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1. PROLOGUE: THE ASSIGNMENT PROBLEM 

The assignment problem is a special case of the "transportation problem" 
introduced by KANTOROVICH [1939] and KOOPMANS [1948]: 

Assignment problem :Given an n Xn -matrix C=(cu), (1) 
n 

find a permutation w of {1, · · · ,n} such that ~; = 1 c;", is minimal . 

This problem shows up in several situations, like when one has to assign jobs 
to workers or machines, rooms to guests, etc. Since there exist n! permutations, 
solving ( 1) by enumerating all permutations is not recommendable. 

In fact, Kantorovich and Koopmans studied the following linear program
ming problem: 

n 

minimize ~i,j =I C;jXij (2) 

subject to: (i) xu~O (i,j = 1, · · · ,n), 

(ii) ~n X··=l j=I I) 
(i = 1 · · · n) 

' ' ' 
(3) 

(iii) ~;=1 xu=I (j=l,···,n). 

The equivalence of (1) and (2) follows from the following theorem of BIRKH

OFF [1946]. An n X n-matrix A =(au) is called doubly stochastic if A is nonne
gative, and each row sum and each column sum is equal to 1. So A is doubly 
stochastic if and only if A satisfies the constraints (3) (taking xu=au)· A per
mutation matrix is a 0,1-matrix having in each row and in each column exactly 
one I. 
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'JimoREM 1. A matrix is doub'/y stochastic if and only if it is a convex combina
tion of permutation matrices. 

PROOF. Since each permutation matrix is doubly stochastic, the 'if part of the 
theorem is clear. 

The 'only if J,,art is proved by induction on the order n. Let P be the 
polytope (in Rn n) of doubly stochastic matrices. Let Q be the convex hull of 
all permutation matri~ (so _Q~Rnxn)· Having t.o sh~w P~q. asswp~ P~Q. 
Then P has a vertex X =(x;j) which 1s not contain~ m Q. Smee X. 1s aver
tex of P, x• satisfies n2 linearly independent constramts among (3) with equal
ity. As the 2n constraints (ii) and (iii) in (3) are dependent, we know that at 
least n 2 -(2n -1) constraints among (3) (i) are satisfied by x• with equality. 

So x• has at least n 2 -2n + 1 zeros. Hence x· has a row with n -1 zeros, 
and 1 one. Without loss of generality, xi1 =1. Hence x;1 =O (i*l) and 
xii=O (j*l). So the submatrix B of x• obtained by deleting the first row 
and the first column of x•, is doubly stochastic. By our induction h}'Pothesis, 
Bis a convex combination of permutation matrices. Therefore, as x 11 =1, x• 
itself is a convex combination of permutation matrices. So x• belongs to Q, 
contradicting our assumption. 0 

The relation between problems (1) and (2) will now be clear: We may assume 
that (2) achieves its minimum value in a vertex of the polytope defined by (3), 
which is, by Theorem 1, a permutation matrix. The corresponding permuta
tion is an optimum solution for the assignment problem (1). 

As a consequence, DANTZIG's simplex method [195la, 195lb] for linear pro
gramming contains as a special case an algorithm for the assignment problem 
(note that the simplex method always gives an optimum vertex solution). 

VoN NEUMANN [1953] raised the question of solving the assignment problem 
in po'/ynomial time. More precisely, if C is integral, can we solve problem (1) 
in time bounded by 

p(~~j=l log(lcijl+ 1)) (4) 

for some fixed polynomial p? The sum in ( 4) is about the space needed to state 
the input of the assignment problem in binary notation (the.logarithms have 
base 2). A polynomial-time algorithm may mean a considerable reduction of 
computing time over checking all n! permutations . 
. Von Ne~·s problem was solved by KUHN [1955], giving a polynomial

time algonthm for the assignment problem. This method is based on earlier 
work of EGERVARY [1931] and is therefore called the Hungarian method. 

Only recently one was able to prove that also (a variant of) the simplex 
method gives a polynomial-time method for the assignment problem (BERTSE
KAS [1981], BALINSKI [1985D. 
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2. A MORE COMBINATORIAL SETTING: THE PERFECT MATCHING POLYTOPE OF A 

BIPARTITE GRAPH 

This section contains just a reformulation of parts of Section 1 in terms of 
graphs. Let, for n EN, 

Vin :={l, · · · ,2n}, (5) 

En,n :={{i,j}li=l, · · · ,n;j=n+l, · · · ,2n}. 

The pair (V2n,En,n) is called a complete bipartite graph, and is denoted by Kn,n· 
The elements of V 2n and of En,n are called the vertices and edges, respectively, 
of the graph. 

One may represent the vertices by points, or small circles, in the plane, and 
the edges by line segments connecting the two points which they contain. So 
K 3,3 may be represented by: 

1 3 (6) 

4 6 

A subset M of En,n is called a perfect matching if each vertex is contained in 
exactly one edge in M. Consequently, IMl=n. E.g., {{1,4}, {2,6}, {3,5}} is a 
perfect matching in K 3,3. 

One easily sees that the assignment problem (I) is equivalent to: 

given c :En,n~O, find a perfect matching M minimizing ~eEMce • (7) 

Now let for an; subset Y of a set X, the incidence vector xy be the vector (or 
function) in R satisfying xY(x)=l if xEY and =O otherwise. Define~ to 
be the E collection of incidence vectors of perfect matching in Kn,n (so 
~ ~R ... ::::::Rnxn). Then the assignment problem (1) becomes: 

min {cr xlx E~}. (8) 

This is clearly equivalent to 

min {cTxlxE conv.hull (~)}. (9) 

The set conv. hull (~) is called the perfect matching polytope of Kn,n· In 
terms of the perfect matching polytope, Birkhoff's theorem (Theorem 1) says: 

COROLLARY la. The perfect matching polytope of Kn,n is equal to the set of vec
tors x in RE ... satisfying: 

Xe;;;a.O (eEE), 

(v E V). 
(10) 

eEE"',, 
vee 
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PROOF. Directly from Theorem 1. D 

Equivalently, (8) has the same optimum value as 

min (cT xlx satisfies (10)} , 

A. Schrljver 

(11) 

thus describing again the assignment problem as a linear programming prob
lem. 

3. THE "NONBIPARTITE" CASE 

We now go into a more difficult situation. Define, for n EN, 

Vn : = { l, · · · ,n} , (12) 

En:== {{i,j}ji,j, · · · ,n; i=f:.j}. 

The pair (Vn,En) is called a complete graph. and denoted by Kn· Again the ele
ments of Vn and En are called the vertices and edges, respectively, of the graph, 
and may be represented again by points and line segments in the plane. So K6 
is as follows: 6 I 

(13) 

5 2 

Again, a subset M of En is called a perfect matching if each vertex is in exactly 
one edge in M. So !Ml= ; n. Rg., { { 1,2}, {3,5}, { 4,6}} is a perfect matching 

in K6. For even n, the graph Kn contains (n -l)(n -3)(n -5) ... 3.1 different 
perfect matchings. 

The nonbipartite assignment problem now is: 

given ceQE•, find a perfect matching Min Kn minimizing ~eEMCe. (14) 

This problem occurs when we want to split a set optimally into pairs, e.g. air
craft crews or room mates. It also shows up as subproblem in certain methods 
for routing problems, e.g. the travelling salesman problem and the Chinese 
postman problem ( cf. Section 7). 

In order to solve (14), we can try to formulate it as a linear programming 
problem. Let the perfect matching polytope P of Kn be the convex hull of the 
incidence vectors of all perfect matchings in Kn. So P (;;RE •. Then the nonbi-
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assignment problem is equivalent to: 

min{cT xlx is the incidence of a perfect matching in Kn} = (15) 

min{cT xlxEP}. 

an describe P as the solution set of a system of linear inequalities, we 
:14) as an LP-problem. Note that the system: Xe~O(eEEn), 

= 1 (v E Vn) is not enough, as is shown for K6 by taking Xe = ; for 

ige e drawn in 6 I 

(16) 

2 

3 
= 0 for all other edges. Then x satisfies the constraints mentioned, but x 
i the perfect matching polytope. 
stem fully describing the perfect matching polytope was given in a 
paper of EDMONDS [1965]: 

!M 2. The perfect matching polytope of Kn =(V,E) is equal to the set of 
" in RE satisfying: 

(i) Xe :;;;;i:O ( e EE}, 

(ii) ~e3vxe=l (vEV}, (17) 

(iii) ~ee8(W)xe:;;;;i:I (Wc;;,V,IWI odd). 

( W) denotes the set { { i,j} EE Ii E W, j fl W}. ) 

The proof extends the proof of Theorem 1. Let Q be the perfect 
Lg polytope of Kn and let P be the solution set of ( 17). We have to 
iat P = Q. Since each incidence vector of a perfect matching clearly 
(17), we have Q c;;,P. The converse inclusion is shown by induction on 

:ly, we may assume that n is even: for n odd both P and Qare empty 
ipty as inequality (iii) in ( 17) is unsatisfiable for W = V). 
ose P </, Q, and let x • =(x; le EE) be a vertex of P not contained in Q. 
s a vertex, there exist <2) linearly independent constraints in (17) which 

died by x· with equality. We consider two cases. 

No constraint in (17) (iii), with 3~IWl~n -3, is satisfied by x· with 
, . Note that if I WI= 1 or if I WJ = n -1, constraint (iii) follows from (ii). 
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So it follows that there are (2) linearly independent constraints among (i) and 

(ii) satisfied by x • with equality. at least <2)-n constraints in (i) are satisfied 

with equality. Let 

F := {eeEjx;>O}. (18) 

So IFl~n. Note that by (ii), V= UF. Case 1 now splits into two cases. 
CASE lA. There exists a vertex, say n, which is contained in exactly one 

edge in F, say in {n-1,n}EF. Then x{n-1,n} =l, and hence by (ii), 

x{i,n-1} =x{i,n) =O for i=l, · · · ,n -2. Then .X:=(x;jeeE11 -2) satisfies (17) 
for the case n - I, as one easily checks. Hence, by our induction hypothesis, x 
is a convex combination of incidence vectors of perfect matchings in K,. - 2 • 

Therefore, x • itself belongs to Q, contradicting our assumption. 
CASE lB. Each vertex is contained in at least two edges in F. Since IFl~n, 

it follows that each vertex is in exactly two edges in F. So we may assume 
that F contains {l,2},{2,3}, {3,4}, ... , {k -1,k }, { k, 1} for some k = 1, · · · ,n 
(possibly after renaming 1, · · · ,n). Then k is even (otherwise (17) (iii) is 
violated for W: = { 1, · · · ,k} ). However, by resetting: 

x;:= x;+£ fore={l,2},{3,4},{5,6}, · · · ,{k-1,k}; (19) 

:= x; 
fore ={2,3},{4,5},{6,7}, · · · ,{k-2,k-l},{k, l}; 

for all other edges , 

for each£ near enough to 0, gives again a solution of (17). This contradicts the 
fact that x • is a vertex of P. 

CASE 2. There exists a constraint in (17) (iii) which is satisfied by x· with 
equality, with 3~IWl~n -3. Without loss of generality, W={l, · · · ,t}, 
with t odd. Then define y =(yele eE1 +1) as follows: 

Ye:=x; ife~{I,···,t} 

Ye==~J=r+I x(i,j) if e={i,t +1} for some ie{l, · · · ,t}. 
(20) 

It follows thaty satisfies (17) for the case Kr+I· (Note that ~e 3r+1Ye=l, as 
x • satisfies (17) (iii) for W with equality.) So by our induction hypothesis, y is 
a convex combination of incidence vectors of perfect matchings in K, + 1, say 

y = ~ >w~' (21) 
M perfect matching in K, + 1 

with ~w ~O and ~>w = 1. 
Similarly, define z =(ze I e EE,e ~ { t, · · · ,n}) as follows: 

• ze:=xe ifec;{t+l. · · · ,n}, 
t (22) 

ze: = ~ x(i,J} if e = {t,j} for some j E {t + l, · · · ,n }. 
i=I 

Then z satisfies (17) for the case Kn-t+I (taking V={t, · · · ,n}). Again, by 
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induction, z is a convex combination of incidence vectors of perfect matchings 
on {t, · · · ,n }, say 

Z = ~ P.Mx!" , (23) 
M perfect matching on { t, · · · ,n} 

with P.M~o and 2.µ.M= 1. 
Now let for each perfect matching Mon {1, · · · ,n} with IMnB(W)i=l, 

say M n~(W)= {i',j'}, with 1:E;;;i':E;;;t,t+1 :E;;;j':E;;;n, the perfect matchings M' 
and M" on {l, · · · ,t + 1} and on {t, · · · ,n }, respectively, be defined as fol
lows: 

M' :={{i,j}EMl{i,j}~{l, · · · ,t}}U{{i',t+l}}, (24) 

M" :={{i,j}EMl{i,j}~{t+l, · · · ,n}}U{{t,j'}}. 

One easily checks that 

AM'P.·M" _.M x• = ~ ~ ll 
ee8(W) M ~ect matching Xe 

Mn8(W)={e} 

(25) 

and 

AM'/LM" 
~ ~ * = 1. (26) 

ee8(W) M perfect matching Xe 
.Mn8(W)={e} 

Thus we have written x • as a convex combination of incidence vectors of per
fect matchings on { 1, · · · ,n }, contradicting our assumption. D 

In fact, Edmonds obtained this theorem as a by-product of a polynomial-time 
algorithm for the nonbipartite assignment problem. Note that, by the theorem, 
the nonbipartite assignment problem can be formulated as a linear program
ming problem. One should however be careful in applying LP-methods too 
directly: there are exponentially many constraints in (17), so writing down the 
program explicitly cannot be done in polynomial time. We shall see in the fol
lowing section that this problem can be overcome. 

4. THE ELLIPSOID METHOD 

In the previous sections we studied optimization problems of the form: 

min{crx lxES}, (27) 

where S is a finite set of vectors in on, and where c EOn. In fact, each set S 
consisted of 0,1-vectors. 

Since (27) is equal to 

min{cT x lxE conv.hull(S)}, (28) 

we characterized conv. hull (S) by means of linear inequalities. We now shall 
see that this approach is, at least implicitly, unavoidable: roughly speaking, 
problem (27) is solvable in polynomial time, if and only if we can describe 
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conv. hull (S) appropriately by linear inequalities. This is a result following 
with the ellipsoid method 

KHACHIYAN [1979] showed that the ellipsoid method solves linear program
ming in polynomial time, thus solving a long-standing open problem (the siin
plex method, though fast in practice, has exponential running time in the worst 
case). 

To apply the ellipsoid method in combinatorial optimization, let us define a 
graph property G to be a sequence (~, ~. ~ •... ) where 

~~~En) (29) 

for n = 1,2,3, · · · . Recall that En= { { i,j} I i,j e { 1, · · · ,n },i:;C:j}. So each ~ 
is a collection of subsets of En. Examples of graph properties are obtained by 
taking for n = 1,2,3, · · · : 

~: = {MI M is a pedect matching in Kn} 

(so ~ = 0 if n is odd); 

~:={TIT is a spanning tree in Kn} 

(30) 

(31) 

(T is called a spanning tree in Kn if for all i,j= 1, · · · ,n there exist ii. · · · ,i1 

so that {i,ii},{ii.i2 }, • • ·, {i1-i.i1},{i,,j}eT (a path) and if T contains no 
'circuit' {i1>i2 }, • • ·, Vt-1>i1},{i,,ii} with t~3 and ii. · · · ,i1 all distinct); 

~: = {HI H is a Hamiltonian circuit in Kn} (32) 

(H is called a Hamiltonian circuit in Kn if we can permute 1, · · · ,n to 
ii>··· ,in SO that H={ii.i2}, · · ·, {in-i.in},{in,i1}). 

The following now is a special case of a theorem of GROTSCHEL, Lov Asz 
and ScHRUVER (1981, 1987]: 

THEOREM 3. Let G=(~.~.~ •... ) be a graph property. Then the following are 
equivalent: 
(i) there exists a polynomial-time algorithm for the following ("optimization") 

problem: Given neN and ceQE•,find Fe~ minimizing Ice; 
eeF 

(ii) there exists a polynomial-time a~~orithm for the following ("separation") 
problem: Given n EN and x eQ ·, decide if x belongs to conv. hull 
{x!F E~ }, and if not, find a separating hyperplane. 

The statements (i) and (ii) are in a sense dual to each other: (i) has as input a 
vector c in dual space and output x in 'primal' space, while (ii) has input x in 
primal space and output (in the 'if not' case) in dual space. . 

The proof of Theorem 3 uses the ellipsoid method combined with simultane
ous diophantine approximation based on Lenstra, Lenstra and Lovasz's basis 
reduction method. A complete proof would require several tedious details. We 
restrict ourselves here to giving a very rough sketch. 

Suppose we have a polynomial-time algorithm. for the problem in (ii) (a 



Polyhedra and Algorfthrns 9 

"separation" algorithm), and we have input n EN and ceQE• for the optimiza
tion problem. We construct ellipsoids L0 ,LJ.L2 , • • • in RE., each satisfying 

4-;;;J conv.hull {x"IFE~, F attains min{~celFe'!fn}}. (33) 
eeF 

L 0 is the ball around the origin of radius n2 • If L; has been constructed, let it 
have center z;. Check with our polynomial-time separation algorithm if z; 
belongs to P:= conv. hull {XIFe'!fn}. 

CASE 1: z; belongs to P. Let 4+ 1 be the ellipsoid of smallest volume satisfy
ing 

(34) 

CASE 2: z; does not belong to P, and the separation algorithm gives us a vector 
aeQE· so that aTx<aTz; for all x in P. Let 4+ 1 be the ellipsoid of smallest 
volume satisfying 

(35) 

(It is not difficult to derive the parameters determining L; + 1 from those deter
mining 4 and from c and a, respectively.) 

One easily checks, by induction, that (33) holds for each i. Since vol (L;) can 
be shown to decrease with exponential convergence speed, we may hope that 
the z; converge quickly to x", where Fis an optimum solution for the optimi
zation problem. Indeed, with the help of simultaneous diophanti.ne approxima
tion the algorithm can be adapted to produce such an optimum solution. 

The converse implication (i)=>(ii) is shown similarly by considering dual 
space. 

Since Edmonds showed that the nonbipartite assignment problem is solvable 
in polynomial time, we know that (i) of Theorem 3 holds for the graph pro
perty defined in (30). So by (ii) of Theorem 3, the system (17) can be tested in 
polynomial time, although there are exponentially many constraints. 

Actually, PADBERG and RAo [1982] gave a direct polynomial-time method to 
test if a given vector satisfies ( 17). So, using the converse implication in 
Theorem 3, this gives an alternative proof of the polynomial-time solvability of 
the nonbipartite assignment problem. (In fact, it is a simpler way of showing 
the polynomial-time solvability of the nonbipartite assignment problem, but it 
yields a less practical algorithm.) 

Similarly, for the graph property defined in (31) (spanning trees), we know 
that (i) of Theorem 3 holds. That is, there is a polynomial-time algorithm for 
the following minimum spanning tree problem: given n E 1\1 and c E QE• find a 
spanning tree T of minimum 'length' ~eeTCe. The so-called greedy algorithm, 
designed by BoRUvu [ 1926], solves this problem in polynomial time. Theorem 
3 then implies that also the convex hull of the incidence vectors of spanning 
tress can be characterized appropriately, viz. in the sense of (ii) of Theorem 3. 

For several other graph properties the convex hull of the incidence vectors is 
characterized, which yields by Theorem 3 a polynomial-time algorithm for the 
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corresponding optimization problem. 
We can also use Theorem 3 in the negative. It is generally believed that the 

so-called traveling salesman problem: 

given n E 1\1 and c E QE•, find a Hamiltonian circuit H minimizing ~ Ce , (36) 
eeH 

cannot be solved in polynomial time (cf. Section 6). If this belief is justified, 
Theorem 3 then would imply that also the convex hull of the incidence vectors 
of Hamiltonian circuits cannot be characterized, in the sense of (ii) of Theorem 
3. 

5. CuTfING PLANES 

One may conclude from the above that it is important to have a method to 
find, for any given set S of integral vectors in, say, Rn, a system Mx-<.d of 
linear inequalities so that 

conv.hull(S) = {x!Mx-<.d}. (37) 

Usually, it is not difficult to represent S as 

S = {x!Ax~b; x integral}, (38) 

for some rational matrix A and rational column vector b, E.g., the set of 
incidence vectors of perfect matchings in Kn is equal to the set of integral vec
tors x in RE, satisfying (i) and (ii) in (17). As an intermezzo, we now describe 
a general procedure to derive from any rational matrix A and column vector b, 
a rational matrix M and a column vector d satisfying 

conv.hull {x!Ax-<.b; x integral} = {x!Mx~d}. (39) 

This procedure is based on Gomory's cutting plane method for integer linear 
programming (cf. CllvATAL [1973], ScHRIJVER [1980]). 

Define for each polyhedron P k;Rn, the set P1 by 

P1: =conv.hull (P nzn). (40) 

Moreover, let 

P':= n H 
H;,P I 

(41) 

where the intersection ranges over all 'affine half-spaces' H={xlcr x~8}, 
where c is a rational vector, and 8 is so that P k;H. We may assume that the 
components of c are relatively prime integers; this implies that 
H1={xlcrx~L8J}, where L J denotes lower integer part. (The set 
{xlcT x =LBJ} is called a cutting plane.) So 

P' = {xlcT x~ lSJ for each integral vector c such that er z~S 

for each z in P}. 

Since P k;H implies P1 k;HJ. it follows that P1 k;P'. 

(42) 

If P is a rational polyhedron (i.e., defined by rational linear inequalities), 
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then P' is a rational polyhedron again. Applying the operation to P' we obtain 
P"(=(P')'), which can be different from P'. As an example, if P !;;;R2 with 
P={(x,ylJy;;a.O; 3x +yo;;;;;3;-3x +y....;1), then P'={(x,yllx~O; 
y~0;2x +y....;2;-x +yo;;;;;l} and P"={(x,y) Jx;;a.O; y;;a.O;x +yo;;;;; I }=P1• 

In general, we have 

(43) 

Denoting the (t + 1)-th polyhedron in this sequence by p(tl, the following was 
shown by CHvATAL [1973] and ScHRIJVER [1980]: 

'THEOREM 4. For each rational polyhedron P there exists a number t such that 
p<t> =P1. 

This theorem yields a procedure for finding all linear inequalities defining P1 

(see ScHRDVER [1986] for details). It is not difficult to derive from Theorem 2 
that if P is defined by (17) (i) and (ii), then P'=P1. However, in general, the 
number t with p(r) =P1 can be arbitrary large (even in dimension 2). The pro
cedure does not yield a polynomial-time algorithm for determining P1. 

6. NP AND P 
We shall now discuss on which the 'general belief that the traveling salesman 
problem is not solvable in polynomial time, mentioned in Section 4, is based. 
It is a result of the study named 'complexity theory', centered around the 
notions of P and NP and the question P =NP?. We shall not go into defining 
P and NP here, but restrict ourselves to making a statement equivalent to 
P=NP. 

A graph property ('?Ji, §i, §3, ... ) is called polynomially recognizable if the fol
lowing problem is solvable in polynomial time: 

given n EN and F c;;;,, En, decide if F belongs to 'ff.i . ( 44) 

Note that each of the examples (30), (31) and (32) gives a polynomially recog
nizable graph property. Call a graph property ('!fi,~,§3, ... ) polynomially optim
izable if the following ("optimization") problem is solvable in polynomial time: 

given nEN and cEOE·, find FE'!f,, minimizing ~e~FCe. (45) 

This is (i) in Theorem 3, which is equivalent to (ii) in Theorem 3. 
It is not difficult to see that each polynomially optimizable graph property is 

polynomially recognizable (by taking c appropriately: to check if F belongs to 
'ff,,, solve ( 45) with Ce = - 1 if e EF and Ce = + 1 if e ff:.F). However, the reverse 
implication is a big open problem, equivalent to the question P =NP'!. 
Indeed, this question is characterized by: 

P =NP~ each polynomially recognizable graph property ( 46) 

is polynomially optimizable . 

There seems to be no reason to assume that each polynomially recognizable 
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graph property is also polynomially optimizable, i.e., that P ==NP. However, 
no counterexample has been found as yet. It is a general belief that there exist 
polynomially recognizable graph properties which are not polynomially optim
izable, i.e., that P-=f=NP. 

KARP [1972), extending work of CooK [1971]. showed that if there exist a 
polynomially recognizable graph property which is not polynomially optimiz
able, then the graph property defined in (32) (the Hamiltonian circuits) is such 
a one. 

THEOREM 5. If graph property (32) is polynomially optimizable, then each polyno
mially recognizable graph property is polynomially optimizable. 

This is why the traveling salesman problem is called NP -complete. Several 
other important basic combinatorial optimization problems were shown by 
COOK [1971] and KARP [1972] to be NP-complete. 

Theorem 5 is equivalent to: 

COROLLARY 5a. If P-=f=NP, then the traveling salesman problem is not solvable 
in polynomial time. 

By Theorem 3 this implies: 

COROLLARY 5b. If P-=f=NP, then the separation problem for graph property (32) 
is not solvable in polynomial time. 

(The separation problem is defined in Theorem 3.) It means that if P-=f=NP, the 
convex hull of the incidence vectors of Hamiltonian circuits is difficult. 

The recent successes of CROWDER and PADBERG [1980], GROTSCHEL [1980] 
and PADBERG and HONG [1980] in solving large-scale instances of the traveling 
salesman problem with 'branch and bound' techniques, are based on approxi
mating the convex hull of the incidence vectors of Hamiltonian circuits. To 
this end, one first observes that a vector x EOE· is equal to x!1 for some Ham
iltonian circuit, if and only if x satisfies: 

(i) ~Xe == 2 (i == 1, · · · ,n), 

(ii) 
e3i 

~ Xe~2 (WC{l, · · · ,n}, W-=f=0), 
ee8(W) 

(iii) O~xe~l (eEEn), 

(iv) Xe integer (eEEn). 

(47) 

Let P be the polytope defined by (i), (ii) and (iii). So P1 is the convex hull of 
incidence vectors of Hamiltonian circuits. It can be obtained by applying the 
cutting plane procedure of Section 5. This appears to be time-consuming, if we 
assume P-=f=NP. However, 

min{cT x lxEP} (48) 
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is a lower bound for the minimum length of a Hamiltonian circuit. Having 
good lower bounds is essential in applying branch-and-bound techniques: the 
term 'good' here means relatively easy to compute and relatively near to the 
optimum value (one has to find a compromise between these two clashing 
goals). 

It can be shown that the lower bound ( 48) can be computed in polynomial 
time. It amounts to solving a linear program whose constraints can be checked 
in polynomial time (although there are exponentially many constraints in (47) 
(iii)). Indeed, (47) (iii) can be checked by considering x as a capacity function, 
and by finding a cut of minimum capacity. If this cut has capacity at least 2, 
(47) (iii) is fulfilled, and otherwise not. The ellipsoid method then tells us that 
( 48) can be computed in polynomial time. 

The ellipsoid method is not fast in practice, and other methods are applied 
to determine ( 48) in practice. Replacing P by P' in ( 48) gives a better lower 
bound for the traveling salesman problem. If we are able to recognize quickly 
(part of) the cutting planes making up P', we obtain a good algorithm for 
determining this better lower bound. With such a combination of branch-and
bound and cutting plane techniques, Padberg recently was able to solve a trav
eling salesman problem with 2392 'cities'. 

7. PERFECT MATCHINGS AND TIIE TRAVELING SALESMAN PROBLEM 

In this final section we go into some relations between perfect matching prob
lems and routing problems. Perfect matching problems frequently show up in 
algorithms for routing problems. Here we restrict ourselves to giving two 
examples. (A well-known other example is the polynomial-time algorithm for 
the 'Chinese postman problem'.) 

The traveling salesman problem is equivalent to the problem of minimizing 
cT x over xeRE. satisfying (47) (i) - (iv), for any given 'length' function 
c:En~Q. In the previous section we observed that having good lower bounds 
for the traveling salesman problem is essential in branch-and-bound pro
cedures, and we discussed the lower bound obtained by deleting (iv) in (47). 
An alternative lower bound is obtained by not deleting (iv), but instead delet
ing (ii): 

minimize ~ CeXe 

eeE. 

subject to ~Xe =2 
e3i 

XeE{O,l} 

(49) 

(i = 1 · · · n) ' ' ' 

(eeE,,). 

This lower bound again can be computed in polynomial time. Note that if we 
would have = 1 instead of = 2 in ( 49), it would be the problem of finding a 
minimum weighted perfect matching. But also problem ( 49) can be reduced to 
the perfect matching problem. In graph theoretic terms this reduction amounts 
to splitting each vertex v into two vertices v' and v" and replacing each edge 
e={v,w}, with length ce: 

p w 
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by the following five edges, with lengths as indicated: 

v' w' 

0 

v" w" 

where Ve and w, are two new vertices. So, starting with a graph with n vertices, 

we obtain a graph with 2n +2(2) vertices. To those edges not occurring in (51) 
we assign a length of oo (or some very large number). Now the problem of 
finding a perfect matching of minimum length in the large graph, is equivalent 
to solving (49), as one easily checks. It follows that the lower bound (49) can 
be determined in polynomial time. 

Another occurrence of perfect matchings is in the 'heuristic' of CmusTOFIDES 
[1976] for the traveling salesman problem, if the length function satisfies the 
triangle inequality: 

c({i,k})=;;;;c({i,j}) + c(lj,k}) i,j,k= 1, · · · ,n. (52) 

This heuristic is a polynomial-time algorithm, not yielding (generally) a shor
test Hamiltonian circuit, but one of length at most ; times the length of a 

shortest Hamiltonian circuit. So the relative error ylith respect to the optimum 
traveling salesman tour is at most ~ . (The value 2 is the lowest relative error 

for which a polynomial-time algorithm is known.) 
Christofides' algorithm works as follows. First find a spanning tree T of 

minimum length. This can be done in polynomial time with the greedy algo
rithm, as we mentioned in Section 4. Without loss of generality, let { 1, · · · ,k} 
be those vertices which are contained in an odd number of edges in T, and let 
{k + 1, · · · ,n} be those vertices contained in an even number of edges in T. 
Note that k is even. Next determine a perfect matching M of minimum length 
on {l, · · · ,k} (Le. in Ek). Now TUM forms a connected graph on 
{1, · · · ,n}, in which each vertex is contained in an even number of edges in 
TUM (we here count edges occurring both in T and in M for two). Then by 
Euler's theorem, TUM forms a circuit C=({v0,vi}, {vi.v2 }, • • ·, {vm-i.Vm}) 
(with vo=vm) so that each edge in TUM occurs exactly once in this circuit. In 
particular, each i =I,··· ,n occurs at least once among Vi.··· ,vm. Now in 
the sequence vi, · · · ,vm we can delete each v; for which there is a j<i with 
vi=v;. We are left with a permutation wi. · · · ,wn of l, · · · ,n, so that 

m n 
~ c({v;-1,vi}) ;;i. ~ c({wi-i.w;}) 
i=l i=l 

(53) 

(where wo:=wn), by the triangle inequality (52). The algorithm gives as output 
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the Hamiltonian circuit C=({wo,wi},{wi.w2}, · · ·, {wn-hwn}). 
Lett be the length of a shortest Hamiltonian circuit c•. We show that c• 

has length at most 31" 12. First, T has length less than t, since leaving out one 
edge from c• gives a spanning tree, while Tisa shortest spanning tree. 

Next, M has length at most ; t. Indeed, writing c' = { { u0 , u i}, 

{u1,u2}, · · ·, {un-1,un}} (with uo=un), there are i1<i2< · · · <ik so that 
{u. · · · u·} ={1 · · · k} Then 

11 ' ' It ' ' .. 

+k 
length (M) ~ ~ c( { ui,1_, ,ui,) ), and 

j=I 

+k 
length (M) ~ ~ c( { ui,1_, ,ui,1_, } ) 

j=I 

(54) 

(where ui.: = ui.), because M is a perfect matching on { 1, · · · ,k} of minimum 
length. So 

k n 

2·length(M) ~ ~ c({ui1_,,Ui1 }) ~ ~ c({uj-1,uj}) =f. (55) 
j=I j=I 

The second inequality here follows from the triangle inequality (52). 
Concluding: 

n m 
length(C) = ~ c({wi-J.wd) ~ ~ c({vi-1,vi}) = (56) 

i=l i=l 

length(T) + length(M) ~ t + ; t = ; t . 
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