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Abstract. Relativistic effects on parallel whistler-mode propagation and instability are considered analyti
cally in some limiting cases relevant to magnetospheric and/or astrophysical conditions. The corresponding 
wave dispersion equation for a weakly relativistic anisotropic plasma is expressed in terms of generalized 
Shkarofsky functions. Asymptotic presentation of these functions is found in the limit of large wave 
refractive indices. Based on this presentation, a new analytical expression for whistler-mode refractive index 
is obtained and analysed. It is pointed out that relativistic effects increase the value of anisotropy above 
which the waves are unstable, in agreement with the results of the earlier numerical analysis. This increase 
is particularly important for whistler-mode propagation in a rarefied, hot plasma but could be potentially 
observed in the magnetosphere of the Earth in the region outside the plasmasphere. 

1. Introduction 

Although the general dispersion equation describing wave propagation in a relativistic 
plasma is fairly well known (see, e.g., Trubnikov, 1959), its solution appears to be very 
complicated even for numerical methods. This equation can be simplified if we consider 
weakly relativistic limit, i.e., assume that the characteristic thermal velocity of charged 
particles is well below the velocity of light (see, e.g., Shkarofsky, 1966, 1986). Further 
simplification is possible if we restrict our analysis to particular types of waves. The 
waves which seem to be interesting both from the general theoretical point of view and 
from the point of view of their applications in magnetospheric and/or astrophysical 
conditions are parallel whistler-mode waves. The dispersion equation for these waves 
is particularly simple and convenient for analytical and numerical analysis. Observa
tions of these waves in the magnetosphere of the Earth and their role in the dynamics 
of the magnetospheric plasma were discussed by many authors (see, e.g., Sazhin, 1982; 
Carpenter, 1988; Helliwell, 1988). These waves have also been observed in the 
magnetospheres of other planets (Anderson, 1983; In an, 1987; Scarf et al., 1987). 

The dispersion equation for parallel whistler-mode waves in a weakly relativistic 
plasma has been analysed numerically and analytically by J acquinot and Leloup ( 1971 ), 
Tsang (1984), Robinson (1987a), Sazhin (1987a, b, 1989a), Bomatici and Ruffina 
( 1989), and others. The main conclusion of these papers is that even in a weakly 
relativistic plasma the relativistic effects on whistler-mode propagation, instability and 
damping are not necessarily negligibly small. Hence, further analysis of these waves 
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seems to be particularly interesting and important. This is done in the present paper. 
In what follows we analyse analytically the parallel whistler-mode dispersion equation 

in a weakly relativistic plasma and obtain its asymptotic solution which is com
plementary to those obtained beforehand. In Section 2 this equation is presented in 
terms of generalized Shkarofsky functions. Some asymptotical properties of these 
functions are discussed in Section 3. The results of the latter section are applied to the 
analysis of whistler-mode propagation (Section 4) as well as to the analysis of marginal 
stability of these waves (Section 5). In the latter section we also discuss possible 
applications of our results to the conditions in the magnetosphere of the Earth. The main 
results of the paper are summarized in Section 6. 

2. Dispersion Equation 

Similarly to Sazhin (1987a, b, 1989a) we assume the electron distribution function in 
the form: 

. . ( p2 p2 ) 
f(p J., P11) = (j! n312P~:t 2Po11 )- 1Pf exp - + --+ , 

PoJ. Po11 
(2.1) 

where PoJ.c 11 J is the electron thermal momentum in the direction perpendicular (parallel) 
to the magnetic field, p J. and p 11 are the electron momenta in the corresponding 
directions, j = 0, 1, 2, .... 

We restrict our analysis to the case j = 0 (bi-Maxwellian plasma). The generalization 
for j # 0 is straightforward (Tsai et al., 1981; Sazhin, 1989a). We also restrict ourselves 
to considering wave frequencies well above proton gyrofrequency so that the protons 
and other heavy ions could be considered as a neutralizing background. Finally we 
assume plasma to be weakly relativistic so that PoJ.(ll) <i: mec, where me is the electron 
mass at rest, c is the velocity of light. In view of all these assumptions and neglecting 
the contribution of higher-order terms, we can write the dispersion equation for parallel 
whistler-mode waves ( cf. Sazhin, 1989a) as 

where 

N2 = 1 - 2X [~ - d~;2,2 (A - l)N2] 
r 1/2, 2 dz e ' 

(2.2) 

00 

cE - m: ( a b) -1·f eizt-[at'f(l-it)l(l - 1't)-q(l - z'bt)-Pdt,· Jq, p = .Tq, p z, ' = (2.3) 

2(1 - Y) 
z=---

r 

0 

N2 
a=

r 
P~11 r=--

m;c2 
x = 11~/ w2 ; 
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TI 0 , Q0 , and ware electron plasma frequency at rest, electron gyrofrequency at rest and 
wave frequency, respectively, N is the wave refractive index. 

We call the function ~. P the generalized Shkarofsky function. It refers to the 
conventional Shkarofsky function (Robinson, 1986, l 987b) 

Xo 

z ( ) - z· J eizl - [ai2;0 - i!JJ ( 1 - z"t)- q dt '"'q z, a = (2.4) 

0 

by the indentities 

-~. 0 (z, a, b) = ~. P(z, a, 0) = ~(z, a). (2.5) 

Note that Robinson (1986) proposed another generalization of Shkarofsky function 

OG 

.~. r(z, a) = - i J dt (itY exp [izt -~], 
( 1 - it)q 1 - lf 

(2.6) 

0 

so that 

u- ( ) _ dr ~(z, a) 
Y/',q r z, a - . 

' dzr 
(2.7) 

The function .~. rCz, a) is particularly important for the study of wave propagation 
in an isotropic plasma while the function~. p(z, a, b) is relevant to the analysis of wave 
propagation in an anisotropic plasma. New asymptotic analyses of the function 
-~. P(z, a, b) are undertaken in the next section. 

3. Asymptotics for the Generalized Shkarofsky Function 

3.1. PRELIMINARY REMARKS 

In nonrelativistic limit we can set a --> oo and reduce the function -~. P to 

(3.1) 

where 

~ 

Z(~) = i J"; exp( - ~ 2 ) - 2 I exp( - ~2 + t 2 ) dt. (3.2) 

() 

The parameter z is also large in the nonrelativistic case unless Y is close to unity, while 
~ = z/2 Jc1 can in general be arbitrary. 
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Nonrelativistic parallel whistler-mode propagation has been studied in detail by 
Sazhin (1983, 1986, 1989b). 

In the limiting case a~ CIJ and e = z/2 Ja~ - CIJ but retaining the first order terms 
we simplify ~. P to 

ff = ~ + ~ (1 -(q + bp)z). 
q, P z z3 a 

(3.3) 

Equation (3.3) is particularly convenient for the study of weakly relativistic effects on 
whistler-mode propagation (see, e.g., Jacquinot and Leloup, 1971; Sazhin, 1987a, b, 
1989a). 

In this paper we consider other asymptotic estimates of the function ~. P as a ~ oo. 
We putµ= z/a, and pay special attention to the limiting caseµ~ 0. All the parameters 
of the function ~.pare assumed to be real (z < O; a> O; p > O; q > O; b > 0). Physi
cally this assumption means that wave amplification or damping does not have influence 
on wave propagation. 

3.2. AN ALTERNATIVE FORM OF ~,p 

In this subsection we derive an asymptotic expansion of ~. P as a~ oo, which is 
uniformly valid with respect toµ in a domain containing the pointµ = 0. At the same 
moment we expand the results for small values ofµ. 

Putting t = is we can write 

where 

- iCL) 

~. P = J exp(rp(s))f(s) ds, 

cp(s) = 

0 

as2 
-zs+--, 

I + s 

f(s) = (1 + s)-q(I + bs)-P. 

(3.4) 

We assume that the branch cuts of f(s) are taken along the real interval ( - oo, 0). The 
path of integration is not restricted to the negative imaginary axis, but can be deformed 
according to our wishes. 

We can rearrange the right-hand side of Equation (3.4) so that ~. P is written as 

where 

a; _ z-2a 
.7q, P - e 

-ico 

I ea,P(s)f(s) ds. 

0 

1 
tf;(s) = (1 - µ) (s + 1) + -

s + I 

(3.5) 

(3.6) 

j 
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Saddle points of ijJ are determined by the condition 

dt/J(s) = (1 _ µ) _ 1 = 0 , 
ds (s + 1)2 

which is satisfied for 

(3.7) 

In view of the future application of our analysis to whistler-mode waves ( Y > 1) we 
considerµ~ 0. The analysis remains valid if 0 < µ < 1. 

When I µI~ 1 we have 

s - = - 2 - ~ + 0(µ 2 ) ; 
2 

(3.8) 

(3.9) 

i/l(s) is real on the real axis and on the circle with the centre s = - 1 and radius 
1/~. This circle passes through s ±.Hence, ijJ(s) is real and decreasing along the 
contour shown in Figure 1. This saddle point contour is selected as a contour of 
integration. 

We write ~. P as 

.?_ _ §i' (I) + §i' (2) + §i' (3) 
q, p - q, p q, p q, p ' (3.10) 

g, I 
I 

-2 -1 s I 9t s 
-------------t~·-······························· ················· ··············~·········································-······ 

0 I 

I 

I 
Fig. I. The contour of integration in the complex s-plane. 
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where 

S+ 

.~/!/ = ez-2a f 
0 

-7t 

y; (2) = ez - 2a f 
q,p 

0 

-oo 
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ff,/:;}= ez-2a f eal/J(s)f(s) ds. 

s_ 

In (3.12) we put 

eiO 

s=-1+ ~· 
-yl-µ 

- :n:;:S; 8:::;; 0. 

(3.11) 

(3.12) 

(3.13) 

The term ~.<;> gives the dominant contribution to the real part of ~. r The term 
~.c;> contributes to the imaginary and real parts of~. P' while the contribution of ~.c;> 
can be neglected when compared with that of ~.c;>. 

When I µI is small the saddle point s + is near the point s = 0, the end point of 
integration of~. P and ~.<!>.The main contribution to the integral (3.5) comes from 
the point s = 0; when I µI is small also the influence of the saddle point s + becomes 
important. 

3.3. ANALYSIS OF ~,c;J 

We transform 

or 

x = J i/l(s) - i/l(s +) 

s = 0 corresponds to x = x0 = Jifl(O) - i/l(s+) = J2 - µ - 2 JI - µ, s = s + corre
sponds to x = 0. The sign of x and x0 equals that ofµ. For small values of I µI we have: 

Xo = ~µ + ~µ2 + 0(µ3). 

This transformation enables us to write 

-~o 

,ffe(l)= -e-ax~f eax2g(x)dx, 
q,p (3.14) 

0 
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ds 
g(x) = f(s) - , 

dx 

ds 2x(I + s)2 

dx (I - µ) (1 + s)2 - 1 

g(x) can be Taylor-expanded at x close to x0 as 

g(x) = g(x0 ) + g' (x0 ) (x - x0 ) + · · · , 

where 

- 2xo -- µ 2 g(x0 ) = - 1 - - + O(µ ) , 
µ 4 

2 µ2 + 2xJ µ(q + pb) - 4xJ 1 b ( ) 
g' (x0 ) = - = - q - p + 0 µ . 

µ3 
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(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

If we substitute (3.17) into (3.14) and remembering the definition of Z(~) (see 
Equation (3.2)) we obtain: 

as a -+ oo with 

Xo Ja= ~[l + iµ + 0(µ 2 )]. 

In view of (3.21) the term ~Z(x0 Ja) can be written as 

~Z(xo Ja)= ~Z(e) + ~2r::: ~Z'(e). 
2....;a 

(3.21) 

(3.22) 

If we remember (3.18), (3.19), (3.21), and (3.22) and keep only the first-order terms 
with respect to 1/Ja, we can simplify (3.20) to 

ff <1> ~ - 1- {- ~z - _e_ (~z + e~z') + 
q,p 2Ja 2Ja 

+ l ~ J.pb (~Z' + 2 exp( -e2))}. (3.23) 

This equation is more reliable fore ;;::: 1 than for ~2 ~ 1. In the latter case the parameters 
a and z in (2.3) can no longer be considered as real, as the imaginary part of frequency 
w is of the same order of magnitude or even larger than min(w, 0 0 - w). Physically this 
means that the influence of wave damping or amplification on wave propagation can 
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no longer be neglected ( cf. the analysis of Sazhin ( 1983) of nonrelativistic whistler-mode 
waves at frequencies close to electron gyrofrequency) 

3 4 A $(2) 
. . NALYSJS OF dq, P 

For the semi-circular part of the contour shown in Figure 1 we have 

eiO 
s + 1 = r.--:. . 

-vl-µ 

Equation (3.24) enables us to write 

-1' 

~(2l=e-axfif e-2a~(I-cosOlj(s) ds de. 
q.p de 

0 

If we put w = - sin! 0, we can rewrite (3 .22) as 

where 

I 

.F,/~l = e-axt, J e-4a ~w2g(w) dw, 

0 

ds dO 
g(w) = f(s) - - , 

dO dw 

ds 
- = i(s + 1), 
dO 

dO -2 

dw ~-

(3.24) 

(3.25) 

(3.26) 

When axJ ~ 1, the contributions from (3.26) are exponentially small, and not relevant 
for~. p· In any case, the main contribution to the integral of(3.26) comes from the point 
w = 0. 

If we expand 

cc 

g(w) = I ckwk, (3.27) 
k=O 

we obtain 
00 

~ (2),..., e-axil ~ c J e-4a ~ w2wk dw = 
q.p L. k 

k=O 
0 

(3.28) 

for a_,, CIJ. 
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The zeroth-order term k = 0 in (3.28) gives an imaginary contribution. Ifwe remember 
that 

we obtain using this term only 

:Jil<2> _ _ i Jn/Cs+) e-a'ii 
q,p 2~JaJl-µ 

(3.29) 

where s + is defined by (3.7) and (3.8). 
When Iµ I ~ 1 and if we remember (3.21) we can simplify Equation (3.29) to 

ifi[ ~ J :F <2> - - -- 1 + -- (3 - 2e - 2q - 2bp) exp(-e). 
q,p 2Ja 2Ja (3.30) 

When deriving (3.30) we took into account that 

- axf. _ - .;2 [ 1 ~2 µ] e -e -- . 
2 

(3.31) 

In zeroth-order approximation we have 

i 
:F <2J = - -- JPZ(~). 

q,p 2 Ja (3.32) 

The term with k = 1 in (3.28) gives a real correction to (3.20). Some algebraic 
manipulation yields 

For small values of I µI we have 

C1 = 4(q + pb - 1) + O(µ). (3.34) 

A first-order approximation of the real part of :F./;l becomes 

c e-<:2 f!lt:fl (2) ___ I -== 
q,p Sa~ 

(3.35) 

when a~ oo. 
In view of (3.34) Equation (3.35) can be simplified to 

f7t:Jil <2 > ~ q + pb - 1 e _ .;2 . 
q,p 2a (3.36) 
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4. Propagation of the Waves 

If we collect the results (3.23) and (3.36) we have 

:!It§ = _l_ [- fJ£Z - -~- (fJ£Z + ~fJ£Z') + l - q - pb fJ£Z'], (4.1) 
q. p ? r:.. 2 r:.. ? r:.. -va va -va 

.!It d~.p = _!__ [- fJ£Z' - - 1- (.~Z + ~f!ltZ') -dz 4a 2 Ja 

- -~- (2.~Z' + ~f!,£Z") + l - q - pb fJ£Z"]. (4.2) 
2Ja 2Ja 

In the limit I ~I ~ 1 these expressions can be simplified to 

.. ~ 1 [1 1 J 
.Jf.'l'q, p - 2 Ja ~ + 2~3 , 

(4.3) 

!/( ~·~, p - - _!__ [2- + 2-J . dz 4a ~2 2~4 
(4.4) 

When deriving (4.3)-(4.4) we took into account the inequality I ~I ~ 2 Ja which 
follows from our assumption Iµ I ~ 1 and neglected the contribution of higher-order 
terms. In the limit Iµ I ~ 1 Equation (3.3) also reduces to (4.3 ). If we substitute 
(4.3)-(4.4) into the dispersion equation (2.2) we obtain the value of N as a sum of wave 
refractive index in a cold plasma N0 and nonrelativistic thermal corrections to N0 . These 
corrections have been extensively studied in our previous papers (see, e.g., Sazhin, 
1986). 

Let us now consider a special case ~ = - 0.924 = -k. For this value of~ we have 
fJ£Z = - 1/~, JllZ' = 0, PAZ" = 2/~ and 

(4.5) 

.:J,£ d~.p = _1_ [2k - ~ + 2(q + bp)J. 
dz 8a Ja k k (4.6) 

If we substitute (4.5)-(4.6) into Equation (2.2) we obtain 

N = N- - - 1 - N r A - 1) 2k - - + ------ . 2 ? x { Jrc [ 3 3(1+4Ae)J} 
0 2N2 e k 3k 

(4.7) 

If we, following Sazhin (l 989a), neglect the contribution of the term proportional to 
N Jr, then Equation ( 4. 7) simplifies to 
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2 2 x N =N0 --
2N2 

(4.8) 

This is exactly the result obtained by Sazhin (1989a). The coincidence of the results 
obtained by different methods can prove the validity of both approaches to the problem. 

The expression (4.8) also follows from (4.7) in the case of whistler-mode propagation 
in an isotropic plasma (Ae = 1). 

5. Marginal Stability of the Waves 

The condition of marginal stability of the waves is equivalent to the condition that the 
imaginary part of the right-hand side of (2.2) is equal to zero. In view of (3.30) the latter 
condition can be written as 

[Y+Ae(l - Y)][l + ~2(~; l)J + 

+ Y-I { 2A -l+(Y-l)(Ae-l)[Ae+~2(1.5-2Ae)]}=o. (5.l) 
N2 e ~2 

In nonrelativistic limit (N - oo) Equation (5.1) is satisfied when 

y 
Ae = -- =Acr· 

Y-1 
(5.2) 

The waves are unstable when Ae > Acr and are damped when Ae < Acr· 
In a weakly relativistic limit we can expect that Ae satisfying (5.1) should be close to 

Acr and so we can put Ae = Acr in the terms proportional to N- 2 . As a result we can 
write the approximate solution of (5.1) as 

y 
A =--+li 

e Y - 1 ' 
(5.3) 

where 

Y- 1+2n- 2 

li = >0. 
2(Y - 1) [N2 + ~2(Y - 1)] 

(5.4) 

As follows from (5.3) Ae > Acr which means that relativistic effects tend to stabilize 
propagating waves. This is consistent with the results of numerical analysis of J acquinot 
and Leloup (1971). 

Let us consider the values of the parameters used by J acquinot and Leloup ( 1971) 
in their Figure 5: j = O; I10 /Q0 = 1; Ae = 2; and wff/c 2 = 0.03; note that <vff), con
sidered by Jacquinot and Leloup is equal to 0.5w~ in our notations. Based on our 
Equation (5.4) we calculated the frequency of marginal stability of whistler-mode waves 
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(wcr) within non-relativistic and weakly relativistic approximations. In the non
relativistic case we, = 0.500. This value of wcr coincides with the corresponding value 
of wcr obtained by Jacquinot and Leloup (1971). For the weakly relativistic case we 
obtained wcr :::::: 0.4500. This value of wcr is slightly larger than Wcr obtained by J acquinot 
and Leloup (1971), as from their Figure 5 it follows that wcr:::::: 0.4200. However, for 
the considered values of the parameters we have Iµ I = 2(Y - l)/N2 :::::: 0.4. So, we can 
expect that the contribution of the terms proportional to µ2 which we neglected in our 
analysis are not negligible. This could be the cause of the slight discrepancy between 
our results and those of Jacquinot and Leloup (1971), although we have a qualitative 
agreement between them. 

Expression (5.4) can be further simplified when 

l ~ e2(Y - 1) ~ N 2 (5.5) 

and reduced to 

b = l/2N2 . (5.6) 

In another limiting case 

1 ~ N 2 ~ e2 (Y - 1), (5.7) 

it reduces to 

b = l/((Y - l)e2 ). (5.8) 

The condition (5.5) is relevant to a very hot plasma, while the condition (5.7) is 
satisfied for a nearly cold plasma. 

As follows from (5.4), b may be significant when whistlers are propagating through 
a rarefied (N 2 is not too large) and hot ( e2 is not too large) plasma. An example of such 
a plasma was considered when we compared our results with those of J acquinot and 
Leloup (1971). The ratio II0 /Q0 of the order of unity was often observed in the 
magnetosphere of the Earth in the region outside the plasmasphere (see, e.g., Curtis, 
1978). However, the value of w~ /c 2 = 0.03 is very extreme rather than typical value of 
this parameter in this region (Hess, 1968; Bahnsen et al., 1985). More realistically we 
can set w~/c 2 = 0.004 (which corresponds to electrons with energies of the order of 
1 keV). If we assume as it was done above, II0 = 0 0 , Ae = 2, we obtain D:::::: 0.01 and 
the weakly relativistic value of we, equal to :::::: 0.4900. It seems realistic to distinguish 
experimentally this value of Wcr from the non-relativistic value Wcr = 0.500 , although 
serious problems may arise due to the uncertainty of the determination of other parame
ters of the magnetospheric plasma. 

When applying our equations to practical analysis of the waves in the magnetospheric 
and/or astrophysical plasmas we should remember the main restriction of our theory: 
I µI = 2(Y - 1)/N2 ~ l. In particular, our theory would not be valid for a very rarefied 
plasma when N 2 :::::: 1. Also, our theory is not valid when w is very close to 0 0 , i.e., when 
the increment of instability or decrement of damping of the waves is of the order of, or 
above I i!llw - n0 1. 
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6. Conclusions 

On the basis of asymptotic analysis of a generalized Shkarofsky function we have 
considered the problem of parallel whistler-mode propagation and marginal stability in 
a weakly relativistic plasma in the limit of a large wave refractive index N. In the low 
temperature limit relativistic effects do not influence on wave propagation provided 
N ~ 1. For~= - 0.924 we have generalized the expression for N obtained earlier by 
Sazhin (1989a). In contrast to Sazhin (1989a), it is pointed out that this expression 
depends on Ae, although this dependence is not strong when N Jr ~ 1. Relativistic 
effects result in the increase of the value of anisotropy for which the waves are unstable. 
It is pointed out that the degree of this increase could be observed experimentally in the 
conditions of the magnetosphere of the Earth. 
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