
The Radon Transform: First Steps 

N.M. Temme 

In this note we discuss some aspects of the Radon transform mentioned in the 
review of Helgason's book in this Newsletter. 

In short, the Radon transform of a function f (x,y) of two variables is the 
set of line integrals, with obvious generalizations to higher dimensions. It plays 
a fundamental role in a large class of applications which fall under the heading 
of tomography. In a narrow sense, tomography is the problem of reconstruct­
ing the interior of an object by passing radiation through it and recording the 
resulting intensity over a range of directions. It is the problem of finding f 
from the above mentioned line integrals and is related to the inversion of the 
Radon transform. 

Before discussing a simple example of how to compute the Radon transform, 
we will tell more about the background of the applications. In mathematical 
physics there is a notorious class of difficult problems: the ill-posed problems. 
The notion of a we/I-posed problem is due to Hadamard: a solution must exist, 
be unique, and depend continuously on the data. In ill-posed problems the last 
condition may be violated, and then important difficulties may arise, especially 
when the data are not complete or not accurate. Tomography falls in this class 
of ill-posed problems. 

Probably the most widely known applications of tomography are in medi­
cine. Computer assisted tomography (CAT-scan) uses X-rays directed from a 
range of directions to reconstruct the density in a thin slice of the body (the 
Greek word TOJ.WS means section). Recent advances in medical tomography 
include nuclear magnetic resonance (NMR), where strong magnetic fields are 
used to make hydrogen atoms resonate. One advantage over the CAT-scan is 
that the use of potentially harmful X-rays can be avoided. 

An important feature of the medical applications of tomography is its 
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'nondestructive' character. Also in industry there is a considerable need to 
investigate the integrity and remaining reliable lifetime of components and 
structures by using nondestructive evaluation. Once again the components are 
subjected to penetrating radiation with the aim of deducing information about 
their internal states. 

The search for oil depends heavily upon the analysis of seismic data. This is 
another example of the reconstruction of internal features of a body from 
monitored reflections of radiation or energy flows. 

The Radon transform is an interesting example of a mathematical problem 
that was considered and solved long before its applicability was seen. In fact, 
this problem, as well as its three-dimensional version, was solved by J. Radon 
in 1917 and later rediscovered in various settings such as probability theory 
(recovering a probability distribution from its marginal distributions) and 
astronomy (determining the velocity distribution of stars from the distribution 
of radial velocities in various directions). Of course, much work was needed to 
adapt the Radon inversion formula to the incomplete information available in 
practice. The computational solution of ill-posed problems of the form arising 
in the general area of tomography is a very active research topic in computa­
tional mathematics. Although the last decade has yielded very useful algo­
rithms, much work remains to be done; for instance in 3-D problems. At CWI 
research on reconstruction problems started quite recently. There are pro­
missing contacts with industry (on NMR and seismic problems) and with 
researchers from medical disciplines. 

To describe the role of line integrals in tomography we start with the equation 

I = I 0e-p.x, 

for the beam density of a narrow beam of X-ray photons through some homo­
geneous material, where I 0 is the input intensity (number of photons per 
second per unit cross-sectional area) and I is the observed intensity after the 
beam passes the distance x through the material. The linear attenuation 
coefficient µ depends, among other things, on the density of the material. This 
formula has to be changed for material that is inhomogeneous, where µ 
depends on a space parameter. In two variables the analogue of the above 
equation becomes 

I = I 0exp[ - J µ(x,y )ds ], 
L 

where the line integral is along the beam path L, which is parametrized by s 
(see figure 1 ). 

By moving the source and detector it is possible to obtain a set of line 
integrals. Taking logarithms, this constitutes a sampling of the Radon 
transform. Then an appropriate inversion or reconstruction algorithm is 
applied to recover an approximation to the attenuation coefficient distribution 
over a transverse section of some portion of the human body. 
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FIGURE 1. The beam passes through the region characterized by µ.(x,y) 
along the line L 

A typical coordinate system for setting up the Radon transform is the follow­
ing. A line Ls in R2 with distances from the origin 0 = (0,0) in x,y-plane is 
further characterized by an angle(} (see figure 2) 

FIGURE 2 

B = (scosO, s sin8) 
is a fixed point on L 

So each line has two parameters s, (} which look like polar coordinates, but in 
fact they are not: ifs = 0 different values of (} yield different lines L 0(8). 

Let A = (x,y) = (rcoscp,rsinc[>) (polar coordinates) denote a variable point 
on Ls(8). Then, if the distance from A to B equals t, we have 

f x = scos0-tsin8, 
1J = ssin8+tcos8. (l) 

To define the Radon transform we assume that f: IR 2~ R is continuous and 
integrable, and we write 

00 

Rf(s,8) = J j(x,y)dt, (x,y)ELs(B), (2) 
-co 
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where t appears in the above notation for (x,y)ELs(8). By allowing negative 
values of s, we can restrict the 0-domain to [0,'IT], since 

Rf(s,O) = Rf(-s,'IT+O). 

In practical problems f is compactly supported, that is f = 0 if r is large 
enough, say r;;;;:: 1. 

For higher dimensions a vector notation is very useful. For IR2 we start with 
the unit vector w with polar angle 0. So the point B in figure 2 can be written 
as the vector B = sw, with scalars. L0(0) runs through the origin and is paral­
lel with Ls(8). Let y EL0(0). Then wy = 0. So Ls(O) is characterized by the set 
of end points of vectors x that can be written as 

x = y +sw, with wy = 0, 

or as the set of end points of vectors x E!R 2 satisfying x·w = s. Hence, the 
Radon transform can be written as 

Rf(s,O) = J f(y +sw)dy = J j(x)dx, 
y·w=O x·w=s 

where, for convenience, we now suppose that the argument of f is a vector. 
The above definition is for x,y, wEIR2• However, by integrating over (hyper) 
planes, the same notation can be used for Rn. 

Especially fruitful is the introduction of the 8-function notation. Recall that 
this generalized function has the property 

00 

J f(x)8(x)dx = f (0) 
-oo 

for smooth functions f So the line integral over the X-axis can be expressed as 

00 00 00 

R/(0,0) = J j(x, O)dx = J { J j(x,y)8(y)dy}dy. 
-oo -oo -oo 

In general we can write 

00 

Rf (s,O) = J J f (x,y)8(s -xcosO-ysinO)dxdy 
-oo 

= j J f (x)8(s - x·w)dx, x EIR 2, 

and for n-dimensions we can use the same notation 

Rf (s,O) = j /f(x)8(s -x·w)dx, 

sER, x,wERn; 0 is now a (n - I)-dimensional vector contammg the polar 
angles for defining a (n - I)-dimensional hyperplane in Rn, and w is the 
corresponding unit vector. 
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ExAMPLE. Let/(x,y) = exp(-x2 -y 2) = exp(-r2). We use 
00 

J J j(x,y)o(s -xcosO-ysinO)dxdy. 
-oo 

The transformation (rotation) 

[~] -[ ~::o ::o] ~] 
yields directions of integration parallel and perpendicular to Ls(O). From 
x 2 +y2 = u2 +v2 (the mapping is an isometry), we obtain 

00 

Rf(s,O) = J Jexp(-u 2 -v2)o(s-u)dudv = y:;;e-s'. 
-oo 

On the other hand, using ( 1 ), r 2 = x 2 + y 2 = s 2 + t 2, and definition (2) we 
easily obtain the same result. It follows that the Radon transform of the Gaus­
sian distribution yields again a Gaussian. 

The theory of the Radon transform can be put in the framework of the Fourier 
transforms. Since for the latter inversion formulas are readily available, the 
inversion of Radon transformations is, in principle, established. Radon was not 
aware of this link with Fourier transformation, and he put the inversion in the 
following form: Let FQ(q) be the mean of Rf (s,O) over all Ls(8) on a distance 
q from a point Q = (x,y) = (rcos<j>,rsincf>), i.e., 

1 2,,. 
FQ(q) = -2 J Rj[q +rcos(cf>-0),0]d(}, 

'TT 0 

then 

1 00 

j(x,y) = -- j q- 1dFQ(q) 
'TT 0 

(3) 

(in the notation of a Stieltjes integral). 
The conditions on j are: continuous and compactly supported. For a recent 

elementary proof see NIEVERGELT [4]. 

For the pure mathematician this may give an end to the matter. For the 
applied mathematician there are two important difficulties: 

the inversion of Radon transforms is an ill-posed problem (inaccurate 
data may produce instabilities) 
the number of line integrals (i.e., data) is limited; also the directions ({}­
values) may be restricted to a narrow range. 

The numerical analyst usually applies algebraic inversion techniques for 
integral equations, instead of using the analytical inversion theorem. The 
latter, however, plays a fundamental role in diverse areas of Radon transfor­
mations and tomography, especially when it is written in terms of Fourier 
transforms. 

45 



For a very nice introductory monograph the reader is referred to DEANS [l]. 
The book of NATTERER [3] goes further in the direction of mathematical foun­
dation of this topic. The IEEE-Special Issue [5] gives an interesting introduc­
tion to both the mathematical and the applied aspects of tomography. In the 
references below excellent bibliographies are included. Recent contributions in 
which reconstruction is considered as a statistical problem by modelling both 
noise and the to be reconstructed object fas stochastic processes are described 
in VARDI ET AL. [6] and GEMAN and McCLURE [2]. 
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