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We give a short proof of a theorem of Karzanov on the packing of cuts, and 
derive a theorem of Lomonosov on the existence of integer multicommodity flows 
(implying theorems of Hu, Rothschild and Whinston, Dinits, Papernov, and 

Seymour). © 1991 Academic Press, Inc. 

1. KARZANOV'S THEOREM 

Consider for any graph H = ( W, F) the following property: 

H does not have one of the following two graphs as subgraph: 

• • • • 
• • v • • 

(a) (b) 

( 1 ) 

It is not difficult to check that (1) 1s equivalent to (assuming H has no 
isolated vertices): H is 

either (i) the complete graph K4 ; 

or (ii) the circuit C 5 ; 

or (iii) the union of two stars (i.e., there are two 

vertices covering all edges of H). 
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(2) 
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We first give a proof of the following theorem of Karzanov [6] (proved 
by Seymour [13] for the case IFI = 2). By d(u, w) we mean the distance of 
u and win graph G, and by 6(X) the cut determined by X£:; V. We say that 
b(X) separates { u, w} if u # w and IX n { u, w} I = 1. 

KARZANov's THEOREM. Let G = ( V, E) be a connected bipartite graph, 
and let H = ( W, F) be a graph satisfying ( 1 ), with W £:; V. Then G has 
pairwise edge-disjoint cuts b(Xi), ... , 6(X1 ) so that for each {r, s} E F, 

d(r, s) =number of cuts b(X1 ) separating {r, s }. (3) 

Proof Let G = ( V, E) be a counterexample with IEI as small as 
possible. We first note the following: 

For each X £:; V with b(X) # 0 there exist { r, s} E F and a path 
P connecting r and s so that I P\b(X)I ~ d( r, s) - 2 ( 4) 

(taking a path as an edge set). This can be seen by considering the bipartite 
graph G' obtained from G by contracting all edges in some b( X). If r, s, P 
as in (4) do not exist for this b(X), we know that for all {r, s} EF: 

d'(r', s') = d(r, s)- I 

d'(r', s') = d(r, s), 

if b(X) separates { r, s}; 

if <5(X) does not separate { r, s}. 
(5) 

Here r' and s' are the images of r and .s in G', and d' denotes the distance 
function in G'. As G' has fewer edges than G, in G' there exist pairwise 
edge-disjoint cuts 6(X;), ... ,6(X;) so that for each {r,s}EF one has: 
d'(r', s') =number of cuts 6(Xj) separating { r', s' }. In the original graph 
this gives cuts b(X1 ), ••• , b(X1), which together with b(X) have the required 
property. 

From ( 4) we derive the following: 

Claim. For all u, w E V with u # w there exists { r, .s} E F so that 
{r, .s} n { u, w} = 0 and 

d(r, s) + d(u, w) ~ d(r, w) + d(u, s), 

d(r, s) + d(u, w) ~ d(r, u) + d(w, s). 
(6) 

Proof Define 

X:= {vE Vld(u, v)+d(v, w)=d(u, w)}. (7) 

So X is the set of vertices which are on at least one shortest u - w-path. 
First suppose X = V. By ( 4) applied to { u}, there exist { r, s} E F and an 

r - s-path P so that I P\b( { u} )I ~ d(r, .s) - 2. So P is a shortest r - s-path 
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intersecting c5( { u}) twice. This directly implies that u rj: { r, s }. To see 
that wHr,s}, suppose s=w, say. Then IP\l5({u})l=IPl-2?:d(u,r)+ 
d(u, w)- 2 = 2d(u, r) + d(r, w)- 2 > d(r, s) - 2, a contradiction. 

So we know {r, s} n {u, w} = 0. Moreover, 

d(r,s)+d(u, w)=d(r,s)+d(u, r)+d(r, w);?;d(r, w)+d(u, s). (8) 

One similarly shows the second inequality in ( 6 ). 
Next suppose X =I V. As above, let G' be the graph obtained from G by 

contracting the edges in b(X), and Jet d' denote the distance function in G'. 
By (4), there exists {r, s} EF so that d'(r, s) ,s; d(r, s)-2. Then 

d'(u,s);?:d(u,s)-1, d'(r, w);?;d(r, H')-1, 
(9) 

d'(w,s)?:d(w,s)-1, d'(r, u);?: d(r, u)-1. 

To see the first inequality, let P be a u - s-path in G with 
IP\c5(X)I =d'(u, s). Choose P so that IPn c5(X)I is as small as possible. 
Suppose IP n b(X)I?: 2. Then we can split P as P' P" so that 
IP' 11 <i(X)J = 2. Let P' go from u to v EX. Since P' is not fully contained 
in X, we know IP' I ?: d( u, v) + 2. Let P' be a shortest u - v-path in G. 
Then IP'!= d(u, v) ~ IP'J -2, and P' is fully contained in X. This implies 
for P:=P'P" that IP\<5(X)l~IP\o(X)I and 1Pno(X)l=IPn<5(X)!-2, 
contradicting the minimality of \Pnb(X)\. So IPno(X)\,s;I, implying 
d'(u, s) = IP\c5(X)J;?: IP! - 1;?: d(u, s)- !. The other inequalities in (9) are 
proved similarly. 

Since d'(r, s) ~ d(r, s) - 2, (9) implies { r, s} n { u, \\'} = 0. Moreover, 
there exists a shortest r - s-path in G' traversing a vertex v in X. Hence, 

d(r, s) + d(u, w);?: d'(r, s) + d(u, \\') + 2 

= d'(r, v) + d'(t\ s) + d(u, ii)+ d(v, w) + 2 

;?;d'(r,w)+d'(u,s)+2?od(r,w)+d(u,s). (10) 

The second inequality in ( 6) is shown similarly. This proves the Claim. 

The claim implies that for each pair { u, w} of vertices of G there exists 
an {r, s} E F disjoint from { u, w }. So H is not a union of two stars, and 
hence H = K4 or H = C 5 (assuming H has no isolated vertices). 

If H=K4, let W= {r 1 , r 2 , r 3 , r4 }. Then by the Claim, 

d(r1, r1) + d(r 3 , r 4 )?: d(r 1 , r 3 ) + d(r 2 , r 4 );?: d(r 1 , r 4 ) + d(r 2 , r 3 ) 

?: d(r 1 , r 2 ) + d(r 3 , r 4 ). (11) 

Hence we have equality throughout, that is, 

d(t, u) + d(v, w) = d(t, v )+ d(u, w) for all distinct t, u, v, w E W. ( 12) 
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This implies that there exists a function rp: W-+ IR + so that 
d(u, v) = rp(u) + i;b(v) for each two distinct u, v E W. (Take for v E W: rp(v) := 
~(d(u, v)+d(v, w)-d(u, w)) for arbitrary u, WE W with v#ui=w#v. The 
fact that this is independent of the choice of u, w follows from ( 12 ). ) 

Since all vertices in W are distinct, i;b( v) > 0 for at least one v E W. By ( 4 ), 
there exist { r, s} E F and a path P connecting r and s so that IP\b( { v} )I ~ 
d(r, s) - 2. So P passes v, and I PI = d(r, s) = rp(r) + rp(s ). However, 

I PI ~ d ( r, v) + d ( v, s) = <P ( r) + 2rp ( v) + <P ( s) > i;b ( r) + <P ( s), (13 ) 

a contradiction. 
If H= C 5 , let W= {r 1 , r2 , r3 , r4 , rs} and F= { {r;, r;+ 1 } Ii= 1, ... , 5}, 

taking indices mod 5. Applying the Claim to u := r;, w := r;+ 2 we obtain 
(r,s} := {r;+ 3 , r;+ 4 } (as it is the unique pair in F disjoint from {u, w}), 
and 

(i = 1, ... , 5 ), 

( 14) 
(i =I, .. ., 5). 

Adding up these ten inequalities, we obtain the same sum at both sides of 
the inequality sign. So we have equality in each of ( 14 ). This is equivalent 
to ( 12 ), and we obtain a contradiction in the same way as above. I 

Note. The following two examples show that condition (1) in fact is 
necessary in Karzanov's theorem (where single lines are edges of G, and 
double lines are edges of H), 

( 15) 

2. IMPLICATIONS OF KARZANOV'S THEOREM 

As was noted by Karzanov [ 4] and Seymour [ 14 ], cut packing results 
(like Karzanov's theorem above) can be interpreted in terms of polyhedral 
cones, and thus by polarity of cones are related to multicommodity flows. 
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Consider the linear space !RF x IRE. Let K be the convex cone in !RF x IRE 
generated by all vectors, 

(i) (ef; xP) for f = {a, b} E F, P £ E forming a path from a to b; 

(ii) (Q;ee) foreeE. (16) 

Here ef denotes the fth unit basis in !RF (so ef(f') = 1 if f' = f, and = 0 
otherwise). Similarly, ee denotes the eth unit basis vector in IRE. Moreover, 
xP denotes the incidence vector of P in IRE (so x P ( e) = 1 if e E P, and = 0 
otherwise). 

Let L be the convex cone generated by all vectors: 

(i) ( _ Xp(X); /IX)) 

(ii) (e1; Q) 

(iii) (Q;e') 

for X£ V; 

for f eF; 

for e EE. 

Here p(X) := { {a, b} E FI li(X) separates {a, b} }. 
We here take for the polar of a cone C in IR" the cone 

C* := {xelR" I xTy~Oforall yeC}. 

(17) 

(18) 

The following consequence of Karzanov's theorem is contained in the work 
of Papernov [10]. 

COROLLARY 1. If H = ( W, F) satisfies { 1) then K* = L. 

Proof The inclusion L £ K* follows from the fact that each vector in 
(16) has nonnegative inner product with each vector in (17), which is 
trivial. For example, 

= jPnli(X)I ~O if li(X) does not separate f 
( 19) 

To see the inclusion K* £L, take (x; y)e IRFx IRE having nonnegative 
inner product with all vectors in K. In order to show (x; y) e L, we may 
assume that x and y are integral, and in fact consist of even integers. Since 
(x; y) has nonnegative inner product with all vectors in (16)(ii), we know 
that y ~ 0. By inserting new vertices, we can replace each edge e of G by 
a path of length y( e) (contracting e if y( e) = O ). This makes the new 
graph G', which is bipartite, as each y(e) is even. Since (x; y) has non­
negative inner product with all vectors in (16 )( i ), we know that for each 
f={a,b}eF, 

-x(f) ~ dist 0 .(a, b ). (20) 
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By Karzanov's theorem, G' has pairwise disjoint cuts b(X; ), ... , 8(X;) so 
that each pair {a, b} E F is separated by <list a· (a, b) of these cuts. So in G 
we obtain cuts 8(Xi), ... , 8(X,) so that each edge e of G is contained in at 
most y( e) of these cuts, and so that each pair f = {a, b} E Fis separated by 
at least - x(f) of these cuts, Hence 

I 

(x; y);,:::, I ( - x"(x;i, l<x;'), (21) 
i=l 

proving that (x; y) is a nonnegative linear combination of the vectors in 
(17). So (x; y) belongs to L. I 

By duality we have: 

COROLLARY 2. If H = ( W, F) satisfies ( 1) then L * = K. 

Proof L * = (K*)* = K. I 
In other words, each vector which has nonnegative inner product with 

all vectors in ( 17) is a nonnegative linear combination of the vectors in 
(16). Using a method described by Karzanov [6], we derive the following 
result, proved first by Rothschild and Whinston [11] (cf. [9, 15]) for 
IFI = 2, by Dinits ( cf. [ 1]) for F being a union of two stars, by 
Lomonosov [7, 8] and Seymour [16] if IU FI =4, and by Lomonosov 
[7, 8] for F forming a five-circuit. In this corollary, we allow E and F to 
have multiple edges (in the results discussed above, multiple edges are 
irrelevant). 

COROLLARY 3. Let F satisfy ( 1 ), and let the graph ( V, E u F) be eulerian 
(counting multiplicities). Then there exist pairwise edge-disjoint paths P1 (for 
f E F) so that P1 connects a and b if f = {a, b}, if and only if, . 

lb(X)I ~ lp(X)I J or all X £:: V. (22) 

Proof Since (22) is trivially a necessary condition, we show sufficiency. 
Suppose the corollary is not true, and let G, H form a counterexample with 
I El as small as possible. Then 

no pair f in F is parallel to an edge e in E, (23) 

as otherwise deleting e and f would give a smaller counterexample. 
Condition (22) being satisfied means that the all-one vector ( 1; !) in 

!RF x IRE has nonnegative inner product with all vectors in ( 17), i.e., is in 
L *. So by Corollary 2, ( 1; 1) E K. Hence for all f = {a, b} E F there exists 
paths Pn, ... , P1,1 connecting a and b, and rationals A.11 , ... , A.111 > 0 so that 
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IJ 

(i) I lfi = t for all feF; 
i= 1 (24) 

If 
(ii) I L l.1; xPn(e) ~ 1 for all eeE. 

feF i= 1 

Consider some f' = {a, b} e F. Let e' = {a, v'}, e" = { v', v"} be the first two 
edges of Pri · Let G' be the graph obtained from G by replacing e' and e" 
by a new edge e"' :={a, v"}. 

If G' again satisfies (22), then in G' there would exist paths as required 
(as G' has fewer edges than G), and hence also in G there exist paths as 
required (as we can replace an occurrence of e"' by e' and e"). 

So G' does not satisfy (22). Let Xs; V be so that ip(X)I > ii5'(X)I, where 
b'(X) denotes the cut in G' with sides X and V\X. Since IJ(X)I ~ ip(X)i 
and ii5'(X)I ~ ii5(X)I - 2, it follows that 

lb(X)I = lp(X)I = li5'(X)I + 2 (25) 

and that e', e" e i5(X). This implies 

1f 

lp(X)I = L 1 = L L ).Ji 
.fep(X) fep(X)i=l 

<f~F i~I lfilPrr n b(X)i = ee~Xl c~F ;t1 ).!iXP';(e)) 

~ L 1 = ii5(X)I. 
eeo(X) 

(26) 

(The strict inequality follows from the facts that IP11 n b(X)I ~ 1 if f e p(X), 
and that IPr1 n b(X)I ~ 2.) However, this contradicts the fact that 
1£5(X)I = lp(X)I. I 

As is well known, this corollary implies a half-integral multicommodity 
flow theorem of Lomonosov [7] (extending the max-flow min-cut theorem 
of Ford and Fulkerson [2] and Hu's two-commodity flow theorem [3]; cf. 
also [10]). 

COROLLARY 4. Let F satisfy ( 1 ), let c: E-+ Z + be a "capacity" function, 
and let d: F-+ "lL. + be a "demand" function. Then each pair f = {a, b} e'F can 
be connected by a half-integral flow cpl in G of value d(f), in such a way that 
the total flow passing any edge e of G is at most c( e ), if and only if each cut 
has capacity not smaller than its demand. 

Proof Replace each edge e of G by 2c( e) parallel edges, and each pair 
f in F by 2d(/) "parallel'' pairs. After that, apply Corollary 3 to the 
extended structure. I 
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