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BIPARTITE EDGE COLORING IN O(Am) TIME* 

ALEXANDER SCHRIJVERt 

Abstract. We show that a minimum edge coloring of a bipartite graph can be found in O(Ll.m) 
time, where Ll. and m denote the maximum degree and the number of edges of G, respectively. It is 
equivalent to finding a perfect matching in a k-regular bipartite graph in O(km) time. 

By sharpening the methods, a minimum edge coloring of a bipartite graph can be found in 
O((Pmax(Ll.) +log Ll.)m) time, where Pmax(Ll.) is the largest prime factor of .C.. Moreover, a perfect 
matching in a k-regular bipartite graph can be found in O(Pmax(k)m) time. 
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1. Introduction. In a classical paper, Konig [9] showed that the edges of a 
bipartite graph G can be colored with D.(G) colors, where 6(0) is the maximum 
degree of G. (In this paper, "coloring" edges presumes that edges that have a vertex 
in common obtain different colors.) 

Konig's proof is essentially algorithmic, yielding an O(nm) time algorithm (n and 
m denote the numbers of vertices and edges, respectively, of the graph). As was shown 
by Gabow [4], the 0( Jnm) bipartite matching algorithm of Hopcroft and Karp [8] 
implies an 0( Jnm log 6) bipartite edge-coloring algorithm. This was improved by 
Cole and Hopcroft [1] to O(mlogm) by extending methods of Gabow and Kariv [5], 
[6]. 

Fixing the maximum degree D., the methods found as yet are superlinear (albeit 
slightly). In this paper we give a linear-time method for fixed or bounded 6. More 
precisely, we give an 0(6m) method for bipartite edge coloring. It implies (in fact, 
is equivalent to) finding a perfect matching in a k-regular bipartite graph in O(km) 
time. 

Ultimately one would hope for an O(mlogk) (or even O(m)) algorithm finding a 
perfect matching in a k-regular bipartite graph and for an O(m log D.) algorithm for 
bipartite edge coloring (the first algorithm implies the second, by a method of Gabow 
[4] - see below). We did not find such algorithms, although our methods can be 
extended to obtain some supporting results. 

(1) 

In particular, define, for any natural number k, 

t '°' Pi cp(k) := ~ i-1 ' 

i=l fli=l Pi 

where p 1 ::::-; · · · ::::-; Pt are primes with k = P1 · ... · Pt. We give an 0( (cl>( 6) + 
log D.)m) bipartite edge-coloring algorithm. Note that in cp(6) + log 6, the term 
cp(6) dominates if 6 is prime, while log D. dominates if D. is a power of 2. Note also 
that c/>(6) ::::-; 2Pmax(6), where Pmax(6) denotes the largest prime factor in 6. So 
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fixing the maximum prime factor of 6., there is an O(m log 6.) bipartite edge-coloring 
algorithm. 

Moreover, we give an O(<P(k)m) algorithm finding a perfect matching in a k
regular bipartite graph. So bounding the maximum prime factor of k, there is a 
linear-time perfect matching algorithm for k-regular bipartite graphs. 

The proof idea is an extension of the following idea of Gabow [4] to find a perfect 
matching in a 2t-regular bipartite graph G in linear time. First find an Eulerian 
orientation of G (taking O(m) time), and consider those edges that are oriented from 
vertex-color class I to vertex-color class II (in the 2-vertex coloring of G). This gives 
a 2t-1-regular subgraph of G. Repeating this, we end up with a I-regular subgraph 
of G, being a perfect matching in G. The time it:i O(m + ~m + im + · · ·) = O(m) · 

One can similarly find a 2t-edge coloring in O(trn) time. In extending this method 
to prime factors other than 2 we use some techniques of [10] for estimating the number 
of perfect matchings and edge colorings of bipartite graphs. 

In this paper, all graphs may have multiple edges. 

2. Some practical motivation. As is well known, bipartite edge coloring can 
be applied in timetabling. A pure instance of timetabling consists of a set of teachers, 
a set of classes, and a list L of pairs (t, c) of a teacher t and a class c, indicating that 
teacher t has to teach class c during a time slot (say, an hour) within the time span of 
the schedule (say, a week). A pair (t, c) may occur several times in the list, indicating 
the number of hours the pair t, c should meet weekly. 

A timetable then is an assignment of the pairs in the list to hours, from a set H 
of possible hours, in such a way that no teacher t and no class c occurs in two pairs 
that are assigned to the same hour. This clearly is a bipartite edge-coloring problem, 
and by Konig's theorem, there is a timetable if and only if IHI is not smaller than the 
number of times that any teacher t or any class c occurs in L. So by the result of Cole 
and Hopcroft [l] a timetable can be found in O(ILI log I LI) time, and by our theorem, 
it can be found also in O(IHI · ILi) time. (In practice, several additional constraints 
are put on a timetable, making the problem usually NP-complete--cf. Even, Itai, and 
Shamir [3].) 

In many countries, schools are merging, yielding an increase in size, including in 
numbers of teachers and of classes. So the list L grows. However, the number of hours 
during a week does not grow. This gives that, in this interpretation, the algorithm is 
linear in the size of the school. 

Moreover, often H is built up from smaller units (say, days), implying that IHI 
does not have large prime factors. (IHI typically has prime factors 2, 3, and 5 only, 
and sometimes 7.) This gives that applying the O(<;&(IHI +log IHl)ILl)-time algorithm 
can be fruitful. Similarly, the method is not very sensitive to doubling or tripling the 
time span (say to two or three weeks). 

3. An O(Am) bipartite edge-coloring algorithm. Basic in the edge-color
ing algorithm (as in [4]) is a subroutine finding a matching that covers all maximum
degree vertices, and that hence can serve as our first color. To this end we show 
Theorem 1. 

THEOREM l. A perfect matching 'tn a k-regular bipartde graph can be found in 
O(krn) time. 

Proof Let G = (V, E) be a k-regular bipartite graph. For any function w : 
E -+ Z+, let Ew be the set of edges with w(e) > 0. For any F c:;; E, denote 
w(F) := 'LeEFw(e) and let )(F be the incidence vector of F. 
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Initially set w(e) := 1 for each edge e. Next apply the following iteratively: 

(2) Find a circuit C in Ew. Let C = MUN for matchings M and N with 
w(M) ::'.': w(N). Reset w := w + XM - XN· 
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Note that, at any iteration, the equality w(8(v)) = k is maintained for all v E V 
(where 8 ( v) is the set of edges incident with v). 

To see that the process terminates, first note that at any iteration the sum 

(3) L w(e)2 
eEE 

increases by 

(4) 

L ((w(e) + 1)2 - w(e)2) + L ((w(e) - 1)2 - w(e) 2 ) 

eEM eEN 

= 2w(M) + IMI - 2w(N) + INI, 

which is at least IC! (as w(M) ::'.': w(N)). Moreover, (3) is bounded, since w(e) :S k 
for each edge e. So the process terminates. 

At termination, we have that the set Ew is a forest and hence is a perfect matching 
(since w(e) = k for each end edge e of Ew)· This implies that at termination the sum 
(3) is equal to ~nk2 =km. 

Now by depth first search we can find a circuit C in (2) in O(ICI) time on average. 
Indeed, keep a path P of edges e with 0 < w(e) < k. Let v be the last vertex of P. 
Choose an edge e = vu incident with v but not in P. If u does not occur in P, we 
reset P :=PU {e} and iterate. If u does occur in P, let C be the circuit in PU {e}, 
and apply (2) to C. Next reset P := P \ C, and iterate. 

If P = 0, choose any edge e with 0 < w(e) < k, and set P := {e}. Ifno such edge 
e exists, we are done. D 

For k smaller than J[Ogn, the O(km) bound is asymptotically better than the 
O(m+nlogn(logk) 2 ) bound proved by Cole and Hopcroft [l]. (An algorithm related 
to, but different from, the algorithm described in Theorem 1 was proposed by Csima 
and Lovasz [2], giving an O(n2k log k) time bound.) 

By applying a technique of Gabow [4], one can derive from Theorem 1 the fol
lowing stronger statement: 

COROLLARY la. A k-edge coloring of a k-regular bipartite graph can be found in 

O(km) time. 
Proof. If k is odd, first find a perfect matching M, remove M from 0, and apply 

recursion ( M will serve as col or). 
If k is even, find an Eulerian orientation of 0. Let k' = ~k. Then split 0 into two 

k'-regular graphs G1 = (V, Ei) (with E 1 the set of edges oriented from vertex-color 
class I to vertex-color class II) and G2 = (V, E2) (with E2 := E\ E1). Find recursively 
k' -edge colorings of G 1 and 0 2 . The union of the two colorings is a k-edge coloring 
of G. 

The time is bounded as follows. Starting with G, we can find M (if k is odd), find 
the Eulerian orientation, and split G into 0 1 and 0 2 , in time ckm for some constant 
c. Then the whole recursion takes time 2ckm. This can be shown inductively, as 
2ckm = ckm + 2ck'm' + 2ck'm', where m' = IE(01)I = IE(G2)I = ~m. D 

This implies the sharper statement as shown in Corollary lb. 
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COROLLARY lb. A 6..(G)-edge-coloring of a bipartite graph G = (V, E) can be 
found in 0(6..(G)m) time. 

Proof. Let k := 6..(G). First iteratively merge any two vertices in the same color 
class of G if each has degree at most ~k. The final graph H will have at most two 
vertices of degree at most ~k, and moreover, 6..(H) = k and any k-edge coloring of H 
yields a k-edge coloring of G. Next make a copy H' of H, and join each vertex v of 
H by k - dH ( v) parallel edges with its copy v' in H' (where dH ( v) is the degree of v 
in H). This gives the k-regular graph G', with jE(G')I = O(jE(G)I). By Corollary la 
we can find a k-edge coloring of G' in O(klE(G')I) time. This gives a k-edge coloring 
of Hand hence a k-edge coloring of G. D 

4. Toward an 0 ( m log A) method. The results of section 3 can be sharpened 
by using divisibility properties of ~(G). First we sharpen Corollary la. We repeat 
the definition of </!( k) for any natural number k: 

(5) 
t 

Pi 
<P(k) :=I: i-1 , 

i=l Tij=l Pj 

where P1 S · · · S Pt are primes with k = P1 · ... · Pt. 
THEOREM 2. A k-edge coloring of a k-regular bipartite graph G = (V, E) can be 

found in O((</!(k) +log k)m) time. 
Proof Let k = pk' with p prime. Split each vertex v into k1 new vertices 

v1, ... , vk', and distribute the edges incident with v over v1, ... , Vk' in such a way 
that each vertex v; is incident with exactly p edges. This gives the p-regular graph G. 
Find a p-edge-coloring of G. The colors give a partition of E into classes E1, ... , Ep 
in such a way that each graph Gj = (V, Ej) is k'-regular. Next find a k'-edge coloring 
of Gp, yielding perfect matchings M 1, ... , Mk'. 

Now we apply the following iteratively. We have a partition of E into perfect 
matchings M1, ... , Mak' and k' -regular graphs E1 , ... , Ep-a. (Initially, a = l.) Let 
q := min{ a, p - a}. Chooser such that qk' + r is a power of 2 and such that r S qk'. 
Let E' := M1 U · · · U Mr U E1 U · · · U Eq· Then G' := (V, E') is a qk' + r-regular graph. 
Next qk1 + r-edge-color G', yielding colors N 1 , ... , Nqk'+r· Now replace M 1 , ... , Mr 
by N1, ... , Nqk' +r and E1, ... , Ep-c. by Eq+l, ... , Ep-c. and iterate. We stop if o: = p. 

So at any iteration, a is replaced by a+ q. Moreover, at any iteration except 
possibly the last iteration, we have q = a. So at any iteration except possibly the last 
one, q is twice as large as at the previous iteration. 

By [4], the work in the iteration takes time O(IE'l log(qk' + r)) = O(IE'l log k), 
since qk' + r is a power of 2 and since qk' + r S k. Since IE'I = ~(qk' + r)n S qk'n, 
over all iterations the work is 0((1+2 + 22 + · .. + z!ogp)k'n log k) = O(pk'n log k) = 
O(m log k). 

To this time bound we must add the time needed to obtain G1 , ... , Gp, which 
takes O_(pm) time by Corollary lb, since it amounts top-edge coloring the p-regular 
graph G, having m edges, and the time needed to edge color Gp, which takes (by 
induction) O((</!(k') +log k')m') time, where m' = m/p is the number of edges of Gp. 
Since </!(k) = p + </!(k')/p, we have the required time bound. D 

This gives Corollary 2a. 
COROLLARY 2a. A 6.(G)-edge coloring of a bipartite graph G can be found in 

0((</!(6..(G)) +log~(G))m) time. 
Proof It is proved directly from Theorem 2 by the method of Corollary 1 b. O 
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Note that 

(6) </>(k) '.S 2Pmax(k) 

(where, Pm~x(k) is the largest ~rime factor of k). This follows inductively, since if 
k = pk, with p the smallest pnme factor of k, then <f>(k) = p + c/;(k')/p:::; Pmax(k) + 
(2Pmax(k')/p) :=:; 2Prnax(k). This implies Corollary 2b. 

COROLLARY 2b. A 6(G)-edge coloring of a bipartite graph G can be found in 
0((Prnax(6(G)) +log 6(G))m) time. 

Proof The proof follows directly from Corollary 2a with (6). 0 
Note that in performing this method one does not need to apply deep number

theoretic algorithms to find the prime factorization of k. Indeed, the factors p1, ... 1 Pt 

can be found in 0 ( </;( k) k) time, since the smallest prime factor p can be found in time 
O(pk) by trying i = 2, 3, ... as divisor of k (for each i taking O(k) time), until we 
reach p. Next we can apply recursion to k' := k/p, taking recursively O(</;(k')k') time. 
This gives O(</>(k)k) time overall, since <f>(k) = p + c/;(k')/p. 

A sharpening can be obtained also for finding perfect matchings in k-regular 
bipartite graphs. 

THEOREM 3. A perfect matching in a k-regular bipartite graph G can be found 
in O(</>(k)m) time. 

Proof. Write k = pk' with p the smallest prime factor of k. Make the graph G 
as in the proof of Theorem 2. So G is p-regular. Find a perfect matching M in G. 
It gives a k'-regular subgraph G' = (V, E') of G. In G' we find recursively a perfect 
matching. 

Finding perfect matching M in G takes time O(pm) by Theorem l. Finding 
matching Nin G' takes time O(cp(k')m/p) by induction (as G' is k'-regular and has 
m/p edges). Since </>(k) = p+</>(k')/p, the whole process takes O(</>(k)m) time. 0 

COROLLARY 3a. A matching covering all maximum-degree vertices in a bipartite 
graph can be found in O(<f>(6)m) time. 

Proof. The proof follows directly from Theorem 3, using the technique of Corollary 
lb. D 

By ( 6), Theorem 3 can be stated in a weaker form as Corollary 3b. 
COROLLARY 3b. A perfect matching in a k-regular bipartite graph can be found 

in O(Pmax(k)m) time. 
Proof. The proof follows directly from Theorem 3, using (6). 0 

5. Some open questions. It would be surprising if divisibility properties of 
the maximum degree 6(G) of a bipartite graph G would determine the complexity 
of edge coloring G. However, our results are blocked by the primes. If 6( G) is a 
prime, we do not have anything better than an 0(6(G)m)-time algorithm. So the 
main problem is to "break" a prime. More precisely, 

(7) Is there an O(mlogk) algorithm for finding a perfect matching in a k-
regular bipartite graph? 

The method of Cole and Hopcroft [1] gives an O(m+nlognlog2 k) algorithm to find 
a perfect matching in any k-regular bipartite graph. If there would be an 0( m log k) 
perfect matching algorithm for k-regular bipartite graphs, there exists an O(m log 6) 
bipartite edge-coloring algorithm (by methods like in Theorem 2 above), thus answer

ing our second question: 

(8) Is there an O(m log b.) algorithm for bipartite edge coloring? 
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Similar methods as used for proving Theorem 2 give an approximative method, 
namely, a bipartite (ti. + llog(li. - l)J)-edge-coloring algorithm, with time bound 
O(mlog ti.). Indeed, let G = (V, E) be a bipartite graph of maximum degree Cl.. 
In O(m) time we can split E into E' and E" such that both G' = (V, E') and 
G" = (V, E") have maximum degree at most Cl.' := I~ ti. l. We may assume that 
IE'I ::; ~m. Lett := Cl.'+ llog(ti.' - l)J. Then t-edge color G' recursively, giving 
colors M1 , ... , Mt. Chooses St such that ti.' +sis a power of 2. Next (ti.' + s)-edge 
color the graph H made by M1 U · · · U Ms U E". With the remaining Ms+1, ... , Mt 
it gives an edge coloring of G with 

(9) (N + s) + (t - s) = 26' + Llog(li.' - l)J S Cl.+ Llog(li. - l)J 

colors. Since the number of edges in G' is at most ~m and since edge coloring H 
takes O(mlog(ti.' + s)) = O(mlogli.) time, this gives an O(mlog Cl.) time bound. 

The nonbipartite case is NP-complete, by the well-known result of Holyer [7]: it is 
NP-complete to decide if a 3-regular graph can be 3-edge colored. However, it is not 
difficult to see that a 3-regular graph can be 4-edge colored in linear time. Actually, 
any graph of maximum degree 3 can be 4-edge colored in O(m) time. 

By Vizing's theorem, each simple graph G can be (ti.(G) + 1)-edge colored. (If 
b.(G) ::; 3 we can delete the condition that G be simple.) This prompts the question: 

(10) Is there an O(li.m)-time (ti.+1)-edge coloring algorithm for simple graphs? 

Of course, the stronger question is to ask for an 0( m log Cl.) algorithm. 
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