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We prove the following theorem. Let G = ( V, E) be a planar bipartite graph, 
embedded in the euclidean plane. Let 0 and I be two of its faces. Then there exist 
pairwise edge-disjoint cuts C 1, ... , C, so that for each two vertices v, w with v, we 0 
or v, wel, the distance from v to w in G is equal to the number of cuts C1 

separating v and w. This theorem is dual to a theorem of Okamura on plane multi
commodity flows, in the same way as a theorem of Karzanov is dual to one of 
Lomonosov. © 1989 Academic Press, Inc. 

1. INTRODUCTION 

We prove the following theorem: 

THEOREM. Let G = ( V, E) be a planar bipartite graph, embedded in the 
euclidean plane. Let 0 and I be two of the faces. Then there exist pairwise 
edge-disjoint cuts 8(X, ), ... , 8(X1 ) so that for each two vertices v, w with v, 
we 0 or v, we/, the distance of v to w in G is equal to the number of cuts 
8(Xj) separating v and w. 

[Here, for X~ V, b(X) := {eeEI lenXI = 1 }, while D(X) separates v and 
w if I { v, w} n XI = L] 

Note that for any graph G, whatever collection of pairwise edge-disjoint 
cuts b(Xj) we take, for any two vertices v, w of G, the distance from v to w 
is always at least as large as the number of these cuts separating v and w. 
The point in the theorem is that we can get equality under the conditions 
given. 

This theorem is "dual" to a theorem of Okamura [9] on plane multi
commodity flows, in the same way as the results of Karzanov [ 4] are dual 
to those of Lomonosov [ 6, 7] on multicommodity flows, as we shall 
explain in Section 2 below. The theorem extends a result of Hurkens, 
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Schrijver, and Tardos [3], dual to a theorem of Okamura and 
Seymour [ 10]; this result restricts v, 11· to belong to only one fixed face. 

The theorem cannot be generalized to the obvious extension with more 
than two faces, as is shown by the complete bipartite graph K2 • 3 . This 
graph also shows that we cannot allow in the theorem above pairs v, w 
with v E 0 and w E I. 

2. RELATION TO MULTICOMMODITY FLOWS 

In this section we discuss a relation of the theorem above with multi
commodity flow problems. Let G = ( V, £) be an undirected graph. Let 
{ r 1 , s 1 } , ... , { r k, s d be pairs of vertices ( r, =F s; for i = 1, ... , k ). Suppose we 
wish to decide if 

there exist pairwise edge-disjoint paths P 1 , .. ., Pk so that P; 
connects r; and s; (i = I, ... , k ). (I) 

Clearly, the following "cut condition" is a necessary condition: 

each cut o(X) separates at most I o(X)I of the pairs r;, s;. (2) 

Now Lomonosov [6, 7] (extending earlier work by Menger [8], Hu [I], 
Rothschild and Whinston [ 12 ], Papernov [ 11 ], Seymour [ 15] ), 
Okamura [9] (extending earlier work by Okamura and Seymour [I 0] ), 
and Seymour [ 16] showed the following three results, each of which uses 
the following "parity condition": 

for each vertex v, I b( { v}) I + I {i I v E { r ,, s;} } I is even. ( 3) 

Lomonosov's theorem. If 

the graph H := ( {r 1 , s 1 , ... , rb sd, { {r 1 , s 1 }, ... , {rb sd}) has at 
most four vertices, or is isomorphic to C 5 (the circuit with 
five vertices), or contains two vertices v, w so that { v, w} n 
{r;,s;}#0foralli=1,. .. ,k, (4) 

then the cut condition (2) and the parity condition (3) together imply (1 ). 

Okamura's theorem. If 

G is planar, so that there are two of its faces, 0 and I, with for 
each i= 1, .. ., k: r;, s;E 0 or r;, s;El, (5) 

then the cut condition (2) and the parity condition (3) together imply ( 1 ). 

582b.•46. 1-4 



48 A. SCHRIJVER 

Seymour's theorem. If 

the graph ( V, E u { { r 1, s 1 }, ... , { r k> s k } } ) is planar, ( 6) 

then the cut condition (2) and the parity condition (3) together imply ( 1 ). 

A consequence of these results is that if ( 4 ), ( 5 ), or ( 6) holds, and if, 
moreover, the cut condition (2) holds, then there exist paths P'1 , P~, ... , P'1,, 
PZ so that both P; and P;' connect r; and s; (i = 1, .. ., k) and so that each 
edge of G is in at most two of the paths P;, P;', .. ., Pk, PZ. (This follows by 
duplicating each edge of G and each pair {r;,s;}, after which (2) and (3) 
hold.) 

Hence, if ( 4 ), ( 5 ), or ( 6) holds, and if c E Q ! (a "capacity function") and 
d E Q~ (a "demand function") so that 

for each X£ V, L (c.,I e E t5(X)) 

;::;: L ( d; I i = 1, .. ., k; X separates r; and s ;), (7) 

then there exist paths Pl. .. ., P~1 , P~, .. ., P~2, .. ., PL .. ., P~ (where each P{ 
connects r; and s;) and rationals .A.L .. ., .A.\1 , A.~, .. ., .A.~2 , •• ., .A.L .. ., .A.~k;::;: 0 so that 

k t; 

2= 2= .A.f ~c, 
i=l .i= 1 

ee p.1 
I 

1, 

2= .A.f=d; 
.i=l 

(eE £), 

(8) 

(i=l,. . .,k) 

(a "multicommodity flow"). (For (5) this is a result of Papernov [ 11 ].) 
(This result follows from the result in the previous paragraph, by observing 
that we may take, without loss of generality, c and d to be integral; and 
hence we can replace each edge e of G by c e parallel edges, and each pair 
{r;, s;} by d; parallel pairs, after which we apply the previous result.) 

In polyhedral terms, this statement is equivalent to: if (4), (5), or (6) 
holds, then the cone of vectors ( d; c) E ii) k x Q E defined by the linear 
inequalities 

(i) L(celeEb(X));;;:L(d;liEp(X)) 

(ii) d;~O 

(iii) Ce;::;: 0 

(X£ V), 

(i = 1, .. ., k), 

(eEE) 

(9) 
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(where p(X):={i=l, ... ,klXseparates r; and s;}), is equal to the cone 
generated by the following vectors: 

(i) (i:;; XP) 

(ii) (0; i:,.) 

(i= 1, ... , k; P r;-s;-path), 

(ee £). 
( 10) 

(Here i:; denotes the ith unit basis vector in Qk; ee denotes the eth unit 
basis Vector in iQE; Xp is the incidence VeC!Or Of p in iQE, i.e., Xp(e) = 1 if 
e E P and = 0 otherwise.) 

By polarity, this last statement is equivalent to: if (4), (5), or (6) holds, 
then the cone of vectors (b; 1) e !Qk x iQE defined by the linear inequalities 

(i= 1, ... , k; P r;-s,.-path), 
t•EP ( 11 ) 

(ii) "· ~ 0 (eeE), 

is equal to the cone generated by the following vectors: 

(i) ( _ Xp(.\'j; x'l(X)) (Xs V), 

(ii) (e,.; 0) (i = 1, .. ., k), (12) 

(iii) (O; e,,) (e E £). 

Note that ( 11 )(i) just means that -b; is a lower bound for the distance 
from r; to s,., taking l as a length function. So the statement is equivalent 
to: if ( 4 ), ( 5 ), or ( 6) holds, then for any "length function" l: E-+ IQ+, there 
exist subsets X 1 , .•• , X, of V and rationals µ 1 , •• ., µ,~O, so that 

(i) L (µiii= 1, .. ., t; ie p(Xi)) ~dist,(r;, s,.) 

(ii) L(µJIJ=l, .. .,t;eeb(Xi))~le 

(i = 1, .. ., k), 

(e EE). 
(13) 

[Here, dist, denotes the distance, taking l as a length function. Note that 
equality in (i) can be derived from (ii).] 

Now Karzanov [ 4] showed that if ( 4) holds, and if l is integral, we can 
take the µi half-integral. In fact, he showed that if l is integral so that each 
circuit of G has an even length, we can take the µi integral (thus extending 
work of Hu [2] and Seymour [13]). Equivalently, if G is bipartite and (4) 
holds, then there exist pairwise edge-disjoint cuts b(Xi), .. ., b(X,) so that for 
each i = 1, ... , k, the distance from r,. to s,. is equal to the number of cuts 
b(Xi) separating r; and s,.. (The equivalence follows in one direction by 
taking le= 1 for each edge e, and in the other direction by replacing each 
edge e of length le by a path consisting of le edges.) 

The theorem to be proved in this paper is similar, but now with respect 
to Okamura's condition (5) instead of Lomonosov's condition (4). Note 
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that in a similar way as above, a fractional version of Okamura's theorem 
can be derived from our theorem. (For more on the duality of path and cut 
packing, see Karzanov [ 5].) 

Professor A. V. Karzanov communicated to me that a similar theorem 
with respect to Seymour's condition ( 6) can be derived from 
Seymour [14]. 

3. PROOF OF THE THEOREM 

Suppose that the theorem is not true, and let G be a counterexample 
with 

I 2"1Fl as small as possible, (14) 
f"# 0.1 

where the sum ranges over all faces Ft= 0, !, and where e(F) denotes the 
number of edges surrounding F. We may assume that 0 is the unbounded 
face. 

G has no multiple edges: otherwise, either the circuit C formed by them 
is a face, in which case we can delete one of the edges, thereby decreasing 
sum ( 14 ), or C contains edges both in its interior and in its exterior, in 
which case the graph formed by C and its interior or the graph formed by 
C and its exterior yields a counterexample with smaller sum (14 ). 

We first show: 

CLAIM I. Each face Ft= 0, I forms a quadrangle (i.e., e(F) = 4 ). 

Proof of Claim 1. Let F be some face forming a k-gon, with k ¥= 4. Since 
G is bipartite and has no parallel edges, k is even and k ~ 6. We make a 
counterexample with a smaller sum than ( 14) as follows. Let v 1 , ••• , v k 

be the vertices surrounding F. Add, in the interior of F, new vertices 
w1,. .. , w(l/Zlk-Z and new edges {v 1, wi}, {vk 1, wi}, {w;, W;+i} 

(i= 1, ... , !k-3), and {w1112 ik- 2 , v(lf2ld· E.g., fork= 10, 

vlO 

VI 

VB v2 V8 

F becomes 
(15) 

v7 v3 v7 

v6 v4 v6 

vs 
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Note that this modification does not change the distance between any two 
vertices of the original graph. Therefore, after this modification we have 
again a counterexample to the theorem, with, however, a smaller sum than 
( 14) (since 2k > 2k - 2 + 2k 2 + 24 ), contradicting our assumption. I 

Next we show: 

CLAIM 2. Let F be a face, with F#O,J, and let e1 ={v 1,v 2 }, 

e2 = {v 2 , v3 }, e3 = {v3 , v4 }, e4 = {v 4 , v1 } he the four edges surrounding F. 
Then there exist vertices v, II', with P, w E 0 or v, w EI, and a shortest path 

ff"om v to w which uses both e 1 and e2 • 

Proof of Claim 2. Suppose no such v, 11' exist. Identify v1 and v3 , e 1 and 
e 2 , and e 3 and e 4 . So 

vloel v., 

e4 F' e2 

v 4 e3 v_l 

becomes v ::::;;v 
1 J 

( 16) 

E;• =t~ 
l 4 

After this modification, all distances between vertices v, w on 0 and 
between vertices v, w on /, are unchanged. Hence, the new graph is again a 
counterexample. However, the sum ( 14) has decreased, contradicting our 
assumption. I 

Now we define dual paths Q 1 , ••• , Q" i.e., paths (including circuits) in the 
(planar) dual graph of G. These dual paths are determined by the following 
properties: each edge of the graph occurs exactly once in Q 1 , •• ., Q 1 ; if 
F( #0, /) is surrounded by the edges e 1 , e 2 , e 3 , e4 (in this order), then 
e 1 , F, e 3 (or e3 , F, e 1 ) will occur in exactly one of the Q1 ; the faces 0 and I 
only occur as beginning or end faces in Q 1 , •.• , Q 1• 

More precisely, Q 1 , •.• , Q 1 are all possible sequence of the form 

( 17) 

satisfying: (i) for i= I, ... , k: e; is an edge separating the faces F; 1 and F;; 
(ii) for i = I, ... , k - 1: F;I/: { 0, /} and e; and e;+ 1 are opposite edges of F;; 
(iii) either F0 = Fk ~ { 0, I} and e1 and ek are opposite edges of F0 , or 
F0 ,FkE{O,/}; (iv)k~I. If F0 =Fk~{O,l}, we identify all possible 
sequences obtained from ( 17) by cyclically shifting it or by reversing it. If 
F0 , Fk E { 0, /}, we identify ( 17) with its reverse. Here edge e is said to 
separate faces F and F' if F and F' are the faces incident to e (possibly 
F = F' ). Clearly, in the way described the edges of G are partitioned into 
dual paths and circuits. 
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Consider now some fixed Qi?, represented by { 17 ). Let for each 
i=l, ... ,k, V; and w; be vertices so that e,.={v;,w;} and so that if we 
would orient the edges surrounding F; clockwise, then e,. is oriented from 
v,. to W;. Then f; := { V;, t';+ 1 } and g; := { w;, W;+ 1 } are also edges of G 
(i = 1, ... , k - 1 ). So 

(18) 

is the path along Qi? "on the right side," and 

(19) 

is the path along Qg "on the left side." 

CLAIM 3. For all i, j E { 1, ... , k}: dist(v;, v;) = dist(w,., w), where dist 
denotes distance. 

Proof of Claim 3. Suppose to the contrary that dist(v;, v;) =I dist(w;, w1) 

for some i, j. Choose such i, j so that i <j and j- i is as small as possible. 
By symmetry, we may assume that dist(v,., v1) < dist(w 1, wJ As G is 
bipartite, j - i ~<list( W;, w;) ~ dist(v,., v1 ) + 2 ~ 2. 

Let 

(20) 

be a shortest v;-V;-path, for some string a. Since dist(w,.,w;)?= 
dist(v;, v1) + 2, it follows that 

{21) 

is a shortest w1-w1-path. Consider the circuit (see Fig. 1) 

(22) 

:'..L.., 
',P 

',, w1. g 1. w g w w ('! w g w. 
i+l i+l i+~ ____________ i-2 "j-2 j-1 j-1 J 

FIGURE l 
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C is a simple circuit, i.e., no vertex occurs twice in (22 ), except for the 
beginning and end vertex. Indeed, all vertices in (20) are distinct, as it is a 
shortest path. Moreover, all vertices v,, v1+ 1 , ••• , v, are distinct, except 
possibly i·, = V/ if vP = v4 with i :% p < q :%j, then dist(vp, v4)=0< 
dist(wP, w") (since G has no parallel edges), and hence, by the minimality of 
}- i, q - p ;?;j- i; that is, p = i and q = j. Suppose finally, a= (a', v", a") for 
some strings a', CJ" and i+ 1 :%q:%}- l. Then dist(v,, v4 )+dist(v4 , v1)= 
dist(v,, t'J (as v" is on the shortest v,- v,-path (20), and hence, 
dist(v,, v") + dist(v,1 , v) = dist(v,, v) < dist(w,, w) :% dist(w,, w") + 
dist(w,,, wJ Therefore, dist(v,, v") < dist(w,, w") or dist(v", v) < 
dist( w,1 , wi), contradicting the minimality of}- i. 

By Claim 2, there exist vertices v and w, either both on 0 or both on I, 
and a shortest v - w-path P with 

(23) 

where p and r are strings. Hence, the path 

P' :== (v, p, tvr, gi, i-v 1+ 1 , e 1+ 1 , v1+ 1 , r, H. 1 ) (24) 

is also a shortest v - w-path. Since 0, If/=. { F,, ... , F1 __ 1 } (as 1 :% i <} :% k ), we 
are in one of the following four cases (as either both v and ware enclosed 
by C (Cases 1 and 2) or not (Cases 3 and 4)). 

Case 1. (v, p) and (v,, CJ, vi) have a vertex in common, say u, 

(v,p)=(p',u,p"), 
(25) 

for (possibly empty) strings p', p", a', CJ". Then 

(p', u, (a') 1, e;, tvi, gi, lt'i+ 1 , ei+ 1 , V;+ 1 , r, vv) (26) 

also would be a shortest v - w-path, since ( w,, e ,, a', u) is a shortest 
w1-u-path (as it is part of (21)). But then 

(p', U, (G 1
) 1,_t;, V;+ I, r, w) (27) 

would be an even shorter v - w-path, which is a contradiction. 

Case 2. ( v, p) contains one of the edges e, + 1 , ••• , eJ _ 1> say (v, p) = 
(p', vP, e P' wP, p") for some p with i + 1 :%p :%}- 1 and certain (possibly 
empty) strings p', p". Substitution in P gives: 

(28) 
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Since Pisa shortest v-w-path, it follows that dist(w1,, w;) <dist(vp, v;), 
contradicting the minimality of j - i. 

Case 3. (r, w) and (v;, a, v1) have a vertex in common, say u, 

(r, w) = (r', u, r"), 
(29) 

(v;, a, v1) =(a', u, a"), 

for (possibly empty) strings r', r", a', a". So 

(30) 

is not longer than 

(31) 

(since (30) is part of the shortest path P' ). Hence, substituting (31) by (30) 
in (21 ), 

(32) 

is a shortest w ;- wrpath. In particular, <list( V; + 1 , v) < dist( w; + 1 , w), 
contradicting the minimality of)- i. 

Case 4. (r, w) contains one of the edges e;+ 1 , ••• , ei _ 1 , say ( r, w) = 
(r', vP, eP' wP, r") for some p with i +I ~p ~)-I and certain (possibly 
empty) strings r', r". Substitution in P gives: 

P=(v, p, W;, g;, W;+ 1, e;+i• V;+ 1, r', v1,, eP' w,,, r"). (33) 

Since P is a shortest v - w-path, it follows that dist( v; + 1 , vp) < 
dist( w; + 1 , w p), contradicting the minimality of j - i. I 

A consequence of Claim 3 is that Qli will have no self-intersections: if 
F;=Fi with i=/:j and i-j#k, then v;=Vi+ 1 , w;#-wi+l• or V;+ 1=vi, 
w;+i =/:.w1, as one easily checks. This contradicts Claim 3. 

Another consequence of Claim 3 is: 

no shortest path has more than one edge in common with Qir. (34) 

Next we show: 

CLAIM 4. Each Qir connects 0 and I. 

Proof of Claim 4. Suppose Qli does not connect 0 and /, for some 
g= 1, ... , t. Then Qir connects 0 with 0, or connects I with/, or is a circuit. 
That is, the edges in QI? form a cut b(X), for some X s; V. 
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I. We first show for each v, w E V that for each v - iv-path P there 
e::xists a v - w-path P' so that 

length(P' )- int(P', Q;:) ~length(?) - int(P, Qg), and 

int(P', Qg)~ I, (35) 

v-rhere int( ... , Qg) denotes the number of edges in ... in common with Qg. 
-Jbis is shown by induction on length (P). If int(P, Q;:l ~ 2, there exist i,j 
50 that P= (p, 1';, e;, H';, <I, wi, e;, vi, r) for strings p, <I, r, where <I does not 
n9ve any edge in common with Qg (we use the notation introduced before 
claim 3; maybe V;, vj and W;, wj are interchanged). Since by Claim 3, 
dist(w;,l1'1 )=dist(v;,V;), there exists a t'-w-path P with length(P)~ 
ieogth(P)- 2 _and int(P, Q!() ~ int(P, Qg )- 2. Applying the induction 
nJPOthesis to P implies the statement above. 

II. Now contract all edges ocurring in Qg. This gives a smaller 
bipartite graph G'. For the new distance function <list' in G' we have 

dist'(v, w) =dist(v, w)-1, 

dist'(t', w) = dist(v, w), 

if X separates v and ll', 

otherwise. 
(36) 

To see this, it suffices to show that <list' ( u, ll') ~<list( u, w) - I for all v, w (by 
t ne bipartiteness of G and G' ). Let fl be a shortest v - w-path in G'. It 
corresponds to a v - w-path Pin G with length(P)- int(P, Qg) = length(fl). 
Hence, by I above, there exists a v - w-path P' in G so that 
length(?')- int(P', Qg) ~ length(fl) and int(P', Qg) ~I. Hence, dist(v, w) ~ 
:ength(P')~length(ll)+ 1 =dist'(u, w)+ 1. 

By the minimal property of G, in G' there exist pairwise disjoint cuts 
5 ( X 1 ), ... , 6(X,) so that for all pairs of vertices v, w both on 0 or both on !: 

dist'(u, w) =I {i = 1, ... , t' IX; separates v and w} I. (37) 

;o by (36 ), taking X, + 1 := X, in G we have for all such v, w: 

<list( v, 11·) = I { i = 1, .. ., t' + 1 I X; separates v and w} I. ( 38) 

\.. s 6(X 1 ), .. ., <l( X,, 1 ) are pairwise disjoint, G is not a counterexample to 
he theorem, contradicting our assumption. I 

Our final claim will complete the counterexample: 

CLAIM 5. No two distinct Q; and Q, have a face F # 0, I in common. 

Proof of' Claim 5. Suppose· to the contrary 

Q;= (0, <I, F, <p), 

Q;= (0, r, F, tj;), 
(39) 
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for strings <J, <p, r, tf;, and face F-¥- 0, I (i ¥-j). We may assume that a and r 

do not have a face in common (by taking (39) so that a and r have 
minimal length). This gives the following situation 

, 

/ 

0 

, 
/ 

/ 

, 
/ , 

) ) 

v2 el vl_ ____ 
~-----<->- - - - - - - - - - - - - - - ...,_-,__--=-o---0-

e 
2 

F e4 

v3 I e3 

'74 _____ 

I 

D-----c:i-- - - - - - - - - - - - - -o------0----0 

I I 

'P 
I 
I 

Qi 

(40) 

Qi 

We may assume that e 1 is the last symbol of <J and that e2 is the last 

symbol of r. By Claim 2, there exist vertices u, w, both on 0 or both on !, 
and a shortest v - w-path P using e2 and e 3 : 

( 41) 

As P is a shortest v - w-path, with u, w E 0 or u, w E /, P has at most one 

edge in common with each of the Q1: ( g = 1, .. ., k) (by ( 34) ). Since P crosses 

both Q, and Q, at F, while the vertex v2 is contained in the set of vertices 

enclosed by the dual circuit ( 0, <J, F, r 1, 0 ), P should also have its 

beginning vertex v inside of this circuit. So v is on 0, and hence also w is 

on 0. 
Since P has exactly one edge in common with Q;, it follows that P is 

homo topic (in the space obtained from the euclidean plane by deleting the 

interiors of O (=unbounded face) and /) to the v - w-path P' which 
follows the boundary of 0 and which contains the first edge of Q;. 

Similarly, P is homotopic to the v - w-path P" which follows the boundary 
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of 0 and which contains the first edge of Q;. Since v is inside of the circuit 
(0, a, F, ,- 1, 0), while w is outside of it, P' is not homotopic to P", a 
contradiction. I 

Claim 5 implies that there are no faces other than 0 and I (any other 
face would belong to two different Q; and Q;). So G is a simple circuit, for 
which the theorem trivially holds. · 
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