independent for all a E C. Since s;;_ - e properly contains the 
hyperplane E (M) \ D, it is a spanning set. Hence {2-e is a basis, and therefore the independent 
sets S2 - a of the same cardinality are all bases. 

Since by the same argument, C' - a is a basis for every a E C', we have 1!21 = IC'! = 
r(M) + 1 and hence E(M) = 21{21 - 2 = 2r(M). 

Define Ax := {;_({;_- f, x)-x and Bx := C(S2-e, x) -x for allx </.{;_.Thus Ax';{;_- f 
and Bx s:; S2 - e. We claim that: 

if Ax n Bx f. 0 for some x </.£,then Mis isomorphic to uJ. 
Indeed, choose y E Ax nBx. Then{;_ +x -y contains a circuit C" as it has more elements than 
the basis {2-e. As {2-e+x-y and£- f +x-y are bases, e, f EC". Since y E £\C", we 
have C" f.{;_. Thus C" = C', and hence C" = {e, f, x}. Then r(M) + 1 = IC!= IC"!= 3, 
and IECM) I = 4. Since M has no parallel elements, M = UJ. This proves the claim. 

So we may assume that Ax n Bx = 0 for all x rj C. Note that Ax U Bx = £, since 
(Ax + x) U (Bx + x) - x must contain a circuit, and this circuit is contained in{;_. Thus Ax 
and Bx partition{;_. 

We say that two elements x, y <f.£ cross if both Ax f Ay and Ay f Ax. We claim that 
there is a crossing pair x, y <f. s;;_. 

If not, we may choose x <f. s;;_ such that A.x s; Ay for ally rj. C. Then By s; Bx for all 
Y </.{;_,so Bx spans each y <f.£, and therefore it spans E \Ax. Since the circuit Ax+ x has 
at least three elements, there is an element a E Ax other than e. The fundamental cocircuit 
C* ( C - a, e) is disjoint from Bx and hence from the span of Bx, but it intersects s;;_ - a only in 
e, and hence it intersects Ax - a only in e. It follows that a, e are coparallel, a contradiction. 

Now, Mis isomorphic to M(K4). 

Letx, y <f. S2 be crossing and takex' E Ax \Ay andy' E Ay \Ax. Then{2-e+x-x'+y-y' 
spans x', since x' is contained in the circuit By+ y, which is contained in S2 - e + x + y - y', 

and similarly it spans y'. So£ - e + x - x' + y - y' spans the basis S2 - e, and because 
it has the cardinality of a basis, it is a basis. Similarly, C - f + x - x' + y - y' is a basis. 
Hence, s;;_ + x - x' + y - y' contains a circuit C" through e and f. Since x', y' E S2 \ C" we 
have C" -:f.{;_. It follows that C' = C" = {e, f, x, y}, so r(M) + 1 = IC! = !C'I = 4, and 
C = {e, f, x', y'}. Also, Ax+ x, Ay + y, Bx + x and By+ y are circuits. This ensures that 
Mis isomorphic to M(K4). 

One may see this as follows. We know that the triples exx', eyy', f xy' and fyx' are circuits 
(using shorthand notation for sets). We claim that the other 16 triples are all bases: four are 
proper subsets of the circuit ef xy, another four are proper subsets of the circuit ef x'y'. The 
remaining eight triples can be shown to be spanning. 

We have found the cycle matroid of a K4 with matchings ef, xy, and x'y'. D 
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The following result of [5] is an immediate corollary, since a matroid is series-parallel if 
and only if it has no M(K4 ) or U}-minor. 

COROLLARY 1. If M is an oriented matroid, then every pair of elements of M is insepara
ble if and only if M is series-parallel. 

For binary oriented matroids, Theorem 1 implies that two elements are inseparable if and 
only if they do not correspond to opposite edges of K4 in any M(K4)-minor containing them 
both. By a definition of Seymour [14], two distinct elements e, f of a matroid Mare adjacent 
exactly if they have this mentioned property, that is, e, f are adjacent if M has no M(K4)
minor containing e, fin which {e, f} corresponds to a matching of K4. We will call a set 
F s; E (M) pairwise adjacent in the matroid M if every two elements from F are adjacent in 
M. 

COROLLARY 2. If Mis a regular oriented matroid and e, f E E(M), then e and fare 
inseparable in M if and only if e and fare adjacent in M. 

Thus in a regular matroid M, the adjacent pairs are exactly the inseparable pairs in the unique 
orientation of M (unique up to reorienting elements). A straightforward consequence of this 
observation is the following characterization of adjacency in graphic matroids due to Sey
mour [14]. 

COROLLARY 3. Let e, f be disjoint edges of a graph G. Let the ends of e be s1, s2, and let 
the ends off be t1, t2. Then the following are equivalent: 

(a) e, fare not adjacent in M(G), 
(b) there are four paths Pi 1, P12, P2i, P22 of G, such that Pi i, P22 have no common ver

tices, P12, P21 have no common vertices, and P;j joins s; to t j ( i, j = 1, 2). 

4. PAIRWISE INSEPARABLE SETS 

For an oriented matroid M, the inseparability graph of M is the graph with vertex set 
E(M) in which e, f E E(M) are connected by an edge if and only if they are inseparable 
in M. Inseparability graphs were studied in [4, 5, 12]. In this section, we study cliques in the 
inseparability graph, in other words, we study pairwise inseparable sets in oriented matroids. 
This will help us understand pairwise adjacent sets in binary matroids, since, by a result of 
Seymour [13], in a 3-connected binary nonregular matroid, the only pairwise adjacent subsets 
are singletons, and since, by Theorem 1, in a regular matroid M, a subset F of E(M) is 
pairwise adjacent if and only if F is pairwise inseparable in some orientation of M. 

We investigate pairwise inseparable subsets of size 3. Oxley [ 1 OJ showed that the following 
holds for a triple e, f, gin a 3-connected matroid M with rank and corank at least 3. 

(1) If M is nonbinary, and the triple e, f, g is not used by a U}-minor of M, there is a 
W 3-minor of Musing the triple as its rim or as its spokes (W3 denotes the 3-whirl). 

(2) If Mis binary, then M has an M (K4)-minor using e, f, g. 

We apply this result to a pairwise inseparable triple e, f, g in an orientation of M. 

THEOREM 2. If F = {e, f, g) is a pairwise inseparable triple in a 3-connected oriented 
matroid M with rank and corank at least 3, then (M, F) has a minor (N, F) such that N is 
isomorphic to a 3-wheel or 3-whirl, using e, f, gas the rim or the spokes. 
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FIGURE 2. Two orientations of the whirl W 3. 
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PROOF. F is not used by a VJ-minor, as any triple in an orientation of UJ contains a 
separable pair. So if M is nonbinary, the theorem follows from Oxley's result (1). If M is 
binary, then by Oxley's result (2), F is contained in an M (K4)-minor. Moreover, a pairwise 
inseparable triple in M(K4), alias the 3-wheel, is a triangle or a vertex cut. D 

Figure 2 shows two affine diagrams of oriented matroids in distinct reorientation classes 
of the whirl W 3. The rim and the set of spokes of W3 are pairwise inseparable triples in the 
orientation w1, but not in the orientation w~ (on the contrary, they are pairwise separable 
triples in w~ ). 

The following fundamental property of pairwise inseparable triples will prove to be very 
useful. 

LEMMA 1. Let M be an oriented matroid, and let F be a pairwise inseparable triple in M. 
Then F is not contained in the intersection of a circuit and a cocircuit. 

PROOF. For an inseparable pair {e, f} ~ E(M), set Bef = +if e, f are covariant, and 
8ef = - if e, fare contravariant. For a pairwise inseparable triple F = {e, f, g}, we define 
OF := 8ef8eg8fg· Clearly, op is invariant under reorientation. If a circuit contains F, then 
OF =+,and if a cocircuit contains F, then lip = -. This shows that a pairwise inseparable 
triple is not both contained in a circuit and a cocircuit. D 

From results in [15] and [14], one can deduce that for 3-connected regular matroids, the con
verse also holds. 

COROLLARY 4. Let M be a 3-connected regular matroid, and let F ~ E(M) be a triple 
of elements from M. Then F is pairwise adjacent if and only if F is not contained in the 
intersection of a circuit and a cocircuit. 

Corollary 4 is not true if we replace the regular matroid by a general oriented matroid 
and 'pairwise adjacent' by 'pairwise inseparable'. Indeed, as we pointed out above, in the 
orientation W~ (see Figure 2) of the 3-whirl, the rim is not pairwise inseparable. However the 
rim of a 3-whirl is not contained in a cocircuit. 

Lemma 1 also shows that a pairwise inseparable nonseparating cocircuit of an oriented 
matroid forms a vertex in the underlying matroid, as defined by Kelmans [8] (he defines a 
matroid vertex as a nonseparating cocircuit intersecting every circuit in at most two elements). 
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FIGURE 3. An orientation of the matroid J. The set {e, f} is not base orderable. 

5. BASE 0RDERABLE SETS 

Let M be a matroid, and Fa nonempty subset of E(M). Then Fis base orderable in M if: 

for every pair of bases B, B', there is an injection x : B n F -+ B' such that 
B - x + x(x) and B' - n(x) + x are bases, for every x E B n F. 

Such an injection we will call a ho-injection. This definition generalizes the definition of a 
base orderable matroid. Indeed, Mis a base orderable matroid if and only if E(M) is base 
orderable in M. Since bases of an oriented rnatroid are by definition bases of the underlying 
matroid, we can also view the above as a definition of base orderable sets in oriented matroids. 

It is not difficult to see that a base orderable set in matroid M is also base orderable in M*. 
By a result of Brualdi [3], each singleton is base orderable. Moreover, if Mis a matroid, and 
F £:;; E(M) is base orderable in M, then F' is base orderable in M', for any minor (M', F') 
of (M, F).Because a matching {e, f} in the graph K4 is not base orderable in M(K4), this 
means that: 

any base orderable set in a matroid is pairwise adjacent. 

The converse does not hold: the orientable matroid J, shown in Figure 3 has no M(K4)
minor, but { e, f} is not base orderable in J. (The matroid J is one of the forbidden minors for 
base orderability in ternary matroids, found by Oxley [9].) However, if we demand that Mis 
orientable, and F is pairwise inseparable in some orientation of M, then F is necessarily base 
orderable. (It is not difficult to check in Figure 3 that e and f are separable in this orientation 
of J.) 

THEOREM 3. If Mis an oriented matroid, and Fis pairwise inseparable in M, then Fis 
base orderable in M. 

PROOF. Let F be pairwise inseparable in M, and let B, B' be bases of M. We must define 
a ho-injection rr : B n F-+ B'. For all x E B n F, we need to choose x(x) E C*(B, x) to 
ensure that B - x + n(x) is a basis, and x(x) E C(B', x) to ensure that B' - n(x) + x is a 
basis. 

Let n (x) be the signed subset of E (M) defined by: 

D(x)y := C*(B, x)yC(B', x)y for ally. 

We have x E D(x)+, and since C*(B, x) ..l C(B', x), it follows that D(x)- # 0. 
Choose n(x) E ll(x)- arbitrarily, for all x E B n F. It suffices to show that: 

x is an injection. 
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Suppose to the contrary that rr(e) = rr(f) =: g, for distinct e, f E B n F. By definition of 
TI, we have g E C*(B, x) and g E C(B', x), with C*(B, x)g = -C(B', x)g for x = e, f. 
This is equivalent to: 

x E C(B, g) and x E C*(B', g), with C(B, g)x = -C*(B', g)x, for x = e, f. 

It follows that C(B, g)eC(B, g)f = C*(B', g)eC*(B', g)f, contradicting the fact that e and 
f are inseparable. o 

For regular matroids, Theorem 3 and Corollary 2 imply the following equivalence. 

COROLLARY 5. Let M be a regular matroid, and F s;; E(M). Then Fis base orderable if 
and only if F is pairwise adjacent. 

6. STRONGLY BASE 0RDERABLE SETS 

Let M be a matroid, and Fa nonempty subset of E(M). Then Fis strongly base orderable 
in M if: 

for every pair of bases B, B', there is an injection rr : B n F -+ B' such that 
(B \ X) U :ir(X) and (B' \ rr(X)) u X are bases for all X s;; 8 n F with ln(X) \ 
FI~ 1. 

Such an injection will be called an sbo-injection for B and B' in M. This definition generalizes 
the concept of a strongly base orderable matroid. Strongly base orderable sets are preserved 
under taking subsets, duals and minors, like base orderable sets. Moreover, any strongly base 
orderable set is a base orderable set (and hence pairwise adjacent). Any singleton-subset of 
E(M) is a strongly base orderable set for M, again by the result ofBrualdi [3]. 

To motivate our interest in strongly base orderable sets, we mention a previous result. The 
following Davies and McDiarmid [6] type theorem, on packing 'common spanning sets' of 
two matroids intersecting in a common strongly base orderable set was proved in [7]. 

THEOREM 4. Let M be a matroid on E1 and let N be a matroid on E2. Let E := E1 U E2 
and F := E1 n E2. Suppose that Fis strongly base orderable in Mas well as in N, and 
suppose that both M and N have k pairwise disjoint bases. Then E contains pairwise disjoint 
sets S 1 , ... , Sk. such that Si n E 1 is a spanning set of M, and Si n E2 is a spanning set of N, 
i = 1, ... ,k. 

It was also shown in [7] that a substar in a graph G is strongly base orderable in M(G) (a 
substar in a graph is a set of edges having a vertex in common). An efficient algorithm for 
packing connectors in a graph was derived from these results. (An S-T connector in a graph 
G, of which the vertex-set V(G) is partitioned into Sand T, is a subset F of the edge-set 
E(G) such that every component of (V, F) intersects both Sand T.) 

In the next section, we will prove that a subset of a binary matroid is pairwise adjacent if 
and only if it is strongly base orderable (this generalizes the result that substars in a graph are 
strongly base orderable). To be able to restrict ourselves to 3-connected matroids there, we 
study in this section how strongly base orderable sets behave under taking direct sums and 
2-sums. 

If M1 and M2 are matroids with E(M1) n E(M2) = 0, then the direct sum Mi E9 M1 of M1 
and M2 is the matroid with ground set E(M1) U E(M2) and collection of bases 

{81 u 82 I Bi E B(Mj), i = 1, 2}. 
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LEMMA 2. Let M be the direct sum of the matroids Mi and M2, and let Fi, F2 be strongly 
base orderable in Mi. Mz, respectively. Then F := F1 U F2 is strongly base orderable in M. 

PROOF. Left to the reader. D 

If M1 and M2 are matroids with E(Mi) n E(M2) = {z}, where z is neither a loop nor a 
coloop of Mi, i = 1, 2, then the 2-sum Mi E92 M2 of M1 and Mz, with basepoint z, is the 
matroid with ground set (E(Mi) U E(M2)) - z, and collection of bases 

{B1 U B2 - z I Bi E B(Mi), B2 E B(M2), and z E B1.6.B2}. 

Here, X 6.Y denotes the symmetric difference (Y \ X) U (X \ f). 

LEMMA 3. Let M be a 2-sum of the matroids M1 and M2, with basepoint z. 

(i) If Fi is strongly base orderable in Mi, then F; is strongly base orderable in M (i = 1, 2). 
(ii) If F; + z is strongly base orderable in M; for i = 1, 2, then F := Fi U F2 is strongly 

base orderable in M. 

PROOF. (i) This is left to the reader. 
(ii) Let B and B' be bases of M. We need to show the existence of an sbo-injection TC 

BnF-+ B'. 
Let us write B = B 1 U B2 - z and B' = s; U B2_ - z as in the definition of the 2-sum, where 

B;, B[ are bases of Mi. As Fi +z is strongly base orderable in M;, there exists an sbo-injection 
TC; : B; n (F; + z)--+ B[. 

By symmetry, we may assume that z ~ Bi. Consider the map TC : B n F --+ B' defined by: 

rr(e) = TC2(e) if e E F1, 

rr(e) =TC[ (e) if e E F1, rri (e) ::j:. z, and 

rr(e) = TC1(z) if e E Fi, TC1 (e) = z. 

We will show that rr is an sbo-injection. 
Let A s; B n F be such that ITC(A) \ FI :s 1. Define Ai := Bi n A. Furthermore, let 

A1 := B2 n A if z ~ rri (A1) and A2 := (B2 n A)+ z otherwise. Then A =Ai u A2 - z and 
TC(A) = rri (A1) U rr2(A2) - z. Hence, we have: 

and 

(B' \ TC(A)) U A = [(B; \ rr1 (Ai)) U Ai] U [(B~ \ TC1(A2)) U A2] - z. 

Since lrr1 (A1) \ (F1 +z)I + lrr2(A2) \ (F2 +z)I = lrr(A) \FI :S 1, it follows that( Bi\ A1) U 
iri (At) and (B; \ir(A 1 )) U Ai are bases of Mi and (B2 \A2) Uir2(A2) and (B2_ \TC2(A2)) UA2 
are bases of M1. 

To see that (B \A) U rr(A) is a basis of M, it suffices to show that z is a member of exactly 
one of (Bi \ A1) U ir1 (A1) and (B2 \ A1) U n2(A2). 

If z E (B1 \ A1) U ir1(A1), then z E tr1(A1) and hence z E B;, and z E A2 by definition. 
Since B' = a; U B2 - z is a basis, we have that z ~ B~ and hence z ~ TC2(A2). It follows that 
z ~ (82 \ A2) U n2(A2). 

If z ~ (81 \ A1) U n1 (A1), then z fj. n1 (A1) and hence z ~ Az. Since B = B1U82 - z is a 
basis,andweassumedthatz ~ 81,wehavethatz E B2.Itfollowsthatz E (B2\A2)Un2(A2). 

The proof that ( 8 1 \ n (A)) U A is a basis is similar. D 
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7. BINARY MATROIDS 

In this section, we prove the following extension of Corollary 5. 

THEOREM 5. For a binary matroid M, with F s; E(M), the following are equivalent: 

(a) Fis strongly base orderable, 
(b) Fis base orderable, 
( c) F is pairwise adjacent. 
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This theorem generalizes the fact that a binary matroid is strongly base orderable, if and only 
if it is base orderable, if and only if it has no M (K4)-minor (see (16]). 

For oriented matroids, one might expect a similar result, with 'pairwise adjacent' replaced 
by 'pairwise inseparable'. However, a strongly base orderable subset of an oriented matroid 
need not be pairwise inseparable: UJ is a strongly base orderable matroid, but it contains 
a separable pair. We could not prove, or disprove, the other implication (that a pairwise in
separable subset of an oriented matroid is strongly base orderable). Nevertheless, to obtain a 
partial result in this direction, which suffices to finish the argument for the binary case, we 
reconsider the proof of Theorem 3. 

According to the proof of Theorem 3, for any oriented matroid M, with F :;:;; E(M) pairwise 
inseparable, and for any two bases B, B' of M we can define a ho-injection n: : B n F -+ B' 

by choosing n(x) (for x E B n F) arbitrarily in 

Il(x)- := {y E E(M) I C*(B, x)yC(B', x)y = -}. 

We now impose one further restriction on n: we choose :rr (x) ~ F if possible. Thus, hereafter, 
given an oriented matroid M, a pairwise inseparable subset F of its ground set, and two bases 
B, B' of M, a ho-injection associated with B, B' in (M, F) is a function n: : B n F -+ B' 
satisfying 

rr(x) E Il(x)-

and 
:rr(x) E F =?- Il(x)- s; F, 

for any x E B n F (such a function exists by the proof of Theorem 3). Then the contents of 
the following lemma is that if such a ho-injection is not an sbo-injection for B, B', then there 
is a small certificate for that, i.e., a small subset of B n F which cannot be exchanged. 

LEMMA 4. Let M be an oriented matroid, with F s; E(M) pairwise inseparable. Then 
either Fis strongly base orderable, or there are bases B, B' of M, and a subset X of B n F, 

with IXI = 2 and l.rr(X) \FI :S 1 such that one of (B \ X) U rr(X), (B' \ rr(X)) U X is not a 
basis (where 7r is a ho-injection associated with B, B' in (M, F)). 

Let (M, F) be a minor-minimal counterexample. Thus, Fis not strongly base orderable in M, 

and there are bases B, B' of M showing this. Let rr be a ho-injection associated with B, B' in 
(M, F).Let X s; B n F be a smallest set with lrr(X) \ FI s 1 and such that at least one of 
(B \ X) U Ir(X) and (B' \ :rr(X)) U X is not a basis. Then JXI > 2, since we are dealing with 
a counterexample to the lemma. By minimality of X, X £ B \ B', since rr is the identity on 
B n B 1 n F. By contracting elements in B n B' and deleting elements outside BUB', we obtain 
a minor M' of M with bases B \ B', B' \ B, for which the restriction of rr to (B \ B') n Fis 
an associated ho-injection, and X is a 'bad' set. Hence, B n B' = 0 and B u B' = E(M), by 
minimality of (M, F). 
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We may assume that (B \ X) U rr(X) is not a basis. (Otherwise, we consider the dual ma
troid, where E(M) \ (B' -n(X)+X) = B-X +rr(X) is not a basis. Note that IT is the same 
for the dual matroid, since C'M(B, x) = CM• (E(M) \ B, x) = CM• (B', x), and similarly, 
CM(B', x) = cM.(B, x).) 

Consider N := M/(B - X) \ (B' - rr(X)). Then, X is a basis of N, and n(X) is a circuit 
of N (by the minimality of X). 

Since E(N) = XU n(X), we have JE(N) \ F[ S 1, so N has a pairwise inseparable set 
containing all but one element of E(N). This means that N has no UJ- or M(K4)-minor, 
since neither one of these matroids contains a pairwise inseparable set of size 1 less than its 
ground set. Hence N is series-parallel. So there is a graph H such that N = M(H), with 
JXI + 1 vertices (as r(N) = IX[) and containing a circuit C = n(X) with JXI edges, and JXI 
vertices. Let v be the unique vertex of H not in C. No element x E X is spanned by C, since 
x + n(X - x) is a basis of N. Hence, all x E X are adjacent to v in H. Moreover, no pair 
of elements from X is parallel since X is a basis. Therefore, the elements of X have distinct 
endpoints on C. Because [Xl > 2, it follows that His a wheel, contradicting the fact that N 
is series-parallel. 

PROOF OF THEOREM 5. Since the implications (a)=? (b) and (b) =? (c) are trivial, we are 
only concerned with proving that (c) =?(a). Let (M, F) be a minor-minimal counterexample. 
So M is a binary matroid, F £ E(M) is pairwise adjacent but not strongly base orderable 
in M, whereas for any proper minor (N, F') of (M, F) we have that F' is a strongly base 
orderable set for N. 

If M is not 3-connected, it can be written as a direct sum or as a 2-sum of two of its proper 
minors M 1, M2. Denoting F n E(M;) by F;, it is not difficult to derive from the fact that 
pairwise adjacent sets are closed under taking minors and subsets the following statements 
(see also [14]). 

(a) If M = M1 EB M2, then F; is pairwise adjacent in M;, i = 1, 2. 
(b) If M = M1 EB2 M2 with basepoint z (so E(M1) n E(M2) = {z}), and F2 = 0, then 

F = F1 is pairwise adjacent in M1. 
(c) If M = M1 EB2 M2 with basepoint z, and F; I- 0 (i = 1, 2), then F; + z is pairwise 

adjacent in M;, i = I, 2. 

Because M; is a proper minor of M, in each of these cases it follows from the minimality of 
(M, F) that F; (or F; + z) is strongly base orderable in M;, i = 1, 2. Then by Lemma 2 or 
Lemma 3, Fis strongly base orderable in M, a contradiction. 

Hence, M is 3-connected. Moreover, since any singleton-subset of E (M) is strongly base 
orderable in M, we have IF I 2: 2. By a theorem of Seymour [ 13], no pair of elements in a 
3-connected nonregular binary matroid is adjacent. So Mis regular (orientable). 

Now (viewing Mas an oriented matroid), by Lemma 4, there are two bases B, B' of M, 
satisfying E(M) =BUB' and B n B' = 0, subsets X ={a, b) of Band rr(X) = {c, d) of 
B', such that F 2 {a, b, c}, and 

n(a) = c E IT(a)-, so c E C*(B, a) n C(B', a), 

n(b) = d E IT(b)-, sod E C*(B, b) n C(B', b), 

B-a-b+c+disnotabasis,soa E C(B,d) andb E C(B,c) 

(i.e., d E C*(B, b) and c E C*(B, b)). 

Here, n : B n F---+ B'is the ho-injection associated with B, B' in (M, F).By definition, be
cause n(a) = c E F, we have IT(a)- £ F. 
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The strong orthogonality property for a regular matroid implies 

Because a E TI (a)+ and c E f1 (a)-, we may conclude that there exists an e E B' - c with 
e E TI(a) = C*(B, a)nC(B', a) if and only ifthere exists an e E B' -c such thate E IT(a)-. 

However, if there exists an e E B' - c such that e E TI (a)- s; F, then a, c, e are three 
different elements of Fin the intersection of the circuit C(B1 , a) and the cocircuit C*(B, a). 
This contradicts Lemma 1. 

To derive this contradiction, we have argued that it suffices to find an e E B' - c with 
e E TI(a) = C*(B, a) n C(B', a). This is done in the next lemma. 

In the remaining lemma, we use the binary representation matrix of M, defined as follows. 
For any two disjoint bases B, B' of a binary matroid M, let Ps,B' be the B x B' 0,1 matrix 
with Ps,B' (b, b') = 1 if and only if B - b + b' is a basis. 

Let Band B' be disjoint bases in a binary matroid M. Let P := Pn,B'. Thus 

P(b, b') = 1 9 b E C(B, b1) {:} b' E C*(B 1, b). 

Let Q := PI'.B' Thus 

Q(b,b1) = 1 {:}b1 E C(B1,b) {:}b E C*(B,b'). 

Then <let P i= 0 and Q = (P- 1 )T. Moreover, if P(X, Y) denotes the submatrix of P indexed 
by X s; Band Y s; B', then for IXI = IYI, 

(B \ X) UY is a basis of M {:} det P(X, Y) i= 0. 

Also, Q(b, b') = det P(B - b, B' - b'). 
Henceforth, all calculations are in G F(2). 

LEMMA 5. Let M be a binary matroid, with disjoint bases B and B'. Let P := Ps,B', 
and Q := PI'.B' Let a, b E B and c, d E B' with a, b, c, d distinct and {a, b, c} pairwise 
adjacent. Suppose P(a, c) = P(a, d) = P(b, c) = P(b, d) = 1, and Q(a, c) = Q(b, d) = 
l. Then P(a,e) = Q(a,e) = lforsomee E B' -c. 

PROOF. Suppose not. Choose a counterexample with I BI minimal. We first prove a series 
of claims (i)-(vii). 

(i) For each f E B - a - b one has P (f, c) = 1 or P (f, d) = 1. For each g E B' - c - d 
one has P(a, g) = 1 or P(b, g) = I. 

Assume that one of the statements is false. If the first statement is false, we choose g E 
B' - c - d with P(f, g) = 1 and P(a, g) minimal (that is,= 0 if possible). If the second 
statement is false, we choose f E B - a - b with P (f, g) = 1. 

Let M' := M/g. Then B - f and B' - g are disjoint bases of M'. Let P' := Ps-f,B'-g 
and Q' := PI'-g,B-f' 

Then for each x E B - f and y E B' - gone has P'(x, y) = P(x, y) + P(x, g)P(f, y). 
Indeed, P' (x, y) = 1 {:} B - f - x + y is a basis of M' {:} B - f - x + y + g is a basis of 
M {:} P(x, y)P(f, g) + P(x, g)P(f, y) = 1 (the determinant). 

Therefore, for all x E {a, b} and y E {c, d} one has P' (x, y) = 1, since P(x, g)P(f, y) = 0 
(as either statement is false). Moreover, for each y E B' - g: if P (a, y) = 0, then P' (a, y) = 0, 
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since otherwise P(a, y) = 0 and P'(a, y) = 1, implying P(a, g) = P(j, y) = 1, contradict
ing our choice of g with P(a, g) minimal. 

Additionally, for each x E B - f and y E B' - gone has Q'(x, y) = Q(x, y), since 
Q'(x,y)=l #B'-g-y+xisabasisofM' #B'-y+xisabasisofM <:>Q(x,y)=l. 

Thus, we would obtain a smaller counterexample, contradicting our assumption. This 
proves (i). 

(ii) There are no f, f' E B - a - band g, g' E B' - c - d with P(j, g) = P(f', g') = 1, 
P(f, g') = P(f', g) = 0, P(a, g) = P(a, g') = 0, P(b, g) = P(b, g'), P(j, c) = 
P(f', c) and P(f, d) = P(f', d). 

Suppose such f, f', g, g' exist. Let M' := M / {g, g'}. Then B - f - f' and B' - g - g' are 

disjoint bases of M'. Let P' := PB-f- f',B'-g-g' and Q' := PJ'-g-g',B-f- r 
Then for each x E B - f - f' and y E B' - g - g' one has P'(x, y) = P(x, y) + 

P(x, g)P(f, y) + P(x, g')P(f', y) and Q'(x, y) = Q(x, y). In particular, P'(x, y) = 1 for 
all x E {a, b} and y E {c, d}, and P'(a, y) = P(a, y) for ally E B' - g - g'. This is however 
a smaller counterexample, a contradiction, showing (ii). 

(iii) There are no f E B - a - band g E B' - c - d with P(f, d) = P(a, g) = 0, and 
P(f, g) = 1. 

Suppose such f, g exist. Then by (i), P(b, g) = 1 and P(f, c) = 1, and so P has the 
following submatrix. 

c d g 
a 1 0 
b 1 1 
f 0 

Hence a, b, f, c, d, g span an M(K4) with band c opposite, a contradiction. This gives (iii). 

(iv) There are no f, f' E B - a - b, g, g' E B' - c - d such that P(a, g) = P(a, g') = 0, 
P(j, g) = P(f', g') = 1 and P(f, g') = P(f', g) = 0. 

Suppose such f, f', g, g' exist. By (i), P(b, g) = P(b, g') = 1. By (iii), P(f, d) = P(f', d) 
= 1. By (ii), P(f, c) # P(f', c).Hence (by symmetry off and f'), we can assume that 
P(f, c) = 1 and P(f', c) = 0. Then the submatrix of P spanned by a, b, f, f' and c, d, g, g' 
is as follows. 

c d g g' 
a 1 1 0 0 
b 1 1 l 1 
f 1 1 1 0 
!' 0 1 0 1 

This implies that a and bare not adjacent, a contradiction. This proves (iv). 
There exists at least one y E B' - c - d with P(a, y) = 0, since otherwise we have the 

contradiction 
0 = L Q(a, y)P(b, y) = P(b, c) = 1, 

yeB' 

as P(a, y) = 1 and y # c implies Q(a, y) = 0 (because we have a counterexample to the 
lemma). 

Now choose g E B' - c - d such that P(a, g) = 0, and such that the number of x E B 
with P(x, g) = l is minimal. Choose f E B - a - b with P(f, g) = 1 (this exists, since 
Q(b, d) = 1). Note that P(b, g) = l by (i), and P(f, d) = l by (iii). 
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(v) For each y E B', if P(b, y) = 0, then P(f, y) = 0. 

Suppose P(b, y) = 0 and P(f, y) = 1. Then by (i), P(a, y) = 1. Hence P contains the 
following submatrix. 

d g y 
a 1 0 1 
b 1 1 0 
f 1 1 

Thus a, b, d, f, g, y span M(K4) with a, b opposite, a contradiction. This shows (v). 

(vi) For each y E B', if P(a, y) = 0, then P(f, y) = l. 

Suppose P(a, y) = P(j, y) = 0. Then by (i), P(b, y) = l. By the minimality of the choice 
of g, there exists an x with P(x, g) = 0 and P(x, y) = 1. This contradicts (iv), proving (vi). 

(vii) P(f, c) = 1. 

Consider 

L Q(a, y)P(b, y) = 0 = L Q(a, y)P(f, y). 

~· ~· 
Since we have a counterexample to the lemma, for each y e B': Q(a, y) = 1 implies y = c 
or P(a, y) = 0; hence, by (vi) and (i), Q(a, y) = 1 implies y = c or P(b, y) = P(f, y) = 1. 
Thus P(b, c) = P(j, c) = 1. This proves (vii). 

As P is nonsingular, P does not have equal rows. Hence P(f, y) =fa P(b, y) for some 
y E B'. By (v), P(j, y) = 0 and P(b, y) = 1, and by (vi), P(a, y) = 1. Hence P contains 
the following submatrix. 

c g y 
a 0 1 
b 1 1 1 
f 1 1 0 

Thus a, b, c, f, g, y span an M(K4) with b, c opposite, a contradiction. This proves Lemma 5, 
and Theorem 5. D 
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