
,--, 
I.\ 

I A\ 
L-.J 

n , ' j I 
' I 
" It i...;, 

E 

n :v 

[J 
0 





SOME ASPECTS OF APPLIED ANALYSIS: 
ASVMPTOTICS, SPECIAL FUNCTIONS 

AND THEIR NUMERICAL COMPUTATION 





SOME ASPECTS OF APPLIED ANALYSIS: ,, 
ASVMPTOTICS, SPECIAL FUNCTIONS 

AND THEIR NUMERICAL COMPUTATION 

ACADEMISCH PROEFSCHRIFT 

TER VERKRIJGING VAN DE GRAAD VAN 

DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN 

AAN DE UNIVERSITEIT VAN AMSTERDAM 

OP GEZAG VAN DE RECTOR MAGNIFICUS 

DR. G. DEN BOEF 

HOOGLERAAR IN DE FACULTEIT 

DER WISKUNDE EN NATUURWETENSCHAPPEN 

IN HET OPENBAAR TE VERDEDIGEN 

IN DE AULA DER UNIVERSITEIT 

(TIJDELIJK IN DE LUTHERSE KERK, INGANG SINGEL 411, HOEK SPUI) 

OP WOENSDAG 14 JUNI 1978 DES NAMIDDAGS TE 4.00 UUR 

DOOR 

NICOLAAS MARIA TEMME 

GEBOREN TE GROOTEBROEK 

1978 

MATHEMATISCH CENTRUM, AMSTERDAM 

\) 



PROMOTOR PROF.DR. H.A. LAUWERIER 

COREFERENT: PROF. W. GAUTSCHI 



Aan vader en moeder 

Aan Gre, Sander en Jeroen 





v 

ACKNOWLEDGEMENTS 

First of all I want to thank my promotor Prof.dr. H.A. Lauwerier, who 

gave me the first lessons on asymptotic analysis and who mentioned elegant 

problems for further research. His interest and stimulating remarks are 

very appreciated. 

I want to thank Prof.dr.ir. A. van Wijngaarden who introduced me to 

the field of the numerical computation of special functions. 

I appraise it very much that Prof. w. Gautschi wants to be coreferent 

at my promotion. 

The research for this thesis was done at the Mathematical Centre, 

Amsterdam, on the Department of Applied Mathematics. I wish to express my 

gratitude to the Board of Directors of the Mathematical Centre for giving 

me the opportunity to publish this thesis. 

I want to thank the members of the working group Approximation of 

Functions, especially Kees van der Laan, for the stimulating discussions on 

parts of my work. Furthermore I appreciate the remarks of Peta Bowden and 

Tom Koornwinder on the introductory parts of the thesis. 

Finally, I wish to thank Mr. D. Zwarst and his group for the printing 

and the binding, and Mrs. R.W.T. Riechelmann-Huis and her group for typing 

the manuscripts of the papers. 





CONTENTS 

Acknowledgements 

Introduction 

Summaries 

References 

The eight papers 

[1] Analytical methods for a singular perturbation problem 

in a sector 

[2] Numerical evaluation of functions arising from trans

formations of formal series 

[3] Uniform asymptotic expansions of the incomplete gamma 

functions and the incomplete beta function 

vii 

v 

xv 

xxv 

1 

15 

33 

[4] On the numerical evaluation of the modified Bessel func- 41 

tion of the third kind 

[ 5] On the numerical evaluation of the ordinary Bessel func- 5 5 

tion of the second kind 

[ 6] Remarks on a paper of A. Erdel yi 6 5 

[7] Uniform asymptotic expansions of confluent hypergeometric 71 

functions 

[8] The asymptotic expansion of the incomplete gamma functions 91 

Samenvattihg 117 





ix 

INTRODUCTION 

This dissertation consists of eight papers on aspects of asymptotics, 

special functions and their numerical computation. Six of the papers have 

appeared in scientific journals, the other two have been submitted for 

publication. The papers are 

[1] J!nalytical methods for a s~ngular perturbation problem in a sector, 

SIAM J. Math. Anal., 5, pp. 876-877, 1974. 

[2] Numerical evaluation of functions arising from transformations of 

formal series, J. Math. Anal. Appl., 51, pp. 678-694, 1975. 

[3] Uniform asymptotic expansions of the incomplete gamma functions and 

the incomplete beta function, Math. Comp., 29, pp. 1109-1114, 

1975. 

[4] On the numerical evaluation of the modified Bessel function of the 

third kind, J. Comput. Phys., 19, pp. 324-337, 1975. 

[5] On the numerical evaluation of the ordinary Bessel function of the 

second kind, J. Comput. Phys., 21, pp. 343-350, 1976. 

[6] Remarks on a paper of A. Erdelyi, SIAM J. Math. Anal., 7, pp. 767-770, 

1976. 

[7] Uniform asymptotic expansions of confluent hypergeometric functions, 

report TW 153, prepublication, Mathematical Centre, Amsterdam, 

1975, to appear in J. Inst. Maths Applies. 

[8] The asymptotic expansion of the incomplete gamma functions, repo~t TW 

165, prepublication, Mathematical Centre, Amsterdam, 1977, to 

appear in SIAM J. Math. Anal. 

In the Introduction and the Summaries these papers are referred to by 

using the above enumeration. Reference to the literature at the end of the 

Summaries is made by mentioning the author and the year of publication. 

In the Summaries we give a short description of the papers, with an 

indication of their relationship, firstly however, we make some general 

remarks on our work. 
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These eight papers fall apart in two classes: papers mainly on asymp

totics ([1], [3], [6], [7], [8]) and papers mainly on computation ([2], [4], 

[S]). In all papers, however, aspects of uniformity play a prominent part. 

For many special functions, asymptotic expansions with respect to one of 

their parameters were derived long ago, but these expansions may become in

valid. if other parameters approach critical values. 

Let us illustrate this phenomenon by the well-known asymptotic expan

sion of the incomplete gamma :fy.nction, a function that is considered in 

[3] and [8]. It is given by: 

(1) 

00 

f(a,z} = J e-tta-ldt, 

z 

where for the time being we suppose a E: JR, z > 0. By successive partial 

integration we obtain: 

(2) f(a,z} za-le-z[l + a-1 + (a-l}(a-2) + •.. + (a-1) .•• (a-n) + 
z 2 n 

z z 

+ Rn(a,z)], n=0,1,2, ••• , 

where for n > a-2 the remainder satisfies 

IR (a,z) I :S I (a-1) •.• (a-n-1) I 
n n+l z 

This follows from elementary standard methods in asymptotic analysis. It 

can be concluded that for large values of z, n > a-2, the remainder ~(a,z) 

becomes as small as we please, uniformly in a if a is restricted to any 

compact subset of the real line such that a < n+2 . However if a depends 

on z such that c 11zl :S lal, c 1 > O, z + 00 , the remainder in (2) is not 

small enough to furnish a good approximation for rca,z). 

This phenomenon frequently occurs in asymptotic problems. Expansion 

(2) is a good example of a non-uniform expansion: for z + oo it is uniformly 

valid for a in compact intervals, but if we allow a to range through un

bounded sets the uniform character of the expansion will disappear. (In 

order to be more specific, we use the concept of uniform asymptotic 



expansion as defined by OLVER (1974, p.26)). 

If one pays attention to the uniform character of asymptotic expan

sions, one is able to formulate important and difficult problems in specia1 

function theory. In this respect, this part of classical analysis is full 

of life. OLVER (1975) gives an excellent survey of developments in this 

field and it appears that in the last two decades many new results on uni

form expansions have been established. For some important classes of spe

cial functions, however, rese~rch has hardly begun. Olver mentions, for 

instance, the lack of results for a commonly used well-known class of func

tions: the Gauss hypergeometric functions 2F1 (a,b;c;z). 

Formerly, asymptotic expansions were given in terms of elementary tran

scendental functions, such as the exponential, logarithmic, circular and 

gamma functions, but, as mentioned earlier, if extra parameters were present 

in the coefficients of the expansions (as frequently occurs in special func

tions or physical problems) the asymptotic expressions were without uni

formity with respect to these parameters. Nowadays, in order to obtain 

uniform expansions, one uses other functions, such as error functions, Airy 

functions, Bessel functions, incomplete gamma functions, or parabolic cylin

der functions. Of course, when expanding in terms of these basic functions 

we need all information on their qualitative behaviour and on methods for 

their numerical evaluation. 

It is ·very curious that of the functions listed above, the incomplete 

gamma functions are the most neglected ones, in spite of their importance 

in many areas of applied mathematics, including mathematical statistics. 

TRICOMI (1950) starts his paper (in which important progress is made for 

these functions) with the remark Seit einiger Zeit pflege ich die unvoll-
x -t a-1 -standige Gammafunktion y(a,x) = J0 e t dt das Aschenbrodel der Funktionen 

zu nennen, weil es mir scheint das sie trotz ihres unbestreitbaren Intresses 

bis jetzt zu wenig beachtet worden ist. With the results of this paper and 

[3] and [8] the Cinderella days are definitely over. 

When expansions, which give a high degree of approximation in the ana

lytical sense, are derived for special functions, the problems for the num

erical analyst are not yet solved. He needs these analytic expansions, since 

the usual techniques of function approximation (such as Chebyshev expansions 

or best approximation in the Chebyshev sense) are not attractive if more 
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(complex) parameters are involved. However, expanding the fWlctions with 

respect to one variable, leaves the coefficients as functions of the remain

ing variables. This creates problems of effective computation, satisfactory 

rate of convergence, etc. Examples in point are our uniform expansions of 

the incomplete gamma function (of which numerical aspects are discussed in 

[8]) and of the expansion (based on Taylor series) for the Bessel function 

Kv(z), which is treated in [4]. In both cases the coefficients of the ex

pansion appear in indeterminate form if one of the parameters equals some 

critical value. Analytically, there is no problem, for the limit in question 

is well defined, but numerically these situations ask for special attention. 

In the Bessel function case this problem has been solved satisfactorily, and 

the method is implemented in ALGOL 60 programs. In the incomplete gamma case 

indications for the numerical implementation are given, but a computer pro

gram based on these results has not, as yet, been constructed. 

From the point of view of this thesis the work with special functions 

has a low degree of abstraction and generality. In this sense, it is work 

on a small scale, something which is not always appreciated in modern math

ematics. I should like to comment on it, as far as the study of special 

functions is concerned. 

The main point is that useful and manageable analytic expansions and 

efficient and reliable algorithms cannot be constructed for large classes 

of functions. In this field it is necessary to be interested in individual 

functions. We call them by name, we know their specific character and we 

derive results that are applicable to one and only one function. This kind 

of interest in individual functions was rather common in the past. In 

Euler's days (1707 - 1783) a function was more or less synonymous with a 

formula. such a formula was called an expressio analytica, an analytic ex

pression: e.g. an integral, a polynomial, an infinite series, etc. The im

portant functions were called by name and for each function a formula was 

available. These functions are the building blocks of mathematical analysis 

and in the 18th and 19th century hundreds of special functions were singled 

out for research. In the 20th century this branch of analysis was also cul

tivated, culminating in the monographs of WHITTAKER & WATSON (1927, first 

e·dition 1902) and WATSON (1944, first edition 1922), two imposing works of 

the English school. 
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For generalizations in special functions we are in Dutch company. In 

1936 C.S. Meijer introduced the generalization of the F -functions, which 
p q 

was called after him the Meijer G-function. After its introduction there 

was a stream of publications by Meijer on this function and on functions 

that can be expressed as G-functions. It seemed to inaugurate a new era for 

western mathematicians specializing on functions, but in fact, it did not. 

Instead, with, (and I do not say due to,) the introduction of the Meijer 

G-function, interest in special functions fell into the background. This 

was not so in all parts of the world, however. Influenced by the British, 

some workers in analysis were attracted to special functions, although they 

had not always inherited discipline in handling them. The G-function started 

a real chaos of uninteresting formulas and results, which pollute sometimes 

the fashionable mathematical journals. The wrong problems were formulated. 

Special functions are interesting as long as they are considered with ref

erence to their origin: applied mathematics, especially mathematical physics, 

or with reference to an interesting mathematical theory, such as, for in

stance, group theory. If they are studied l'art pour l'art, they become sus

picious. 

The modern analyst, with a background in function analysis has no in

terest in individual functions. He studies large classes in which the func

tions are hardly distinguishable, and certainly not recognizable; he doesn't 

know their names and their expressio analytica, but he knows their common 

properties. In this respect, he may feel as a sociologist, unlike his fellow 

analyst from special functions. who mav consider himself as a biographer. 

The work of Askey, Cody, Gautschi, Koornwinder and Olver demonstrates 

that today special functions can be studied in the right way. In all modes

ty, I hope that my work will be considered in the same manner. 
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SUMMARIES 

Some of the papers are reviewed in the Mathematical Reviews (MR) or 

the Zentralblatt fur Mathematik (Zbl.). If this is the case we give relevant 

volume numbers and review numbers. 

[l] Analytical methods for a singular perturbation problem in a sector, 

MR 51, #6105; Zbl. 295, #3?005. 

The work in this paper is connected with singular perturbation problems 

in a quarter plane or a finite rectangular domain as treated in ECKHAUS & 

DE JAGER (1966), GRASMAN (1974a) and (1974b), COMSTOCK (1968), KNOWLES & 

MESSICK (1964) / TEMME (1971) and DIEKMANN (1975). The solution of an ellip

tic partial differential equation (in which a small parameter E multiplies 

the second order derivative) is considered asymptotically for E + 0. In this 

paper we treat a model problem by solving the equation explicitly and by 

using asymptotic methods for integrals. With the results of this paper new 

insight is gained on the genesis of the parabolic boundary layer. This 

layer arises when the sector (with sharp angle) becomes a quarter plane. 

When the angle becomes obtuse, the boundary layer changes its character 

again: it becomes an internal free layer. Also hidden free layers which 

become important in limiting cases can be distinguished. In the event of 

an almost right angle, two small asymptotic parameters are to be 

considered: E and n/2 - a, where a is the sector angle. COMSTCCK (1968) , 
a, 

GRASMAN (1974 ) and DIEKMANN (1975) also paid attention to the case of 

almost characteristic boundaries. 

We mention three aspects that might be considered for further research. 

1. In the representation (4.8) and (4.9) of the solution, finite series with 

exponential terms are present. For g+O these contributions are exponen

tially small (with respect to other terms in the expansion), but (4.8) and 

(4.9) represent the solution for all positive E (or w = 1/E). There must 

be an explanation of the role of these contributions in terms of wave 

fronts for a diffraction or reflection problem. 

2. The asymptotic representation of the solution is not valid at the origin, 
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i.e., the corner of the sector. It might be interesting to construct (from 

the integral representation) an asymptotic expansion that is uniformly valid 

in parts of the sector that contain the corner. 

3. If an analogous boundary value problem is considered for the interior of 

'l 2 2 1 th l a circ e, say x + y $ , then e so ution can be solved explicitly in 

terms of a Fourier series. To be more specific, we formulate the problem 

with 

tion 

(3) 

Then 

(4) 

its 

(we 

solution. Let <I> be the solution 

write x"' r 

d 2 
£(--+ 

ax2 

<I> (cos e, 

<I> (x, y) 

cos 8, y "" r sin 8) 

a 2 
<I> (x,y) () <!> (x, x> 

-) -a/ Cly 

sin 8) 

wrsin8 
-e 

sin 0, 

00 I' (w) 

L In (w} 
n=-"' n 

0 

of the 

0, 

< 0 :;,: 

I (wr) 
n 

partial differential equa-

r < 1, 

211. 

in ( 8+11/2) 
e w = 1/(2£). 

I (z} is a modified Bessel function. The expansion of <!> (for a more 
\) 

general problem) is considered by GRASMAN (1971) , cf. also VAN HARTEN ( 1976). 

For the model problem (3) an expansion might be derived by using (4). 

We expect that new insight may thus be gained in the peculiar behaviour of 

<I> in the neighbourhoods of the points (x,y) = (-1,0) and (x,y) = (1,0). 

our earlier investigations did not reach the stage of publication, but we 

point out that it is an interesting, difficult problem to derive from (4) 

an asymptotic expansion of <I> for £ ? 0 that is uniformly valid in neigh

bourhoods of the above mentioned points. 

[2] Numerical evaluation of functions arising from transformations of 

formal series. MR 53, #9593, Zbl. 263, #65002. 

Let us consider the Laplace integral 
00 

(5) f (z} = z J 
-zt e F(t) dt, 

0 

where F is such that (5) is meaningful as a Riemann integral and let F be 



analytic at t 0. Then F can be expanded in convergent series 

(6) F(t) F(t) 

valid for certain t-values, and we can assign to f the formal expansions 

(7) 

with 

'i' -k f(z) ~ L. akk!z , 
k=O 

"' 
f(z) ~ l bksk(z), 

k=O 

sk(z) = z f e-zt tk/(1+t)k+1 dt. 

0 

The relation between ak and bk is rather simple (see for instance POLYA & 

SZEGO (1964, I problem 224)). Under certain conditions on F the first 

series of (7) gives an asymptotic expansion of f for z + "' and it may 

happen (see VAN WIJNGAARDEN (1964)) that the second series of (7) gives a 

convergent expansion of f. The second series of (7) can be considered as 

a transformation of the first one. LAUWERIER (1975) gives a new interpre

tation of this transformation. His conclusion is (formally speaking) that 

this transformation is the Laplace transform of the Euler transformation 

for series. 

XV11 

Our paper discusses methods for numerical evaluation of the functions 

sk. For this purpose new asymptotic expansions are derived, which are 

uniformly valid in given domains of the complex z-plane. For small lzl the 

computation heavily depends on the asymptotic expansion of sk in terms of 

Bessel functions. 

Some aspects of the paper may be reconsidered. We mention three points. 

1. The choice of the parameter v in the computation of a starting value for 

a backward recursion process may be based on a method introduced by Olver 

( 1967) • 

2. The asymptotic expansions of sk(z) fork+ 00 and bounded lzl may be 

compared with expansions introduced by SKOVGARD (1966) in which z is 

allowed to range through unbounded regions. 



3. From a numerical point of view it is important to have numerical bounds 

for the remainders in the asymptotic expansions mentioned in point 2. 

[3] Uniform asymptotic expansions of the incomplete gamma functions and 

the incomplete beta function. MR 52, #8513; Zbl. 313, #33002. 

The integrand of the integral defining the gamma function 
x 

'Y (a,x) J -t · a-1 
e t 

0 

dt, x 2: O, a > O, 

has its maximum at t 0 = a-1 (if a > 1).. The asymptotic behaviour of 'Y as 

a + 00 is completely different for the three cases t 0 < x, t 0 = x, t 0 > x. 

It is well-known that the function P(a,x) = y(a,x)/r(a), which is connected 

with statistical distribution functions, follows the behaviour predicted 

by the central limit theorem. Therefore, it is clear that an error function 

(i.e., a normal distribution function) describes the limit behaviour. 

The error functions (and related functions) are indeed used by TRICOMI 

(1950) I DINGLE (1973) and in [3]. 

Compared with Tricomi's and Dingle's results our expansion gives the 

following improvements: 

the expansion (for a + "' ) is uniformly valid in x 2: 0; 

- just one term containing an error function is needed for the description 

of the asymptotic behaviour; 

- the expansions for P(a,x) and Q(a,x) = 1 - P(a,x) have the same simple 

complementary relation as P and Q themselves. 

In this paper we also give an expansion for the incomplete beta 

function 

r tp-l(1-t)q-l dt, 

0 

0 s x s 1, p > 0, q > O, 

as q + "'· The expansion is of the same type as that for the incomplete 

gamma function, but the range of uniformity is not as large as is desirable. 

(For instance, it is not valid for x + 0). I have strong indications that 

expansions will be found, which gives a wider range of uniformity, but 

these will involve a function that is more complicated than the error 
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function. 

A simpler case is considered in Stelling 1 of the thesis, where q is 

fixed, p ~~and x E [0,1] (uniform), but uniformity with respect to q and 

x in, say, q ;:: o > 0, x E [0, :JI] is still an open problem. 

[4] On the numerical evaluation of the modified Bessel function of the 

third kind. MR 53, #4488; Zbl. 334, #65013. 

Originally the research for this paper was motivated by (5) • A useful 

approach for obtaining asymptotic expansions for series is to transform 

the series in an integral (Watson/Sommerfeld transformation) . The integral 

may then be evaluated by the method of residues. In the present problem it 

was important to compute the zeros of the function Iv(w), considered as a 

function of the complex variable v and fixed, large positive w. These zeros 

appear in the half-plane Re v < 0, especially in the neighbourhood of non

negative integers. This follows easily from the relation 

(8) V7T K (z) 
v 

and from drawing graphs of the modified Bessel functions Iv(z) and Kv(z) 

for positive V (see ABRAMOWITZ & STEGUN (1964, Fig. 9.9)). Since Iv(z) is 

readily available (see GAUTSCHI (1964)), the main problem was to compute 

Kv(z), especially around v = n (positive integer), but the recurrence 

relation for KV reduces this problem to the computation of Kv in the v

domain 0 :s; Re v :s; 1 . 

For small lzl we use (8), with Taylor series for I_v and Iv. However, 

for v = n (integer) these functions are identical and this phenomenon 

raises non-trivial problems in the computation. These problems are solved 

by judicious combination of appropriate terms in the Taylor series arrl by 

using recurrence relations for remaining terms. 

For large lzl the function Kv(z) is computed by considering KV as a 

special confluent hypergeometric function and hv then using a recurrence 

relation with respect to one of the parameters of this more general func

tion class. 
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[5] On the numerical evaluation of the ordinary Bessel function of the 

second kind. MR 54, #1548. 

The Bessel 

combinations of 

an algorithm is 

functions Jv(z) and Yv(z) can be expressed in linear 

Kv(iz) and Kv(-iz). With the results of the previous paper 

constructed for Y (z). In fact, the algorithm for K (z) v v 
applies for the whole family of confluent hypergeometric functions that 

are singular in the origin. No~ation: U(a,b,z), cf. ABRAMOWITZ & STEGUN 

(1964). This implies that the algorithm can also serve for the computation 

of U(L+l-in, 2L+2, zip), which is related to the irregular solution 

GL(n,p) of the Coulomb wave equation. 

In the papers [4] and [5] we give ALGOL 60 procedures for the compu

tation of Kv(z) and Yv(z) for real values of the parameters. For Kv this is 

the only implemented algorithm available in the literature; very recently 

CODY, MOTLEY & FULLERTON (1977) published their Fortran version of the compu

tation of Yv. Since the rise of program libraries, it is no longer the case 

that all available implemented algorithms are published in the scientific 

journals. Some of these libraries indeed contain contributions on Kv and 

Yv. For a review of the availability of software for special functions the 

reader is referred to Van der Laan's contributions in VAN DER LAAN & TEMME 

(1977). 

The construction of sound algorithms for the computation of special 

functions and the construction of software based on these algorithms, are 

separate jobs. With the presentation of the ALGOL 60 procudures in [4] 

and [5] we do not claim that the implementation is perfect. We consider 

them as algorithmic translations of our analytic work. From reactions of 

workers in physics, chemistry and other branches of science, we perceived 

that this kind of ser~ice is greatly appreciated, but the final word rests 

with the software engineer. 

[6] Remarks on a paper of Erdelyi. Zbl. 335, #41017. 

This paper gives the asymptotic expansion of 

F(z,a) J -z(t-a) >.-1 
e t g(t) dt 

a 
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for z + 00 ; we suppose a ~ O, z > O, 0 < A < 1 and for g the existence of 

the first n derivatives for t ~ O. The emphasis lies on the role of the 

parameter a; it may depend on z. An expansion is given for z + ~, which is 

uniformly valid in a ~ O; A is considered as a fixed parameter. 

For fixed a the asymptotic problem is rather simple. The usual 
A-1 

technique is to expand t g(t) in a power series in t = a followed by 
A-1 

integrating term by term. For a + 0, however, the singularity of t (at 

t = 0) coincides with the end point of integration. This causes non-uniform 

behaviour in the integral. 

For g e 1, F(z,a) is an incomplete gamma function, viz. F(z,a) = 
z-A eaz f(A,az). This quantity plays an important role in the expansion of 

the general problem. 

In Stelling 1 of the thesis a non-trivial application is mentioned on 

incomplete beta functions. 

In the preceding remarks we supposed that A is fixed. In the paper the 

author observed that the asymptotic expansion is uniformly valid with 

respect to A in compact subsets of the A-interval (0,1]. I conjecture that 

the domain of uniformity can be extended to A ~ o, where o is a positive 

constant. 

[7] Uniform asymptotic expansions of confluent hypergeometric functions. 

The second order differential equation 

d~ ~ z ~- + (b-z) 
dz2 dz 

aw 0 

is called Kummer's equation and has as solutions the Kummer functions. In 

pFq-language they are called the confluent hypergeometric functions, for 

they can be considered as limiting cases of the more familiar Gauss hyper

geometric functions. The name Whittaker functions is also used. 

Asymptotic methods can be used directly on the differential equation. 

Those familiar with singular perturbation problems for ordinary differen

tial equations recognize this equation in connection with turning point 

problems. If b is large and z is of the same size, the middle term seems 

to vanish. Actually, dw/dz becomes large at the same moment, as if to 

compensate for the relative smallness of (b-z). The result is that the 
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solutions of the equation change suddenly from finite values to other 

finite values if z passes the turning point b. This effect, a "shock layer 

effect", can also be noticed in the case of incomplete gamma functions, or, 

more simply and basically, in the case of the error functions. The incom

plete gamma functions are special cases of the solutions of the above 

equation. 

In the paper we do not use the differential equation for asymptotics. 

We present some integral representations that generalize integrals for the 

incomplete gamma functions,, as treated in [3]. The expansions are in terms 

of generalizations of the error functions: the parabolic cylinder functions. 

We consider b as a large parameter and we discuss uniformity with 

respect to z, especially near z = b. The parameter a is fixed. It would be 

interesting to find out if our expansions are uniformly valid in the 

neighbourhood of a= 0, -1, -2, •.. As follows from our results and methods, 

these points are rather exceptional. The differential equation is in these 

cases solvable in terms of well-known orthogonal polynomials of the 

Laquerre type. Asymptotic methods for differential equations reveal resonance 

situations if a crosses non-positive integer values. See DE GROEN (1976) . 

In our method the parabolic cylinder functions used as approximants 

degenerate into elementary functions in these cases. 

[8] The asymptotic expansion of the incomplete gamma function. 

Suppose f is analytic in a domain containing the real axis, such that 

F(x,a) 
x 2 

J e-at f(t) dt 

exists for x € ~;a > 0. Many statistical distribution functions can be 

brought into this form. We look for the asymptotic expansion of F for 

a+ 00 , which is uniformly valid with respect to x, especially near x = O. 

For large a, dF(x,a)/dx is very small, except for x-values near x = O. 

This gives the shock effect as mentioned in the description of [7]. If 

f s 1 we have simply 

A:= r e-at2 dt ~(~/a~ erfc(-xa~). 
-~ 



In the general case, we expect the main contribution from t 

close to or greater than 0) and we write 

F(x,a) Af (0) Jx -at2 
+ e 

_.,. 

and by partial integration we obtain 

t f(t) - f (0} dt 
t 

0 (if x is 

F(x,a} Af(O) _ l flx) - f(O) 
2a x 

2 
-ax 

e r e-at2 fl (t) dt, 
1 

+ 2a. 

with 

= ~ [f(t) - f(O)] 
fl(t) dt t • 

And so the process can be continued. 

This method takes into account the contributions at t = 0 and t x. 

XXJ.J.i 

It is not likely that it gives clear information on the domain of 

uniformity nor does it give a manageable expression for the remainder for 

rigorous error analysis. 

In the paper we combine this method with our previous results on the 

incomplete gamma functions. The earlier expansion is rather intricate and 

the method of [3] did not give insight in the remainder. The combination 

however, does give this insight, together with strict error bounds. 

It also gives recurrence relations for the coefficients, which eases their 

numerical evaluation. In addition, it gives extension to co~plex variables. 

In mentioning our results OLVER (1975) stated that Extensions to complex 

variables and the construction of error bounds are still needed. With this 

paper the author considers this subject closed. 

Although we extended the domain of the parameters to complex values, 

we did not reach the negative axis for the parameter a. It is still worth

while to consider this a-domain and to derive expansions that are ready 

for computation. In TRICOMI (1950) one may find a first attempt in this 

direction. 

The software specialists are invited to base computer programs on the 

results of [8]. In my opinion the computation of the incomplete gamma func

tions for large variables must be based on the asymptotic expansions given 

in the underlying paper. 
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ANALYTICAL METHODS FOR A SINGULAR 
PERTURBATION PROBLEM IN A SECTOR* 

N. M. TEMME 

Abstract. From the exact solution of an elliptic boundary value problem in a sector, asymptotic 
approximations with respect to a small parameter are derived. The asymptotic expansion is uniformly 
valid in the boundary layers. Also the phenomena for the case of almost characteristic boundaries 
arc discussed. 

1. Introduction. In [4], the author considered a singular perturbation prob
lem for an elliptic equation in a quarter-plane. The exact solution of the equation 
was represented as a contour integral and from this representation the asymptotic 
solution was derived by using saddle point methods. 

In this paper we consider the same equation 

(1.1) 
0 

e.!lcJ>.(x' y) - oy cl>.(x, y) = 0, 

the domain of definition now being an arbitrary sector shaped domain in the 
x, y-plane 

(1.2) A= {r,</>lr;;;; 0,0 ~</>~ex}. 

In (l.l) e is a small positive parameter and .6. is Laplace's operator; in (1.2) rand 
cf> are polar coordinates, where 

(1.3) 

and 

(1.4) 

x = rcos</>, y = rsinc/> 

0 < ex ~ 2n. 

The case ex = in (the quarter-plane) is discussed in [4]. 
Along the boundary of the sector A, the function cl>, is subjected to the 

following boundary conditions: 

(1.5) cJ>,(x, 0) = 0, cJ>,(x, y) == 1 if tf> =ex. 

In order to investigate the asymptotic behavior for small values of e, the 
exact solution of (1.1) is determined from which the asymptotic approximations 
are derived. Also the various types of boundary layers are discussed, for instance 
the "free" (i.e., internal) boundary layer in the case of an obtuse angle ex. Finally, 
the case of an almost right angle will be considered. 

2. The solution of the boundary value problem. We shall first remove the first 
order derivative in equation (1.1) by substituting 

(2.1) cl>,(x,y) =I - e"'YF(x,y), w = l/(2e). 

876 
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Then the function F has to satisfy the following boundary value problem: 

(2.2) 
~F(x,y) - w2F(x,y) = 0, 

F(x,0)=1, F(x,y)=O if</>=ct. 

In general, the solution of -an elliptic equation in an unbounded domain is 
not unique. But, by imposing a condition upon F concerning its growth at in
finity, uniqueness can be ensured. We prove the following lemma. The function 
I 0(wr) appearing in the lemma is a modified Bessel function satisfying ~u - w 2u 

= 0, l 0(wr) > 0, 10(wr) =exp (wr)/~(l + O(r- 1)) as r-> oo. 
LEMMA. Assume that u is a regular function in A satisfying: (i) ~u - w 2u = 0, 

(ii) u = 0 on the boundary of A, (iii) Jim,_., u(x, y)/ I 0(wr) = 0. Then u = 0 in the 
whole domain A. 

Proof. Let v = u/w, with w(x, y) = I 0(wr). The function v satisfies the elliptic 
equation 

2 
~v + -(v,w, + v,w,) = 0, 

w 

and v = 0 on the boundary of A. Owing to (iii), for every positive number u we 
can find R such that r > R implies lv(x, y)I < u. Consider the part ~ of A con
tained inside a circle with radius R 1 > R and center at the origin. Then on the 
boundary of~ we have lvl < u. According to the maximum principle for elliptic 
equations in bounded domains, the inequality lvl < u holds in the whole set .6.. 
For an arbitrary point (x0 , y0 ) EA, R1 can be chosen large enough for .6. to contain 
that point. Then lv(x0 , y0 )1 < u, and, since u may be arbitrarily small, v(x0 , y 0 ) = 0 
and hence u(x0 , y0) = 0, which proves the lemma. 

A formal solution of the Helmholtz equation in (2.2) may be written as 

(2.3) F(x,y) = J eA=--•+B:e'f(t)dt, 

where z = x + iy, z = x - iy and A, B are constants to be specified. It can be 
easily verified that F in (2.3) satisfies the equation in (2.2) by writing Laplace's 
operator as 

i)2 i)2 i)2 
-+--4--
8x2 8y2 - i)z af 

Performing the differentiation in (2.3) we obtain ~F = 4ABF. Hence, if 4AB = w 2 , 

then F satisfies the equation in (2.2). Taking A = !iw, B = -!iw, z =re'"', we 
have 

(2.4) 

By changing (2.3) into 

f e-<•e-•+B•<'g(t) dt, 
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we obtain a representation as in (2.4), but now with g(t - ii/>) in the integrand. 
Hence, a formal solution of the Helmholtz equation can be represented by 

F(x,y) =J e-1w"1nh• {f(t + i</>) + g(t - ii/>)} dt. 

For suitable choices off and g the expression f(t + fr/>) + g(t - i</>) becomes the 
real (or imaginary) part of a holomorphic function of the complex variable 
' = t + i</> (with real t and </>).In that case this expression is a harmonic function 
of the variables t and </>. 

To solve the boundary value problem (2.2) we choose a representation of 
the following kind : 

F(x,y) = f~., e-lominh• U(t, </>)dt, 

where U is harmonic (but not necessarily holomorphic) in the strip 

B = {t,</>1-cx:i < t < cx:i,0 <</><ex}. 

In view of the boundary conditions of F (see (2.2)) we obtain for Uthe following 
boundary value problem: 

a2 u a2u 
Tt2 + o</>2 = 0 in B, 

(2.5) 

U(t, 0) = <5(t), U(t, ex)= 0. 

Solutions of the Laplace equation in the strip B with Dirichlet boundary con
ditions can be obtained by using the conformal mapping .,, = exp (nC/cx), which 
gives a potential problem in a half-plane. In the underlying case we choose a 
more direct method. 

Suppose U(t, </>) = Ref(O, ( = t + i</>. Then the singularity of U in ( = 0 
may be represented by (i/n)(l/0 and f may be constructed by the principle of 
reflection. 

where 

(2.6) µ = n/ex. 
The real part off is then given by 

(2.7) U(t </>) = ~ sinµ</> 
' 2cx cosh µt - cos µ</> 

Hence 

F(x, y) = sm µ'I' e-iw,.lnh• t . . ,I.I"' d 
2ex _ 00 cosh µt - cos µ</> 

3 
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This function is bounded by the expression 

sin µcf> J"' dt a - <P 
~ _,,,coshµt - cosµ<P =-a-, 

879 

and hence the conditions for uniqueness are fulfilled. With this function F the 
solution of (l.1 l is 

(2.8) cfl( ) = 1 _ .mµ e""'lo.P e-1w,.inh1 • .· <P f"" dt 
'x,y 2a _ 00 cosh µt - cos µ<P 

This representation of the solution of the singular perturbation problem 
(1.1) will be the starting point of the Investigations on the asymptotic behavior 
of <l>.(x, y) fore ..... 0 (i.e., w--+ oo). The integral in (2.8) will be evaluated by saddle 
point methods. The saddle points of the function e- iwrsinht are located at the 

zeros of cosh t, i.e., at r. = i(1n + nn), n being an integer. The steepest descent 
lines are lines parallel to the real t-axis through t •. If convergence is not disturbed, 
the path of integration of the integral in (2.8) may be shifted towards a steepest 
descent line. With this condition, only the saddle ooint at -1in can be considered. 

By shifting the path of integration of (2.8) downwards to the line Im t = -!n, 
singularities of the integrand may be passed. The singularities in this case are 
poles due to the zeros of 

(2.9) cosh µt - cos µ<P = 2 sin (!µ(<P + it)) sin (!µ(<P - it)). 

The zeros are tk = - i!<P + 2ak) and lk (the complex conjugate of tk) for integer 
values of k. The following poles are important in our problem: 

(2.10) 
tk = -i(<P + 2ak) fork= 0, l, 2, · .. , 

lk=i(<P+2ak) fork= -1,-2,-3,. ... 

Only these poles may be located in [O, -!in], the number of which is dependent 
on a. We consider two different cases: !n < rx < 2n and 0 < a < tn. The first 
case is simpler than the second ene, and will be considered first. 

3. The case !ir < a < 2it. For 0 < <P < a, only the pole t 0 = - i</> of 
(2.10) may be located in the interval [O, -!in]. For values of <P close to b. the 
pole t 0 lies close to the saddle point at t = -!in. In order to obtain an asymptotic 
expansion of<!>, which holds uniformly for all values of <Pin [O, a], we use the same 
method as in [4]. 

Essential to this method is the regularization of the integrand in (2.8) by an 
appropriate function. This will be done by determining a constant (i.e., independent 
oft) c such that the function 

(3.1) 
sin µtfi c 

~ cosh µt - cos µ<P sinh -!{t + i<P) 

is regular at t = - i<P. By calculating the residues at t = - i<P of both members 
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of (3.1), we infer c = i/4n. The function et>, of (2.8) can now be written as 

(3.2) ct>.(x, y) = 1 +--: e-iwrsinhr . 1 . - e"'' e-ia,,sinht g(t)dt, e"" J"" dt J"" 
. 4m _ "' smh :i:{t + u/J) _"' 

where 

(3.3) 1 
g(t) = U(t, </>) + 4ni sinh !{t + i</>)' 

and U is defined in (2.7). 
The first integral in (3.2) can be evaluated by means of the following formula: 

(3.4) 
1 J"' du F(r,y) =--: e-,cosbu . . = e-,cos'erfc(ftrsinty), 

2m -·oo smh !{u - 1y) 

0 < y < 2n, 

where 

(3.5) erfc(z) = -j;f" e-''dt. 

Formula (3.4) can be found in Lauwerier's papers [3] and is also used in [4]. A 
proof of (3.4) is easily obtained by verifying that 

~{e' 00''F(r,y)} = -2~sintye-,(l-cosrl. 

Now, letting u = t + !in, y = Sn/2 - </> and using 

erfc ( -z) = 2 - erfc (z), 

we obtain 

(3.6) 
ecursinq, f '° . . dt 

1 + -- e-iwrsmht = !erfc (z), 
4ni - "' sinh !{t + i</>) 

where 

(3.7) z = ~sin!(fn - </>). 

Formula (3.6) holds for !n < </> < 2n. But by considering complex values of </> 
and by using analytic continuation, (3.6) can be shown to hold for 0 < Re</> < 2n. 

The function g of(3.3) is regular forte [O, -!in] and 0 < </> < cl(!11: < ex < 211:). 
Hence, by shifting the path of integration in the second integral of (3.2) down
wards to the line Im t = -!n, we obtain 

(3.8) ct>.(x, y) = ! erfc (z) - e"" f :"' e-wcosht g(t - !in) dt. 

So far, large values of w (i.e., small values of e) have not been considered. 
The representation (3.8) of the solution of the boundary value problem is the 
exact representation. In order to get an asymptotic expansion of et>., we expand g 

5 
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into a series 

"' 
(3.9) g(t - !in)= coshf t I ck(sinh ttlk. 

k=O 

Substitution of this series in (3.St and interchanging the order of summation and 

integration yields 

(3.10) 

as wr --+ cc, uniformly with respect to </>, 0 ~ </> ;;; a. 

The expansion in (3.10) breaks down if o:-+ !n. Namely, the function 

g(t - tin) has a pole at i(c/> + !n - 2a). For <f> = o:, this pole is located at 

i(tn - a) and if a ..... !n this pole approaches the origin. As a consequence, the 

coefficients c, in (3.9) and (3.10) tend to infinity if a-+ tn· For this question the 

reader is referred to § 5. 

The most important term in the asymptotic expansion (3.10) is 

(J)!0l(x,y) = !erfc(z) 

with z defined in (3.7). This term exhibits the behavior of (J), in the neighborhood 

of c/> = fn, i.e., along the y-axis in the x, y-plane. Just as in the q1:1arter-plane case, 

this term leads to a parabolic boundary layer, situated along the positive y-axis. 

In this domain, for large values of wr, the function (1);0 > (and hence (J),) rapidly 

changes from the value ! to very small values (x > 0) or to values close to 1 

(x < 0). This boundary layer is called a "free" or "internal" boundary layer, 

since it is not located along the boundary of the domain A for which the boundary 

value problem (1.1) is defined. 

Along the boundary </> = cc boundary layers do not occur, as can be seen 

from (3.10). Namely, if </J :::: a (cc > !nJ, 

(Ji,(x,y) - (J)!0>(x,y) = O((wr)-N) 

as wr -+ oo, for any positive N and all </>, !n + l> ~ </> ;;; cc, where i'J is a small 

positive constant. For these values of <f> we also have 

as follows from 

erfc ( - z) = 2 - erfc (z) 

and from the well-known asymptotic formula 

l 
erfc (;) = -,=- e-''( l + O(z- 2)) 

.Jnz 
as z--+ + rx;,. 

4. The itcute angle. In this section we consider values of </> and cc in the range 

(4.1) 
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First we determine the number of poles (2.14) located on the imaginary t-axis 
between 0 and - fin. 

We introduce 

(4.2) 

so that 0 < ). < 1. Consequently, we can choose an integer n;;; 2, satisfying 

(4.3) n - 1<1/). ~ n. 

We distinguish two cases: 
(a) If in (4.3) n is odd, then we have with k0 = !(n - 1), 

(4.4) 21Xk0 < !it ~ (2k 0 + l)IX. 

Therefore, the pole 

(4.5) 

passes through -tin when <fi changes from 0 to IX. If <fi + 21Xk0 < p, then 

tko e [O, -tin]; if </! + 21Xk0 > !n, then tko J [O, -!in:]. For all values of <fi 
(0 ~ <fi ~ IX), we have 

tk,t1e[O,-!in:] fork=O,l,···,k0 -l, I= l,2,···,k0 . 

(b) If in (4.3) n is even, we have with 10 = tn, 

(4.6) (210 - l)Ct. < !n ~ 21Xl0 . 

Therefore, the pole 

(4.7) 

passes the point -!in if <P changes from 0 to IX. If </! + !n > 21Xl0 , then L 10 

e[O, -!in:];if<j> + !n < 21Xl0 ,thenl_ 10 ~[0, -!in].Forallvaluesof</J(O ~ <fi ~IX), 

tk, L 1 e (0, -!in] fork= 0, 1, · · ·, 10 - 1, l = 1, 2, · · ·, 10 - 1. 

As in§ 3, the poles tko and l_ 10 ((4.5) and (4.7) respectively) can be split off. In this 

way error functions are introduced. Afterwards the path of integration will be 

shifted downwards to the line Im t = -!n. The residues of the poles being passed 

tum out to be exponential functions. A simple calculation gives the following 

results. (We distinguish again the two cases (a) and (b).) 

(a) ko ko-1 

<I>.<x.yl = I e- .. •(•in(2k•-<>>-•i•<>> _ I e-"'•(•i•(2k•+<>>-•l•<>1 

(4.8) 
k= I k= I 

_ terfc(z)e-"'·(•in(2ako+<f>)-•in<f>) _e .... , ... I:., e-wrco•h• g(t) dt, 

where k0 is specified in (4.4), z =~sin ty, 

(4.9) g(t) = U(t - !in, c/i) + 4 .. h ~t . )' 
msm - ''Y 

and y =in - </! - 2ock0 . 

7 
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(b) ~-I le-I 
$,<x,yl = I e- .. ,t•in(2ak-<1>l-•i•<l>1 _ 2: e-.,,1,;.12..;+q.1-•in<1>1 

k= I k= 1 

(4.10) 

+ terfc(z)e-"''.{sin(2•1o-<l>J-sin</>} - e"'rsin<I> f~., e-<orcoshl g(t)dt, 

where 10 is specified in (4.6), z = ~sin h. 
t· 1 

(4.11) g(t)=U(t-.,pr.,rj))- 4 .. h-i( ") 
7t1 SID t - l)' 

and y = !11 + <fi - 2al0. 
The representation (4.S) (resp. (4.10)) of <I>,(x, y) is the exact solution. In 

order to get an asymptotic expansion of <I>, for small values of e, the function g 
in (4.9) (resp. (4.11)) may be expanded in the same way as was done for gin (3.9). 
The asymptotic expansion obtained by interchanging the order of summation 
and integration (cf. (3.10)) is uniformly valid in 0 ~ <fi ~ a. Just as in the foregoing 
section, if a_, !11:, the expansion must be reconsidered (see§ 5). 

We conclude this section with some remarks concerning the boundary layer. 
If <fi :: ex, the asymptotic behavior of <I>, is determined by the first term of the first 
finite series in (4.8) (resp. (4.10)); the other terms are of lower order. Hence 

(4.12) 

as wr-+ oo, c/>-+ cx, <fi ~a. If 4' < a, the right-hand side of (4.12) is very small, 
explicitly 

<Ji.(x,y) = O((wr)-N), 

where N is an arbitrary positive number. This estimate, however, is not uniformly 
valid in i/J. If rJi-+ ex, the exponential function in (4.12) may not be small at all. We 
can determine the locus in the x, y-plane on which the argument of the exponential 
function in (4.12) is constant. We infer from 

-wr{sin (2ix - <Pl - sin <P} = -c (c > 0) 

·that the locus is a straight line 

(4.13) y = xtana - c/w, 

which is parallel to the boundary y = x tan a of the sector A. From these aspects 
we conclude that along the line y = x tan a a boundary layer of thickness O(e) 
is located. 

The term with the error function in (4.S) (resp. 4.10)) is asymptotically of 
lower order than the term in (4.12). The error function part, however, is of great 
importance. The error function changes rapidly at <P = tn - 2ak0 (resp. 2a/0 - !11:), 
but the effect is damped by the exponential function contained in this term. This 
term is gaining in influence if a _, tn and the (hidden) internal boundary layer 
due to the error function comes to light if a -> tn (see§ 5). 

5. The almost right angle. In§§ 3 and 4 we discussed the asymptotic behavior 
of Ill, (e _, 0) for values of a larger, respectively smaller than tn. However, the 
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expansion in (3.9) and the expansions which can be derived from (4.8) (resp. (4.10)) 
in an analogous way, are not valid if </>. "' -> !n. since the function g(t) has a 
singularity, which tends to zero for </>. rx -> tn. In this section we shall give the 
asymptotic representation of Cl>, holding for all IX e [in - <5, !n + c'i], where 
0 < c5 < !n. • 

Suppose first that in < IX < !n. In this case the results of§ 4 can be used. In 
(4.2) we have! < I. < I and in (4.3) we haven = 2 Hence, the (b)-case applies and 
from (4.6) it follows that 10 = I. Thus (4.8) becomes 

where z =~sin ty, /' = </> + !:rr - 2rx and g is defined in (4.9). The function 
g has a pole in i(!n - </>), corresponding to tk in (2.14) with k = 0. In (4.8) this 
pole has no influence since IX is constant. If, alternatively, ex "" !:rr. this singularity 
is close to the origin for values of</> close to ex. This pole can be split off and so 
another error function is introduced. 

Supposenext!n <ex< 2n.Thefunctiongin(3.3)hasapoleini(</> + !n - 2ex), 
corresponding to lk in (2.14) with k = -1. Again, for IX "" !n. this pole is close to 
the origin for values o( </>close to IX. 

Combining the two cases, we have 

Cll,(x,y) = !erfc(() + !erfc(z)e-wris;n(2•-<l>J-sln4>1 

(5.2) 
- e•>rsin<I> f"' e-wrcoshr h(t)dt, 

-oo 

where 

1 I 
h(t) = U(t - !in,</>) - . . . + . . . , 

4m smh !{t - zy) 4n1 smh !(t - 1(!n - </>)) 

1' =</>+in - 21X, z = ~sinh!J', ( = ~sin!{tn - </>). 

The asymptotic expansion of <I>, for large wr may be derived by expanding 
h in the same way as was done for gin (3.8). The asymptotic expansion so obtained 
holds uniformly in 0 ~ </> ~ IX, in - c'i ~ IX ~ !n + c'i, where 0 < c5 < ;\:n. If 
IX = !n, (the quarter-plane, see [4]) we have y = </> - !n and 

Cll.(x,y) = erfc(~sin!{!n - </>)) - e"'"1"<1> f~00 e-wrcosht h(t)dt, 

where the integral equals the corresponding integral of reference [ 4] (formula 
(4.6)). 

The significant terms of (5.2) are the two terms with the error functions. For 
IX< !n, the second term may be connected with the "linear" boundary layer 
along </> = rx and the (hidden) internal layer at </> = 2ex - !n. The first one may be 
connected with an external P.arabolic boundary layer outside the sector A. This 
boundary layer has no influence since it is situated outside the domain of defi
nition. If however IX -> !n (IX < in) this boundary layer enters the domain A, and 
coalesces (in the limit IX = !nl with both the "linear" boundary layer and the 

9 



10 

SINGULAR PERTURBATION PROBLEM 

(hidden) internal layer at </J = 2ix - !it (see Fig. I). 

I 
++' I -i-+--/ / .. ·IT 

I I I / I I I / I 

I / / I;· 
I I I I 

~!;' / 1-------, I 
.// 

. I 

2a: - ! 1t 

FIG. I. a< !n 

external parabolic boundary 
layer 

linear boundary layer 

hidden internal boundary 
layer 

885 

For ix > !ir, the first term in (5.2) may be associated with the internal 
parabolic boundary layer inside the sector at </; = !it. The second one may be 
connected with a boundary layer outside A, which is situated at </; = 2ix - !it 
and which enters the domain if ex --+ !it. In the limit (ix = !ir) the two types of 
boundary layers pass into the parabolic boundary layer along <P = ex = !it (see 
Fig. 2). 

internal parabolic boundary layer 

hidden external boundary layer 

:20: - !n 

FIG. 2. :i > in 

From our remarks on the coincidence of the boundary layers it may be 
established that the parabolic boundary layer of the quarter-plane is a particular 
case of parabolic boundary layers for the almost right angle. For other aspects, 
the reader is referred to Grasman [2], where the case of almost characteristic 
boundaries is treated with coordinate-stretching techniques. 
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6. An analogous problem. An analogous. but much simpler. problem is en
countered in looking for the asymptotic expansion of the solutions of the 
boundary value problem 

a a 
e~<l>.(x, y) - µ,-<l>.(x, y) - .A. 0 <1>,(x, y) = 0 

· vx uy 
(6.1) 

in the quarter-plane A = { x, ylx ~ 0, y ~ O} with boundary conditions 

<I>,(0,y) = 1, <I>,(x,0) = 0. 

In (6.1), µand A. are numbers independent of x and y. The characteristics of the 
reduced equation (e = 0 in (6.1)) 

(6.2) µ o<P + A. o<P = o 
ax oy 

are the lines y = (.-1./µ)x + c. For small values ofµ, the characteristics of (6.2) are 
nearly parallel to the boundary line x = 0. Therefore, for small values ofµ it is 
expected that again two error functions appear in the asymptotic expansion of 
et>, (for e -+ 0). As can be verified by the methods of§ 2, the function <1>, can be 
written down as follows: 

ct>,(x,y) = e"'rsin!<l>+P> J~"' e-•wrsinht U(t,</J)dt, 

where 

x = rcos<fJ, y = rsin</J, A.= pcosf3, µ = psinf3, w = p/(2e), 

I 
U(t,</J) =-Re {tant{it + <P + /3) +tan Wt+ <P - /3)} 

rr 

1 sin (</J + /3) 1 sin (</J - /3) = - + - --------
rr cosh t + cos (efi + /3) rr cosh t + cos (ifi - {3)" 

7. Concluding remarks. In this paper we used analytical methods which only 
can be applied on singular perturbation problems with simple differential oper
ators, boundary values and suitable domains of definition. The methods cannot 
easily be generalized for other problems. In treating the relatively simple prob
lems, however, we have a different aim. 

For instance, our approach of the problem gives results which are not easily 
noticed by using the usual singular perturbation techniques. We allude to the 
existence of the hidden boundary layer along the line 4' = 2a - !ir (see Fig. 1 
and the conclusion of§ 4). This aspect is not discussed in boundary layer tech
niques, since the function et>, is asymptotically of order zero in the neighborhood 
of this internal layer. In order to obtain a uniform asymptotic expansion with 
respect to 4' (in 0 ;;;;; </> ;;;;; rx < 1-ir), the error function corresponding with this 
layer cannot be omitted. 

Further we shall point to the case of an almost characteristic boundary 
(see§ 5). In a clear and simple way the asymptotic behavior ofll>, can be described, 

11 
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using our methods. Also the way in which the various boundary layers pass into 
each other is apparent. 

An important disadvantage of our methods is the following. The asymptotic 
expansions are derived for large values of wr. Hence, the results of our paper do 
not hold in an i;-neighborhood of the origin. This domain is very small but it is 
very interesting, since in this part- of the x, y-plane the boundary layers arise. It is 
possible to give expansions which represent the behavior of 4>, close to the origin, 
but it seems better to us to tackle this problem with coordinate stretching tech
niques. This aspect, however, falls outside the scope of this paper. 

Our results can successfully be applied in general singular perturbation 
problems, which yield reduced problems with relatively simple differential oper
ators, boundary values and domains of definition. With these reduced problems 
the local behavior of the solutions are investigated. 

Acknowledgment. The author wishes to express his gratitude to Professor 
H. A. Lauwerier for suggesting this investig11tion and for helpful discussions. 
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An algorithm is given for the numerical evaluation of a class of functions of 
the confluent hypergeometric type. The method of computation is based on 
the well-known Miller algorithms and on asymptotic expansions. 

l. INTRODUCTION 

In 1953, A. van Wijngaarden wrote a paper on transformations of formal 
series [6]. He discussed a general transformation of the asymptotic expansion 
of certain integrals for large parameter values. Special attention was paid 
to a transformation from which the following functions arose 

k = 0, l, 2,. . ., Rez > O. (1.1) 

This transformation can be described in different ways. One way is the 
following. If in the Laplace integral 

f (z) = z r e-•'F(t) dt 
0 

(1.2) 

the function F is expanded in powers of t and the order of summation and 
integration is interchanged, then a formal series 

"' f (z) ~ L F<kl(O) rk (1.3) 
k-0 

* This paper is a revised edition of a report issued by the Mathematical Centre at 
Amsterdam, The Netherlands, under Nr. 134/72 in October 1972. 
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results. When, however, F(t) is expanded in the following way 

"' 
F(t) = L cktk(\ + 1)-k-1, (1.4) 

k-0 

then we obtain by termwisc: integration 

"' f (z) ~ I c1:Sk(z), (1.5) 
k-0 

with sk defined in ( 1.1 ). The series in ( 1.5) can be considered as a trans
formation of the series in ( 1.3). 

In [3], H. A. Lauwerier considers Van Wijngaarden's transformation 
from a different point of view. 

Van Wijngaarden announced the construction of tables for the functions 
s.(z) for complex values of z. The construction of these tables turned out 
to be a heavy task and the tables did not reach the stage of publication. 
Nowadays, with large scale computer systems at our disposal, tabular values 
are not as interesting as methods of computing. 

The aim of this paper is to give information about the numerical evaluation 
of sk(z) for I arg z I < rr and k = 0, 1, ... , K, where K is some positive 
integer. 

In the next section some elementary properties of tbe functions sk are 
discussed. In fact sk can be expressed as a confluent hypergeometric function 
(Whittaker function). In Section 3 the asymptotic behavior of sk is deter
mined. With these results the convergence of the algorithm in Section 4 
is proven. In Section 5 the computation for small values of I z I is discussed. 
Also in that case asymptotic expansions are of fundamental importance. 
Our methods of computation apply to a more general class of functions, 
in fact to the whole class of confluent hypergeometric functions to which the 
functions sk belong. Information on that point will be given in Section 7. 

2. THE FUNCTIONS sk(z) 

The functions sk(z), defined by (I.I) for Re z > 0, k = 0, I, 2, ... , can 
be expressed in terms of confluent hypergeometric functions. Using the 
notation of Abramowitz and Stegun [1, Chap. 13], we have 

sk(z) = zk! U(k +I, l,z). (2.1) 

Relevant properties of sk(z) can be derived from well-known properties 
of U(a, b, z), 
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Equation (1.1) defines sk(z) in the halfplane Re z > 0. The domain of 
definition can be extended to I arg z I < 37T/2 by rotating the path of integra
tion. The function sk(z) is a many-valued function of z. We will consider 
its principal branch in the plane cut along the negative real axis, this branch 
being determined by the condition that sk(z) is real and positive if z is real 
and positive. 

For convenience we will denote 

(2.2) 

k = 0, 1, 2,... . Then uk satisfies the confluent hypergeometric differential 
equation 

(2.3) 

A second solution of this equation, linearly independent of uk , is the function 

Yk(z) = M(k + 1, 1, z); (2.4) 

y0(z) = e', y1(z) = (1 + z)e>. M(a, b, z) is known as Kummer's function. 
In the notation of hypergeometric functions the function M(a, b, z) is 
defined by 

"' I'(a + n) I'(b) z" 
M(a, b, z) = 1F1(a; b; z) = I~ I'(b + n) nl • (2.5) 

A corresponding series-representation for sk(z) can be derived from a known 
representation of U(a, b, z) in [I, 13.I.6]. For k = 0, 1, 2, ... , we have 

sk(z) = - _kz' £ I'(k + ~ t I)z" {lnz + 'P(k + n + 1)- 2'P(n + 1)}, 
· -o n n (2.6) 

where 'l'(z) = I''(z)/I'(z). The series converges for all z in the finite z plane. 
From the contiguous relations of the confluent hypergeometric functions 

we derive 

(k + I) sm(z) - (2k + I + z) sk(z) + ks1:-1(z) = 0. (2.7) 

This formula can also be obtained by partial integration of (I.I). The 
recurrence formula (2.7) can be considered as a homogeneous linear dif
ference equation of the second order, of which of course uk is also a solution, 
but uk is not linearly independent of sk • An independent solution turns 
out to be the function Yk defined in (2.4). 

17 
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3. AsYMPTOTIC ExPANSIONS 

In this section we will study the asymptotic behavior of sk and Yk for 
large values of k and for various values of z, I arg z I < rr. 

For small values of I z I, k fixed, the asymptotic behavior follows from 
(2.5) and (2.6), viz 

yh·) =I+ O(z), (3.1) 

st(.t·) = -z(ln z + '¥(k + I)) + 0(1 z2 In z I). (3.2) 

For bounded values of I z I, say I z I <( M, and large values of k we 
will use the differential equation (2.3) and a theorem due to Olver [4]. First 
we give a transformation of the dependent variable. If uk(z) is a solution 
of (2.3) then 

(3.3) 

satisfies the equation 

w' - [(k + i)/z - l/(4z2) + !]w = O. (3.4) 

The transformation of the independent variable 

(3.5) 

and the substitution 

(3.6) 

yield 

w' - w'/t - (,\2 - t-2 + t2]w = 0, (3.7) 

the differentiation in this equation being with respect to t. 
For large values of ,\ and uniformly bounded values of I t I the solutions 

of (3.7) will behave like the solutions of the so-called basic-equation 

w• - w'/t - [,\2 - i-2]w = O. (3.8) 

The solutions of this equation are tK0(,\t) and tl0(,\t), where K0 and 10 are 
modified Bessel functions. By direct substitution in (3. 7) it can be verified 
that the formal series 

(3.9) 

(3.10) 
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formally satisfy (3.7). The functions An and B,. are polynomials in t, 
recursively given by 

A0(t) = I 

2B,.(t) = -A~'(t) + r {x2A,.(x) - A,.'(x)/x} dx 
0 

(3.11) 

the integration constant an+1 being arbitrary. The first few coefficients 
will be given in Section 5. By application of Olver's theorem it can be shown 
that the series in (3.9), (3.10) are asymptotic expansions (in Poincare's 
sense) of two linearly independent solutions w1 and w2 of (3.7) for large 
values of >.. These expansions hold uruformly in a closed bounded :l'-domain 
which includes the origin. 

After these preliminary results we return to the functions Ur. and Yk , 
introduced in the foregoing section. The functions 

G(t) = exp(-!t2) tyit2) 

are solutions of (3. 7). Hence 

where "'1 , "2 , {J1 , {J2 are independent of t. To evaluate these coefficients 
we need the following well-known properties of the Bessel functions. 

/ 0(x) = 1 + O(x), K 0(x) = -In x + 0(1), x - o. (3.12) 

/ 0(x) = (2?Tx)-1/2 e"[l + 0(1)], K0(x) = (?T/2x)l/2 e-~(l + 0(1)), x--+- ex>. 

(3.13) 

The formulas in (3.12) hold for arbitrary values of arg x, those of (3.13) 
hold for I arg x I < ?T/2. 

For real :I' and for all values of k considered we have 0 < uk(z) < 1/:1'; 
this follows from (1.1) and (l.2). Hence "2 = 0 for all values of k. Because 
of the uniform property of the expansions (3.9) and (3.10) we may keep 
,\ = 2(k + l)l/2 fixed and let t _,. 0 through positive values. Since Yk(:I') 
is bounded if z _,. 0 (see (3.1)) it is obvious that {J1 = 0. Finally, from 
(3.1), (3.2), and (3.12) it follows that °'l = 2, {J2 = I. Moreover, all integration 

19 
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constants in (3.11) have to vanish (n = 0, I, 2, ... ). Hence, using the various 
transformations we obtain 

l .. A (z1/2) K (Q ., B {z1/2) ! 
st(.a·)....., 2zeUl•I• Kom };o (4k" + 2)" - (4k ~ 2)112 £ (4kn + 2)" ' (3.14) 

' ) <11•1• )1 (') ;, An(zl/•) + l1CQ ~ B,.(zl/2) ! (3.15) 
JJ:\ll ......, e o ~ f::o (4k + 2)" (4k + 2)1!• f=o (4k + 2)" I' 

for k ...... oo, where 

' = 2[z(k + i)J1''. '>0 if z > 0. (3.16) 

The expansions are uniformly valid with respect to z in a bounded domain 
of the z-plane, which contains the origin. 

COROLLARY. Fur fixed values of I z I it follows from (3.14), (3.15), and 
(3.13) that 

sk(z)....., ,,J/2z"l•k-•!• exp[iz - 2(.:rk)1 /2], (3.17) 

Jk(z) ....., }-ir-1/2(.:rk)-1!• exp[iz + 2(zk)112] (3.18) 

ask__.. oo. The restrictions on z in (3.17) and (3.18) are 

I arg.:r I<.,,., z fixed, z =F 0. (3.19) 

It has to be pointed out that (3.17) and (3.18) are not valid when both 
k and 111 are large. Representations, which are valid for large k uniformly 
in I z I for I z I ;;;. 8 > 0, can be derived by applications of theorem A 
in Olver [4]. This will now be done. 

Again, the starting point is the differential equation (3.4). The trans
formation 

z = 2\t, (3.20) 

yields 

(d2tll/dt2) - [>.2(t + l)/t - 1/t2]w = 0 (3.21) 

and a further transformation 

w = [t/(l + t)]11'v, x = ln[tl/2 + (I + t)l/2] + [t(l + t)]l/2 (3.22) 

results in 

(d2v/dx2) - {.\.2 + f(x)}v = 0. (3.23) 
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The functionf(x) cannot be given explicitly in terms of x, but in the variable t 
we have 

f(x) = (3 + 8t)/[16t(l + t)3] - I/[t(l + t)]; 

the relation between x and t is given in (3.22). According to Olver, for 
large values of ,\ the solutions of (3.23) behave like the solutions exp(±.\x) 
of the basic-equation v• - ,\2v = O. As a consequence, we have for two 
linearly independent solutions w1 and w2 of (3.21) 

w1(t),...., [t/(1 + t)]1/4 exp[.\{ln[t1/2 + (1 + t)112] + [t(l + t)]112}] (3.24) 

w2(t),...., [t/(l + t)]1/4 exp[-,\{ln[t1/2 + (1 + t)112] + [t(l + t)]1/2}], (3.25) 

as,\-+ co. 
Using Olver's theorem, we can prove that these formulas hold uniformly 

in t in the domain I t I ;;.. B, I arg t I ~ 11 - £, where £ and B are fixed positive 
numbers(£ < 11). As in (3.9) and (3.10), we can construct asymptotic series 
which formally satisfy (3.23). but here we are interested in the first order 
approximation only. 

To give the results for Yk and sk we proceed as in the foregoing case. 
First we remark that 

zl/2e-<I/2l•u1,(.;-) = (2,\t)-1/2 e-Alst(2At) = F(t) 

zl/2r<I/2l•yk(z) = (2At)lf2 e-Atyk(2At) = G(t) 

(where ,\ = 2.k + 1) are solutions of (3.20). Hence 

where "1, "2, fl1 , fl2 are independent of t. To evaluate these coefficients 
we use (3.17) and (3.18). If in (3.20) z is fixed and ,\ is large, then t is small. 
In this case it follows from (3.24) and (3.25) 

w,(t) ,..., tl/4 exp(2At'/2) ,..., z11•2-112k-1/• exp[2(kz)lf2] 

w2(t) ,..., t1/4 exp(-2,\t1f2) ,..., z1/42-1/2k-1/• exp[-2(kz)lf2] 

as k -+ co. Taking into account (3.17) and (3.18) we have a 1 = {32 = 0 and 
"2 = (2,,.)112, fl1 = l/(2w)112• Hence 

sk(z) = (2,,.z)1/2 e<1/2l•w2(t) 

Yk(z) = l/(2,,.z)1/2 eC1/2>•w1(t), 

21 
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and using (3.24) and (3.25) we have 

sk(z) ,..., (2,,.z tanh a)1/2 exp{!z - (k + i){2o< + sinh 2cx)} (3.26) 

y.(z) ,..,.. (tanh o</2,,.z)l/2 exp{tz + (k + 1-)(2<>< + sinh 2<><)} (3.27) 

as k -+ co, where "' is defined by 

z = 4(k + l) sinh2 <><; (3.28) 

sinh "' is real and positive if z is positive. In (3.26), (3.27) the restrictions 
on z are 

I arg z I ~ ,,. - •, o < • < ,,., I z I ): a > o. (3.29) 

In (3.26) and (3.27) we can fix k and let z ...... co. Taking limiting forms 
of the functions of "' for large "' we obtain 

s.(z) ,..., k!/zk 

Yk(z) ,...,, zke•/kl, 

as z-+ +co, k fixed. These formulas correspond to well-known results of 
the confluent hypergeometric functions. The formula for sk can be derived 
direct from (1.1). The formula for Y• then follows from (3.26), (3.27), 
y.(z) s.(z) ,..., tanh ae•,..., e". 

The formulas (3.17) and (3.26) may also be derived from (I.I) by using 
saddle point techniques. 

The asymptotic expansion in (3.14) will be used for the numerical evalua
tion of s1:(z} for large values of k (and small values of I z 1)- See Section 5. 
Formula (3.17) gives information about the rate of convergence of series 
with s1:(z), for instance series of type (J.5). 

4. METHOD OF COMPUTATION 

The recurrence relation (2.7) is an important tool for generating a sequence 
of values s.(z} for fixed z and k = 0, 1, 2,. . ., K. If the values of s.(z) are 
known for two consecutive values of k, then the functions may be computed 
for other values of k by successive application of the recurrence relation. 

In [2], Gautschi investigates the problem of numerical instability for 
general three-term recurrence relations. In this connection he introduces 
the concepts of minimal solution and dominant solution of a recurrence 
relation. Starting from two initial values, an application of the recurrence 
in the forward direction (i.e., in the direction of increasing order) yields 
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a disastrous build-up of errors for the minimal solution, whereas the com
putation of the dominant solution remains numerically stable. 

If the recurrence relation 

Yn+1 + anYn + b,.y,._1 = 0 (4.1) 

has two linearly independent solutions/,. and g,. having the property 

lim/n/gn = 0 
·~"' 

(4.2) 

then/,. is called a minimal solution and gn is called the dominant solution 
of (4.1). From (3.17) and (3.18) it follows 

sk(z)Jy.(z) ~ 2z.rr exp[-4(zk)1 i2], (4.3) 

k-+ oo, under the conditions in (3.19). Consequently, in our case, s.(z) is 
a minimal solution of (2.7) and Yk(z) is a dominant solution. 

Gautschi's paper concentrates mainly on the development of an algorithm 
for the computation of minimal solutions. This algorithm is based on 
Miller's method which enables computation without any knowledge of 
starting values for large k. 

To describe the algorithm for the computation of the minimal solution 
fn (n = 0, 1, ... , N) of (4.1) let 

"' L: A..!m = t, t =fa 0, (4.4} 
m-0 

r n = ln+1/f,. , (4.5) 

., 
t,. =f-;.1 L: Amfm' (4.6) 

m.•n+l 

where t and A., A1 , .•• are given quantities and the series (3.4) is known 
to converge. At first we suppose that r,. and t,. are known for some value 
n = v ~ N. From (4.1) and (4.5) there follows 

n = r.t,v-1, ... , 1, (4.7} 

and from (4.6) and (4.7) 

n = v, v - ], ... , 1. (4.8) 

Hence r,. and t,. can be obtained recursively for 0 ,;;;;; n < v; in particular 
we have, using (4.4) 

(4.9) 

23 
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and so 

/ 0 = t/(><@ + t0), (4.10) 

giving the initial value of the minimal solution. The remaining values can 
be obtained from 

n = 1,2, ... ,N. (4.11) 

When the algorithm is executed with the (incorrect) starting values 
r!'1 = 0, t;•1 = 0, we have the following set of recursions 

T~) = 0, 

t~) = 0, 

r:~l = -bn/(an + r:1) I 
t:~1 = r~:1(>-n + t~>) } 

n = v, v - 1, ... , l, (4.12) 

n= 1,2, ... ,N. 

Gautschi showed that the set of recursions ( 4.12) is numerically stable 
and that 

if and only if 

(n = 0, !, ... , N) 

r f.-t1 ~" o v~~-g ~ mKm = ' 
v+l m-o 

where ln is a dominant solution of (4.1). 

(4.13) 

(4.14) 

Under the restriction on z given in (3.29) the functions sk(z)(k = 0, I, ... , K) 
can be computed with Gautschi's algorithm (4.12). For the series in (4.4) 
the following series can be used 

(4.15) 

This formula may be proved by substitution of (I.I). Hence 

t =An= 1, an = -(2n + 1 + z)/(n + I}, bn = n/(n + 1), 

(cf. (4.1) and (2.7)). We can choose v so large that 

l[/1°'1 - sk(z)]/st(z)I < <, • > 0, k = 0, I, ... , K, (4.16) 

if and only if condition (4.14) is fulfilled. 
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In our case it reads 

s (z) ' 
Jim .2±!..- L y,.(z) = 0 
11-+00 Yv+1(z) m-o 

(4.17) 

for the values of z specifie? in (3.19). 
To verify condition (4.17) we compute the finite sum in this formula. 

We have . 
L y,.(z) = (v + l)[y,+i(z)- y,(z)]/z. (4.18) 

m-o 

This formula can be derived by using (2.7) and mathematical induction 
with respect to v. With (4.18), (4.3), and (3.18) it is easy to prove that (4.17) 
holds for I arg z I < TT, z ¥- 0, z fixed. 

The positive integer v in (4.12), which indicates the starting-point of 
the backward recurrence, can be chosen so that ( 4.16) is fulfilled. The 
number v depends on E, z and K; vis large if I z I is small, even v->- oo if 
z ->- O. This can be recognized by observing that for z ->- 0 the series in 
(4.15) converges poorly. Besides, and this is the main point, the dominance 
of Yk over sk becomes rather weak, as can be seen from ( 4.3). 

Therefore, for small values of I z I the algorithm becomes less attractive, 
and as a consequence, for small values of I z I we need accurate starting 
values of s.(z) for two consecutive values of k. 

Throughout this paper we will fix the dividing line in the z-plane for 
the two methods at I z I = 1. An optimal choice of a boundary may be 
found by numerical methods. From our experience, I z I = l is a convenient 
choice. 

5. THE COMPUTATION FOR I z I < 1, z ~ 0 

The algorithm described in (4.12) provides us with a numerical procedure 
for the computation of s.(z) (k = 0, 1, ... , K) which converges and which 
is numerically stable for every z in the z-plane satisfying I arg z I < .,,., 
z ¥- 0. However for small values of I z I, the number v may be considerably 
large when (4.16) has to be satisfied and therefore the procedure converges 
slowly, unless correct values of r!» and t!'1 are substituted in (4.12). In 
that case we need two starting values s,(z) and s,+l(z), v ;;:. N. 

The series-representation (2.6) converges for all finite values of z. However, 
when k is a large integer cancellation of significant digits occurs when the 
series is summed numerically. Besides, convergence is rather poor when 
k is large . 

25 
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Since s,(ir) has to be evaluated for large values of v it is more attracti~e 
to use an asymptotic expansion of s,(.:r) valid for large values of. v, while 
small values of I :: I do not invalidate the approximation. In Section 3 we 
derived an expansion satisfying these requirements, namely (3.14). This 
expansion gives an excellent approximation for sk(z) for large k and fixed 
values of I:!, while the approximation improves as I z I becomes smaller. 

The first few values of the polynomials A,, and B .. are 

Ae(t) = I, 

A,(t) = t2(t4 - 12)/72, 

A.(t) = t'(5t8 - 112814 + 27216)/1 55520, 

A3(t) = t2(35t18 - 31500t12 + 58 59216t8 - 2067 6384014 

+ 5486 74560)/11757 31200, 

A,(t) = 14(5t'° - 1147218 + 70 68384t12 - 13282 03008t8 

+ 6 5ll77 7920014 - 49 98537 21600)/33 86105 85600, 

Bo(t) = t3/6, 

B1(t) = t(5t8 - 432t4 + 2160)/6480, 

B.(t) = t3(7t12 - 3528t8 + 2 982241:4 - 30 48192)/65 31840, 

B3(t) = t(5t'0 - 7560t14 + 27 76896t'• - 2642 2848018 

+ 47953 036801:4 - 65840 94720)/70543 87200. 

By substitution of polynomial representations of A,, and B,,. in (3.11), 
recurrence relations for the coefficients of these polynomials may be derived 
in order to compute A,, and B., for other values of n. 

Some remarks on the computation of the modified Bessel functions 
K0({) and K1m will follow in Section 7. 

6. THE ESTIMATION OF v 

In this section we give an estimate of the starting value v to be used in 
algorithm ( 4.12), given the relative accuracy desired. Gautschi [2] obtained 
an approximation for the relative error which in our notation reads as follows 
(see Gautschi's discussions around 3.18 and 5.11 in [2]) 

[J~) - st(z)].'st(.:r),...., s,+1(.-..) - [s.+1(.-..) Yk(z)/(y,+i(ll') sk(z)] (6.1) 

v large, k = 0, !,. . ., K. 
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Our aim is to determine v such that 

(6.2) 

holds for k = 0, 1, ... , K, I z I ~ 1, I arg z I < rr, where < is the relative 
accuracy desired. Since I Yk(z)/s.(z)! ultimately grows rapidly with k, see 
(4.3), it is plausible to expect that when (6.2) holds for k = K it will also 
be valid when k < K, particularly when K is large. We therefore consider 
the simplified problem of bounding 

(6.3) 

We assume K, and thus v, so large that the functions in (6.3) may be replaced 
by approximations of these functions holding for large values of v and K. 
The asymptotic expressions in (3.17) and (3.18) are not suitable for large 
I z f, therefore it is necessary to use the more intricate formulas (3.26) and 
(3.27). 

Applications of (3.26) and (3.27) to (6.3) give (if a few unimportant 
coefficients have been omitted) 

f[Jt> - s.(z)]/siz)f ,;;;; exp Re{!z - vf(cx)} +exp 2Re{Kf(f3) - vf(cx)}, (6.4) 

f(cx) = 2cx + sinh 2cx, 

sinh2 cx = z/4v, 

sinh2 f3 = z/4K, 

sinhcx > 0 

sinh/3 > 0 

if z > 0, 

if z > 0. 

The positive integer v can be chosen so large (if z, K, and • are known) 
that simultaneously 

exp ReHz _: vf(cx)} < l•, exp 2 Re{Kf(f3) - vf(cx)} < ~·· (6.5) 

The proper value of v can be found by inverting the function Re{vf(cx)}. 
Some properties of this function will now be given. 

Let 

sinh2 cx = z/4v = re'°/4v, r > 0, -rr < 8 < rr, 

cx = y + i8, y > 0, -rr/2 < 8 < rr/2. 

Then, by eliminating 8, 

Re{vf(cx)} = 2 . ~ 2 2 (2y{cosh 2y +cos 8} + sinh 2y{l +cos 8 cosh 2y}] 
sm1 y 

(6.6) 
and 

v = [r/2 sinh2 2y]{cosh 2y + cos 8}. 

27 
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Denoting (6.6) by ef>(y) then 

limql(y) = oo, limef>(y) = !r cos II 
y-;Q ,., .... :ii; 

and 

ef>'(y) = -2yr{cosh2 2y + 2 cos II cosh 2y + l}/sinh3 2y. 

Thus, ql(y) is a monotone decreasing function of y and the equation 

ql(y) = p (6.8) 

has a unique solution y = .p-1(p) for all p > !r cos II. 
The inequalities in (6.5) are equivalent with ql(y) > !r cos II + ln(2/E), 

ql(y) > ef>()..) + ! ln(2M where A is implicitly given by (cf. (6.7)) 

K = 2 si:h2 2A {cosh 2A +cos II}. (6.9) 

This equation may be inverted to give ).. explicitly, viz . 

.\ = ! arc cosh[y + (y' + 2y cos II+ 1)112], (6.10) 

where 

y = r/(4K). 

If we set 

y = .p-1{max(!r cos II+ ln(2/<), qi()..)+ ! ln(2/e))} (6.11) 

then the number 11 given by (6.7) may be used for starting the algorithm 
described in (4.12). 

For real values of z approximations of .p-1 are easily obtained. By inverting 
(6.8) for large values of p we have 

q1-1(p) - .!:.. (1 + _!_ (.!:..)4) pfr-+- oo, (6.12) p 45 p , 

and by inverting for values of p close to !z we obtain 

.p-1(p) - y0{1 + 2/[1 + 'Yo(q + l/q)]}, q--.. I, q > I, (6.13) 

where q = 2p/r, Yo = ! ln[(q + l)/(q - I)]. Using (6.12) for q ~ 2 and 
(6.13) for I < q < 2, we have a suitable approximation of .p-i(p) for all 
p > 1. 
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For real values of z (II = 0, z = r) we will give the successive steps in 
the computation of"· The three quantities z, K, and• are given: 

(I) compute,\ from (6.10): ,\ = ln[y1 /2 + (y + I)'I']; y = z/4K; 

(2) compute </>(,\) = z(2,\ + sinh 2.\)/4 sinh2 ,\; 

(3) compute p = max{iz + ln(2/E), </>(,\) + i ln(2/•)}; 

(4) compute y = q,-1(p) from (6.12) or (6.13); 

(5) compute v from (6. 7). 

The estimated value of v can be compared with the smallest value of v 

empirically found, for a given set of values z, K, and •· Empirical values 
were found by running algorithm (4.12) with v = K + 15, K + 20, 
K + 25, ... until for the first time the K + 1 values J'/:'. (k = 0, 1,. .. , K) 
agreed within a relative accuracy of • with the respective values of /';-51 • 

In Table I we give some values of the starting number v for • = 10-10• 

TABLE I 

~ 15 30 50 80 100 

1.0 155(147) 155(146) 160(168) 210(221) 245(253) 
3.0 60(53) 80(79) 110(110) 150(152) 180(180) 
5.0 45(42) 65(66) 95(94) 135(134) 160(160) 

10.0 35(33) 55(54) 80(80) 115(117) 140(141) 
25.0 30(26) 45(44) 70(68) 105(102) 125(125) 
50.0 30(22) 45(40) 65(63) 95(96) 120(117) 
80.0 30(21) 45(38) 65(60) 95(92) 115(114) 

The empirical values may be compared with the values between brackets 
which are obtained from the asymptotic relations. For small values of K 
the estimated values appear to be less accurate. 

If I z I < 1 the choice of v depends on the number of terms used in the 
asymptotic series (3.14). We used this expansion with n = 4 for the A-series 
and with n = 3 for the B-series and v ;;;;: max(K, 100). In this way we found 
nine correct significant digits in sk(z), k = 0, I, ... , K. 

7. GENERALIZATIONS 

When instead of ( 1.2) integrals of the type 

.f(z) = z r t'e-''F(t) dt 
0 
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are considered, -1 < Re "' < 0, the analysis proceeds in the same manner. 
The functionF(t) is expanded as in ( 1.4) and the functions s~•>, now depending 
on "'• can be written as 

s~•l(z) = z r e-!ttk+•(I + r)-k-1 dt 
0 

= zI'(k +"' + 1) U(k +"'+I,"'+ I, z). 

These functions may be computed by using analogous methods as described 
in Sections 4 and 5. In fact it is possible to evaluate the whole class of 
hypergeometric functions u• = U(a + k, b, z), k = 0, ), ... , in this way. 
The asymptotic properties of uk and sk are not essentially different, since 
it suffices to consider 0 :s; a~ I, 0 :s; b.;:;; l. (For n = 0, I, 2, ... , the 
functions U(a, b + n, z) can be computed with starting values for n = 0, I; 
in this case computation in the forward direction is numerically stable). 
The asymptotic series for uk (analogous to the representation of s. in (3.14)) 
follows from Olver's paper. The coefficients A,. and B,.. will depend on a 
and b. The Bessel functions have to be replaced by K,_1 and K, . 

The Bessel function K 0 (z) may also be computed by the methods of 
Section 4, at least if I z I is not too small, say I z I ;;;, I. Namely, we can 
write K 0(z) as a confluent hypergeometric function, 

K.(z) = ,,.ir'(2z)• e-•U(a + !; , 2a + 1, 2z). 

For small values of I z ! the calculation can he attempted by using the well
known formula 

K 0(z) = ("/2 sin a7r)[J_ 0 (z) - I.(z)]. 

In [5] we worked out some new ideas on the numerical evaluation of the 
Bessel function K,,(z}. 
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Uniform Asymptotic Expansions 
of the lnco~plete Gamma Functions 

and the Incomplete Beta Function 

By N. M. Temme 

Abstract. New asymptotic expansions are derived for the incomplete gamma functions 
and the incomplete beta function. In each case the expansion contains the complemen~ 
tary error function and an asymptotic series. The expansions are uniformly valid with 
respect to certain domains of the parameters. 

1. Introduction. The incomplete gamma functions are defined by 

(1.1) -y(a, x) = s: e-tt•-1dt, r(a, x) = s: e-rta-l dt. 

The parameters may be complex; but here we suppose a and x to be real, where a> 0 
and x ;;;. 0. Auxiliary functions are 

(12) P(a, x) = -y(a, x)lr(a), Q(a, x) = r(a, x)/r(a), 

and from the definitions it follows that 

'(1.3) 'Y(a, x) + r(a, x) = r(a), P(a, x) + Q(a, x) = I. 
For large values of x we have the well-known asymptotic expansion, · 

r(a, X) - Xa-le-X{l +(a - J)/x +(a - J)(a - 2)fx2 + ... }. 

See for instance Dingle [1] or Olver [3]. If both x and a are large, this expansion is 
not useful, unless a= o(x). For large values of a, we can better use the function 
-y(a, x). From (1.1) we obtain the elementary result 

'Y(a, x) = e-xx•r(a) I: xnlr(a + n + 1). 
n=O 

This series converges for every finite x. It is useful for a---> 00 and x = o(a), since un
der this condition the series has an asymptotic character. 

Expansions with a more uniform character are given by Tricomi [ 4 ], who found 
among others 

-y(a + 1, a+ y(2a)l'.)Jr(a + 1) = ~ erfc(-y) - ic2/air)y,(1 + y 2 ) exp(-y2 ) 

(1.4) + O(a- 1 ), y, a real, a->+ 00• 

This expansion is uniformly valid in y on compact intervals of R. The function erfc is 
the complementary e"or function defined by 

AMS (MOS) subject classificarlons (1970). Primary 33Al5, 41A60. 
Key words and phrases. Incomplete gamma function, incomplete beta function, asymptotic 

expansion, error function. 
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(1.5) erfc(x) = 211-1> f: e-12 dt. 

It is a special case of f(a, x), namely erfc(x) = rr-;>r(Y.i, x 2 ). Some results of Tricomi 

are corrected and used by Kolbig [2] for the construction of approximations of the ze

ros of the incomplete ganuna function "Y(a, x). 

An important book with many results on asymptotic expansions of the incom

plete gamma functions is the recent treatise of Dingle [I). Apart from elementary ex

pansions, Dingle gives also uniform expansions and, in particular, he generalizes the re

sults of T.ricomi (p. 249 of [I]). Dingle does not specify the term "uniform", but it 

can be verified that the same restrictions on y must hold as for (I A). 

In Section 2 we give new asymptotic expansions for r(a, x) and f(a, x), holding 

uniformly in O ..;; xla for a --+ oo and/or x -+ 00 • In Section 3 an analogous result for 

the incomplete beta function is given. 

A recent result of Wong [5) may be connected with our results. Wong considers 

integrals of which the endpoint is near by a saddle point of the integrand, and he ap

plies his methods to the function Sn(x) defined by 
n 

enx = L: C=Ylr! + cnxrsnCx)ln!. 
r=O 

The function Sn is a special case of the incomplete gamma function and the asymptotic 

expansion of Sn(x) for n .....,. 00 , x - I is expressed by Wong in terms of the error func

tion. (Wong interpreted his results only for 0 ..;; x .;; I, but not across the transition 

point at x = I.) 

2. Uniform Asymptotic Expansions. The integrals (! .I) are not attractive for de

riving· uniform expansions. Therefore, we write Pas 

(2.1) I f c+i~ P(a, x) = -. e>:ss- 1(s + 1)-a ds, 
2m c-1~ c>O, 

in which (s + I )-a will have its principal value which is real for s > - I. Formula (2 .I) 

can be found in Dingle's book. Here we derive it by observing that the Laplace trans

form of dP(a, x)ldx is (s + 1)-•, from which it follows that (s + 1r•s- 1 = 

L(P(a, ·)),which can be inv~rted to obtain (2.1 ). Taking into account the residue at 

s = 0, the contour in (2.1) can be shifted to the left of the origin; and so a similar in

tegral for Q can be given. With (13) and some further modifications we arrive at 

where 

- e-a<f>(ll.) Jc+i~ a<f>(t)...!!!_ 
Q(a, x) - 2rri c-i~ e /..- t' 0 < c < /.., (2.2) 

(2.3) rp(J) = t - I - In t, /.. = xla. 

The contour in (2.2) will be deformed into a path in the s-plane which crosses 

the saddle point of the integrand. The saddle point 10 follows from </J'(t0 ) = O. Hence 

t 0 = I, <l>(t0 ) = </J'(t0 ) = 0 and </J"(t0 ) = I. 
The steepest descent path follows from Im rf(t) = Im !/l(_t0 ) = O, and, by writing 

t = a + ir (a, r ER) we ol;itain 

(2.4) a= T ctg r, -rr<r<rr. 
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Let temporarily X > 1, that is x >a. Then the contour in (2.2) ·may be shifted into 

the contour L in the t-plane defined by (2.4). According to Cauchy's theorem, the in

tegral in (22) remains unaltered; and on L, the values of cf>(J) are real and negative. 

Next we define the mapping of the t-plane into the u-plane by the equation, 

(25) - *u2 = cp(_t), 

with the condition t EL corresponds with u E R, and u < 0 if r < 0, u > O if r > O. 

The result is 

(2.6) 
-•</J(A)J- d d Q(a, x) = e ___ - e-Y.au2 _J__u_ 
2m -- du X - t' 

X >I. 
The presence of the pole at t = X in the integrand of (2.6) is somewhat disturbing, but 

we will get rid of it by writing 

(2.7) 
dt _I_= dt _I_+ _1 ___ 1_ 
duX-t duX-t u-u 1 u-u 1' 

where u1 is the point in the u-plane corresponding to the point t = X in the t-plane. 

That is, - *ui = c/l(X), hence u 1 = ± i<f>(X)*. There still is an ambiguity in the sign. 

However, the correct sign follows from the conditions imposed on the mapping defined 

in (25). In fact, we have 

{2.8) u1 = i(I - X){2(X - I - In X)/(1 - X)2 }*, 

where the square root is positive for positive values of the argument. The first two 

terms at the right-hand side of (2.7) constitute a regular function at t = .X, and with 

this partition we obtain 

e-•<IJ(l..)s- 2 du 
(29) Q(a, x) = - --.- e-Y.au -- + R(a, x), 

21TI -- u-u, 

(2.10) e-•</J(A) s- 2{dt I I } R(a x) =--.- e-Y.au ---+--du, 
' 21TI -- du X - t u - u 1 

and the integral in (2 .9) can be expressed in terrns of the complementary error function 

defined in (1.5), so that 

(2.11) Q(a,x)=*erfc(a*r)+R(a,x), t=iu 1r*. 

From erfc(x) + erfc(- x) = 2 it follows that 

(2.12) P(a, x) = * erfc(-a*n -R(a, x). 

So far, the results in (2 .11) and (2 .12) are exact, since no approximations were 

used. In order to obtain asymptotic expansions for PVz, x) and Q(a, x), the function 

R(a, x) will be expanded in an asymptotic series. The integrand of R(a, x) is a holo

morphic function in the finite u-plane for every X ;;;. 0. If we put the expansion, 

dt 1 1 -
(2.13) d- ,- + --= L ck(X)uk, 

Ul\-t u-u, k=O 

in (2.10), and, if we reverse the order of summation and integration, by Watson's lem

ma [3], we obtain the expansion 
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(2.14) 

(The conditions for Watson's lemma are certainly satisfied since the function in (2.13) 

is bounded for large real values of u.) 
Each coefficient c,.()..) is an analytic function of).. near ).. = I, and the expansion 

(2.14) is not only valid near)..= I but for all ).. ;;;.. 0. That is to say, we can fix x and 

Jet a tend to infinity, or conversely. Also, x and a may grow dependently or indepen

dently of each other. 

The first few coefficients are 

( ')_-i()..2 +10)..+I)_..l (I) i 
C2 " - 12().. - 1)3 u( C2 = - 540. 

Our expansion is more powerful than those of Tricomi and Dingle. Tricomi's for~ 

mula (1.4) follows from our expansion by expanding (2.12) for small values of I - )... 

Moreover, for the complete expansion, Tricomi and Dingle obtained an infinite series, 

of which each term contains functions related to the error function. In our expansion, 

the information about the nonuniform behavior of the incomplete gamma functions is 

contained in just one error function. Besides, we obtain expansions for both P and Q. 
Of course, the coefficients c2k(>,) in (2 .14) are more complicated than the coefficients 

in the other expansions. 

As remarked before, the expansion (2.15) is also valid for fixed a and x-+ 00 , in 

spite of the nature of the series containing terms with negative powers of a. The coef

ficients, however, depend on x and a; and, in fact, we can say that the sequence {d,.}, 

a,.= c2k()..)a-k, is an asymptotic sequence. That is,d1<+ 1 = o(dk) if one (or both) 

of the parameters a and x is (are) large uniformly in xla ;;;.. 0. 

3. The Incomplete Beta Function. The incomplete beta function is defined by 

(3.1) I (p q) = - 1- f" tP-1(1 - t)q-I dt 
x ' B(p,q)Jo 

with Rep>O, Req >o,·o <;x.;; 1, and 

(31) B(p, q) = r(p)f'(qyr(p + q). 

The function in (31) is called the beta function. Again, we consider real variables x, 
p and q, and we will derive an asymptotic expansion of lx(P, q) for large p and q uni· 
forrnly valid for 0 < 5 .;; x .;; 1. 

We first give an integral representation of Ix which resembles those for the incom

plete gamma function. Formula (3.1) is equivalent to 

(33) I (p q) = - 1-f 00 e-Pt(l - e-tw-1 dt· 
x ' B(p, q) -In x / ' 

and also, we have 

(3.4) 
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from which follows, by using the same technique as in the foregoing section, 

I (p, q) = . 1 sc+i-e<p-s)ln "~ds 0 < c < p. 
" 27riB(p, q) c-1- p - s ' 

This expression can be written as 

(3.5) 
I (p q) = xP(l ~ x)q r(q)~q-q fc+t- ~</J(t)p (t) _E!_ 
" ' 2m B(p, q) c-t- q t 1 - t ' 

with l/J(t) = t Jn(t/x) - (1 + t) ln(l + r) - In(! - x), 

(3.6) F (t)= f'(qt)~t(qtrqr t 1 =plq,andO<c<t1. 
q r(q + qt)eq<1+r>(q + qrrq<1+r>' 

Fq(t) is a slowly varying function as q - co, on compact subsets of larg tl < 7r, t .P 0. 
Of course, its construction is based on the Stirling approximation of the gamma func· 

tion. For larg tl < 7r, t #= 0, we have 

(3.7) Fq(t) = {(1 + t)/r}*(I + O(q- 1)), q __,.co, t fixed. 

With 

(3.8) t0 = xl(I + x), x0 = p/(p + q), 

t0 is a saddle point of 1/1, and if x = x 0 , this saddle point coincides with the pole at t 1 • 

The calculation of the saddle point t0 is based on the assumption that the gamma 

functions in Fq(t) in (3.6) have large arguments. Hence, for small values of x, which 

correspond to small values of t 0 , the calculation is based on false assumptions. There

fore we only consider positive values of x. It is not necessary to have a uniform bound 

from zero of x. We are even allowing those values of x with qx. __,. "'" 
From now on, details will be omitted, since the method is exactly the same as 

the one used in the foregoing section. We put - *u2 = l/l(t) and the results are 

(3.9) lx(P, q) = * erfc(-(q/2)*ri) + S"(p, q), 

(3.10) ri = (x - x 0)[2q- 1 {p ln(x0 /x) + q In((! - x 0 )/(1 - x))}/(x -x0 ) 2 ]'"'. 

The square root is positive for positive values of its argument. The function S" is de

fmed by 

(3.11) 

(3.12) 

For u1 we have - *ui = iJi(t1), u1 = iri. 
The role of the parameter A of the foregoing section is now played by (x - x0 ). 

We have 

TI= -o/(7f <x -x0+ + ~P2 ~q2 
(x-x0 ) + O(x -x0 ) 2} 
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for x-+ x0. An asymptotic expansion of s. is obtained by expanding G(u) = '1: dkuk, 

giving 

(3.13) s (p ) xP(l - x)q r(p + q) e'lq-q ~ d r(k + ~)(~q)-k-'h 
" ,q - 211'i r(p) k~O 2k ' 

(3.14) 
. Fq(t0 ) x'h Fq(t1) 

d -1---------
0 - t I - t0 } - X Ul • 

The expansion holds for p -+ oo and/or q -+ 00, uniformly in Ii <; x <; 1, where Ii may 

depend on q, such that qli-+ oo. 

A more transparent first approximation for S"(p, q) is obtained by replacing the 

functions Fq in (3.14) by the approximation (3.7). The result is 

Sx(P, q) = {p/(211'q(p + q)]}'h(xlx0 )P {(I - x)/(l - x 0 )}Q 
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On the Numerical Evaluation of the Modified Bessel Function 
of the Third Kind 

N. M. TEMME 

I. Introduction 

I.I. Definitions and relevant properties. The modified Bessel function of the 
third kind can be defined by the integral 

K,(z) = J"' e-••ollhe cosh vt dt, 
0 

Re z > 0. (l.l) 

Its definition can also be given by using the modified Bessel function of the first 
kind, 

- • "' (!z)tk 
I,(z) - (lz) 1 I'(v + k + I) kl· (1.2) 

In terms of this function we have 

K,(z) = i.,,.[(1-,(z) - J,(z))/sin .,.,,.]. (1.3) 

Since 1-,.(z) = I .. (z), n = 0, 1, 2, •.. , the right-hand side of (1.3) appears in inde
terminate form if v = n. However, the limit of this form as v-+ n exists and 
agrees with K,.(z) given in (1.1). Clearly we have 

K,(z) = K_,(z). (1.4) 

Furthermore, if z and J1 are real, z > 0, 

K,(z) > 0, K,'(z) < 0. (1.5) 

The Bessel functions of half-integral order can be expressed in terms of ele
mentary functions. For J1 = i. f we have 

K31J..z) = (.,,./2z)1/1 e-"(l + l/z). 

The functions I,(z) and el"'K.(z) are two solutions of the difference equation 

Yr+i + (2v/z)y, - Y.-1 = 0. 

324 

(1.6) 

(1.7) 
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Explicitly, we have 
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l,+lz) + (2v/z) /,(z) - /,_1(z) = 0, 

K>+1(z) - (2v/z) K,(z) - K,_1(z) = 0. 

325 

(J.8) 

(1.9) 

Formula (1.9) can be used to compute Kv+n for n = 2, 3, ... when K, and K,+1 are 
given. In the forward direction the recurrence formula for K, is numerically stable 
(see Gautschi [5]). 

From (1.2) and (1.3) the following asymptotic formulas are obtained. For small 
I z I we have 

J,(z) ~ (z/2)'/I'(v + 1), K,(z) ~ i(zj2)-• I'(v), Rev> 0. (J.10) 

These formulas also hold for the case that z is fixed and v-+ ro. Hence, I, and 
e'"" K, are two linearly independent solutions of the difference equation ( l. 7). 

When v is fixed and z-+ o:i we have the well-known expansions 

l,(z) = (2rrz)-112 e'[l + O(z-1)], K,(z) = (rr/2z)112 r'[l + O(z-1)], (1.11) 

the first relation holding for I arg z I < irr, and the second one for I arg z I < 37T/2. 

I.2. Contents of the paper. We give algorithms for the computation of K,(z) 
and K>+1(z). On account of (1.4) and (1.9) and the stability of (1.9) it suffices to 
consider values of v with -1 ,,;;; Re v ,,;;; t· In Section II we describe an algorithm 
for the computation of K.(z) for small values of I z 1. This algorithm is based on 
representations (1.3) and (1.2). Also, the evaluation of the gamma function is 
discussed; some special approximations of this function are needed in the algorithm 
for small I z 1. 

Section III is devoted to the computation of K,(z) for moderate or large values 
of I z I· In this case the algorithm is based on a combination of algorithms due to 
J. C. P. Miller and F. W. J. Olver. 

In Section IV the algorithms are described in terms of ALGOL 60 procedures. 
There is a vast literature concerning the computation of this Bessel function 

(see for example Luke [8, 9]), especially for large values of I z !, whereas the 
computation for small values is rather neglected. Moreover, the methods are usually 
restricted to K,(z) for integer values of v. The algorithms described in this paper 
may also be used for the class of confluent hypergeometric functions denoted by 
U(a, b, z). 

For the computation of the Bessel function J,(z) the 'reader is referred to Amos [2] 
and Gautschi (5, 6]. 

Thanks are due to Gert Jan Laan, who tested the ALGOL 60 procedures. 
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II. The Computation for Small Values of I z I 
11.1. Series representations. Substitution of (1.2) into (1.3) leads to 

.. 
K,(z) = L cdk, (2.1) 

k-0 

/o = -2 _.,,. {(z/2)-•{I'(l - v) - (z/2)'/I'(l + v)}, (2.2) 
SID V'IT 

and for general k, 

f,. = -2 _.,,. {(z/2)-•/I'(k + 1 - v) - (z/2)•/I'(k + 1 + v)}, (2.3) 
sm v'IT 

ck = (z2/4)k/k! . (2.4) 

By using the well-known property of the gamma function I'(z + 1) = zI'(z) we 
have fork= 1, 2, 3, ... the recurrence relations 

f,. = (kfk-1 + Pk-1 + qk-1)/(k2 - v2), 

Po = i(z/2)-• I'(l + v), Pk = Pk-if(k - v), 

q0 = i(z/2)' I'(l - v), q. = qk_J(k + v). 

In order to compute K,+h) we write (using (1.3) and (1.8)) 

By substitution of (1.2) we obtain 

(2.5) 

(2.6) 

(2.7) 

(2.9) 

If an algorithm for the gamma function is available.lo , Po , and q0 can be computed, 
and the remaining values /.1:, p,., and q,. can be obtained by recursion. 

It should be pointed out that we wish to compute K, , K,+1 for -! :,;;;; Re v :,;;;; !, 
and inspection of (2.2) shows that, if v ...... 0, an indeterminate form appears in lo 
(and in all Ji,, but by using (2.5) only lo has to be considered). Analytically,lo can 
be defined in the limit v = 0. However, for small \ v I. numerical evaluation of lo 
from representation (2.2) will cause a loss of correct significant digits. If I v I is 
small, lo might be expanded in a series :E ah) vk; in fact this method is suggested 
by Goldstein and Thaler [7]. This series converges for I v I < 1 (because of the 

43 
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singularity at v = 1), but the coefficients a.(z) are not easily obtained. Moreover, 

for small I z I convergence of the series is rather poor. 
In order to avoid these troubles we propose the following representation of fo . 

where 

lo=--.)!!!.._ [I'1(v) cosh p. + I'2(v) ln(2/z) sinh(p.)/p.], 
sm v1T 

I'1(v) = [l/I'(l - v) - l/I'(l + v)]/(2v), 

I'2(v) = [1/I'(I - v) + I/I'(I + v)]/2, 

(2.10) 

(2.11) 

and µ. = v ln(2/z). The cancellation for small v may now occur in I'1 and sinh 

but for these functions the cancellation is better controlled than in lo. For the 
computation of I'1 and I'2 the reader is referred to Subsection II.3. 

II.2. Stability of computation. If I z I is not too large, the series in (2.1) and 

(2.9) converge rapidly. The convergence is of the same rate as that of (1.2). For 

large values of I z I the method described above is not attractive. Many terms in 

the series are needed. But there is another important reason. For large values of 

I z I. the Bessel functions behave as indicated in (1.11). Hence, if I z I is not small 

the subtraction in (1.3) will again cause a large relative error. This time the Joss 

of significant digits cannot easily be avoided. A rough indication of the loss of 
digits, say q, can be obtained from 

Hence, for Re z > 5 at least four digits are lost. 

For the case of real z and v, z > 0, I v I .;:: !, the loss of relative accuracy can 

be elaborated somewhat further. In this case Ko(z) is positive (see (I .5)). If lo > 0, 

then, as follows from (2.5), (2.6), and (2. 7), all terms in (2.1) are positive, and the 
summation in (2.1) is stable. 

But / 0 is negative if z is large. The equation lo = 0 defines a curve in the (z, v)
plane given by 

z(v) = 2[I'(I + v){I'(l - v)]1/C2•>, 

with z(O) = 1.1229 ... and z(i) = 1. Some computations show z(i) .;:: z(v) < z(O) 

for -t .;:: v ~ l- It follows that if 0 < z <I, -l < v < }, K,(z) can be safely 
computed by using (2.1 ). 

As for K,+1(z), the situation is more complicated. If fo ;;:,, 0, then all P• and J. 
in (2.9) are nonnegative. By using (2.5), (2.6), and (2. 7), it follows that for k ;;:,, I, 

Pk - kfk = (vp._1 - k2fk-l - kq._1)f(k2 - v2). 

SQ 
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If -! <;;; v < 0, then the right-hand side is negative and so all terms in (2.9) 
except Po are negative. But K,+1(z) > 0 and, in summing the series, cancellation 
may occur. 

However, for small values of z we have from (1.2), (1.10), and (2.6), 

K.,..1(z) ~Po ~ z-1(v7T/Sin vrr) l_,(z). 

So, for small z, p0 dominates the remaining terms in (2.9), which are o(I) for 
z-+- 0. Hence it may be expected that for z sufficiently small, no cancellation in 
(2.9) will occur. 

From numerical experiments it follows that 

for 0 < z ,,:;; I and -t <;;; v <;;; t. As a consequence, for these values of z and v, 
K,+i(z) can be safely computed by using (2.9). 

As indicated in Subsection II.I, if i < v ,,:;; l, then the functions K,_1(z) and 
K,(z) are computed. K,+iCz) follows then from (see (1.9)) 

K,+1(z) ~= (2v)/zK,(z) + K,_1(z), 

in which both terms on the right are positive. 

Il.3. The computation of the gamma function. Since in the literature no approxi
mations for the odd and even parts (with respect to v) of the function 1/I'(I - v) 
are available, a description of our method is given here for the case of real v. 

The starting point is the expansion 

"' 
1/I'(v) = L ckvk, Iv I< co. (2.12) 

k-1 

The first 26 coefficients ck are tabulated in Abramowitz and Stegun [l] (16 digits), 
and the first 41 in Wrench [15] (31 digits). From (2.12) and I'(v + 1) = vI'(v) 
we easily obtain 

'" 
l/I'(I - v) = L (-Jin Cn+iv". (2.13) 

n=O 

From this representation the odd and even parts may be obtained and so the 
values of I'i(v) and I'2(v) defined in (2.11 ). In the Bessel function algorithm we 
need I'1 and I'2 for -t <;;;Rev <;;; t· To give a satisfactory numerical approxima-

45 
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tion on the real interval [-!, !], we expand l/I'(l - v) in the Chebysb.ev poly
nomials T,.(x) = cos(n arccos(x)), 

"' "' l/I'(l - v) = L (-1)" c,.+i 2-"(211)" = 'E' aS,.(211). (2.14) 
n.-o n-o 

(The notation :E' means that tb.e first term in the series is to be halved.) 
The coefficients a,. in (2.14) can be computed by rearranging the Taylor series 

in (2.14). This method is described in Clenshaw [4]. The powers of (2v) are replaced 
by their expansions in Chebyshev polynomials, and the series is rearranged in the 
form :E' a,.T,.(2v). The first few coefficients a,. are given in Table I. A check on 
these coefficients can be performed by evaluating (2.14) for v = 0, i. -i. We must 
have 

"' "' "' L' (-lr a,,.= 1, Li' On = 'TT'-1/2, l:' ( -1)" a,. = 211"-11•. 
n-o n-o n-o 

The functions I'1 and I'2 defined in (2.11) may now be. written as 

• ' vI'1(v) !::::< L a2n+1T2n+1(211), I',(v) !::::< 2:' a2,.T2,.(2v), 
... o n-o 

and an appropriate summation method (see Clenshaw [4]) gives I'1 and I'2 • 

III. The Computation for Large or Moderate Values of I z I 

For large I z I we b.ave the well-known asymptotic expansion 

"' 
K,(z) ,._., (7r/2z)1/ 2 e-• L (v, m)(-2z)-m, 

m-0 

TABLE I 

II a,, D:r.,.+1 

0 +t.84374 05873 00906 -0.28387 65422 76024 
1 -0.07685 28408 44786 +0.00170 63050 71096 
2 +0.00127 19271 36655 +0.00007 63095 97586 
3 -0.00000 49717 36704 -0.00000 08659 20800 
4 -0.00000 00331 26120 +0.00000 00017 45136 
5 +0.00000 00002 42310 +0.00000 00000 09161 
6 -0.00000 00000 00170 -0.00000 00000 00034 
7 -0.00000 00000 00001 
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where (v, m) is Hankel's symbol given by 

(v, m) = (m!)-1 I'G + v + m)/I'(i + v - m) 

= (1Tm!)-l (-J)"' COS V1T I'(t + V + m) I'O - V + m). (3.J) 

The series diverges for all finite values of I z I, but it can be used very successfully 

if I z I is large. To give an indication, for real z, z > 15, the asymptotic series can 
be used to give an approximation, which is correct up to 13 significant digits. For 
intermediate values of I z I we have to resort to other techniques. In this section 
we will discuss a method which enables computation of K,(z) for I z I ~ I. 

Ill.I. The Miller algorithm. We need some properties of the confluent hyper
geometric functions. We use the notation of Abramowitz and Stegun [I]. 

The Bessel function K,(z) can be written as 

K,(z) = ?T'l2(2z)• e-•u(v + !, 2v + I, 2z), (3.2) 

where U(a, b, z) is a confluent hypergeometric function, which for Re z > 0 and 
Re a > 0 may be defined by 

The function 

I'(a) U(a, b, z) = f' e-•t1•-l(J + t)•-•-1 dt. 
0 

(3.3) 

kn(z) = (-1)" (v, n) U(v + i + n, 2v + I, 2z), n = 0, I, 2,. . ., (3.4) 

with (v, n) given in (3.1), satisfies the recurrence relation 

(3.5) 

with 

a,. = [(n - !)2 - v2]/(n2 + n), b,. = 2(n + z)/(n + !), n = 1, 2,... . (3.6) 

The function 

y,.(z) = I'(n + v + !) 1F1(v + ! + n; 2v + 1; 2z)/n ! (3.7) 

also satisfies (3.5). 1F1(a; b; z) is the hypergeometric function defined by 

"' I'(a + n) I'(b) z• 
iF,(a; b; z) = L I'(a) I'(b + n) n! . 

n-o 
(3.8) 

The functions k .. and y,. are two linearly independent solutions of the difference 

47 
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equation (3.5), as follows from the behavior of these solutions for large values of 
n, viz. 

kn(z) ,...., 17-112 cos vTT 21i4n-1i 2z-'-11/41 exp[z - 2(2nz)1i 2], 

y.(z) ,.._, 17-1122->-<S/41n-1/2z-Hl/41I'(2v + J) exp(z + 2(2nz)'i'], 

k.(z)/y.(z),...., 2'+1 cos vrr exp[-4(2nz)1i2]/I'(2v + I). 

(3.9) 

(3.10) 

(3.11) 

Formulas (3.9) and (3.10) may be derived from results in Buchholtz [3]. Buchholtz 
derived his results for real zfn by using saddle point techniques. We can show, 
however, by using other methods (see Slater (13] and Temme (14]) that (3.9), 
(3.10), and (3.11) are valid under the restrictions 

n~ co, z fixed, z * 0, I arg z I < rr. (3.12) 

We will now describe our method of computing k0 and k1 defined in (3.4). If 
these functions are evaluated then the Bessel functions K, and K,+i can be computed 
from 

K,(z) = rr112(2z)' e-=k0(z), 

K,+h) = K,(z)[v + z + ·~ - k1(z)/k0(z)]/z. 

The latter equation may be derived from (3.2) and (3.4) and some contiguous 
relations of the confluent hypergeometric functions (cf. Abramowitz and Stegun 
(1, 13.4.16 and 13.4.18]). 

The functions k0 and k1 may be computed with Miller's algorithm. We use 
Gautschi's version of this algorithm, the details of which can be found in [5]. As 
normalization relation we use 

"' L k.(z) = (2z)-,-11121, (3.13) 
•-0 

which follows from (3.3) and (3.4) and substitution of the integral representation 
of k. in (3.13). 

In Miller's algorithm a positive integer N is selected and a sequence 
KbN', JCiN1, ... , 1'jf1 is computed by using (3.5) in backward direction with initial 
values !CWJ1 = 0, !CW'= I. By normalizing KbNI and JCiN1 with (3.13), k~1 and kiN> 
are computed. Then 

Jim k<Nl = k (z) 
N-t<XJ n n. ' 

n = 0, I. (3.14) 

Using the asymptotic estimates (3.8) and (3.9) we can readily show that the condi
tions of theorems in [5] are fulfilled, from which the validity of (3.14) follows. (The 
algorithm can be used for the computation of k. for larger values of n, but here 
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we only need to consider n = 0, 1). In [14] we applied this algorithm for the com
putation of sk(z) = zk! U(k + l, 1, z). In fact it may be used for general 
U(a + n, b, z), n = 0, 1, 2, ... , if I z I is not too small. 

III.2. Determination of the starting index N. The relative error E of k~N> with 
respect to k .. (z) can be expressed by 

k!,N> = k..(z)(l + e), (3.15) 

where E depends on N, z, n, and v. On account of (3.14), I e I is small for large N. 
For numerical applications it is necessary to have an idea how large the starting 
index of the Miller algorithm N has to be, in order to have a satisfactorily small I E 1-

As in Gautschi [5], the determination of N can be based on asymptotic formulas 
for the functions y .. and kn . A more satisfactory approach, however, is pointed 
out by Olver and Sookne [12]. Their method is based on results of Olver in [10, 11]. 
Beginning withp0 = O,p1 = 1, Olvercomputes a solutionp .. of(3.5) for n = 1, 2, .... 
Also computed is a sequence {e .. } defined by 

e0 =I, 

where, in our case, a .. is given by (3.6), giving 

e .. = (-1)" (11, n)f(n + l)!. 
Next, the quantity 

"' EN = L ekf(PkPi.+1), N;;;;;: I, 
k-N 

is introduced and the selection of the starting index N depends on the construction 
of a bound of EN. 

In order to construct this bound we consider henceforth real values of z and v. 
As remarked in Subsection 1.2, it suffices to consider values of II in [-!, n 
Furthermore, we suppose z ;;;;;: I. Under these conditions we have b,. ;;;;;: 1 + a .. , 
from which Pn+i ;;;;;: p,. easily follows for n ;;;;;: 0. Moreover, e,. ;;;;;: 0 for n ;;;;;: 0. 
Hence, EN is dominated as follows. 

"' "' EN ~ L p;2e,. = Tr-1 cos VTT L p;2I'(! + v + n) I'(! - 11 + n)/[n! (n + !)!]. 
n-N n-N (3.16) 

The series can be bounded by using the following lemma. 

LEMMA. Let a, b, and z be real numbers such that b ;;;;;: a + 1 > 0 and z > 0. 
Then 

I'(z + a)/I'(z + b) ~ za-b. 

49 'i 
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Proof From the integral (cf. [l, 6.2.I]) 

I'(b - a) I'(z + a)/I'(z + b) = r e-<H•+l>t1b-•-l((l - e-1)/tJb-a-l dt, 
·o 

we obtain, by using e-1•+11t ~ 1, (1 - e-')/t :( 1 (t ~ 0), 

I'(b - a) I'(z + a)/I'(z + b) ~ r e-••r•-•-l dt, 
0 

from which the lemma follows. I 

Applying the lemma to (3.16), we obtain 

"' 
EN ~ 7T-1 COS V7T L I/(n2Pn2). 

n-N 
(3.17) 

The function Pn is a solution of (3.5). It can be written as a linear combination of 

Yn and kn ; p. and Yn have for large n the same asymptotic behavior up to a factor 

independent of n. Considering (3.10) and comparing the series in (3.17) with the 

integral 

f, y, n-1 exp[-4(2nz)'i2] dn, 
N 

we observe that it is plausible to replace (3.17) by 

(3.18) 

To the first order of small quantities, the relative error in the Miller algorithm 

is in our case (cf. Olver [10, (11.11)]) 

N "' 

<JN = EN L Pn + L PnE,, · 
thmO n=N+l 

(3.19) 

Hence, by using (3.18) and the same argumentation for both series in (3.19) as 

was used for (3.17), we obtain for <JN the bound 

(3.20) 

The least value of N ;?: I for which (3.20) is smaller than the prescribed relative 

accuracy will be taken as the starting index for the Miller algorithm. 

Remark. It may be noted that (3.20) vanishes for v = ±t. As follows from 

(3.4) and (3.l), the functions k. also vanish for n ~ 1, while ko(z) equals I or I/(2z) 

if v 0= -t or v = t-;}, respectively. If the choice of N is based upon (3.20), small 
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TABLE II 

a eps 5.0,.--06 5.0,0--09 5.0,.-12 

0.0 dO 1.4,.--06 6.110-10 7.4,.-13 
di 1.4,.--06 6.1,.-10 7.1,.-13 

(n,N) (6, 22) (8, 50) (9, 89) 

0.2 dO 1.6,.--06 5.710-10 6.6,.-13 
di 1.610--06 5.7,.-10 6.4,.-13 
(n, N) (6, 21) (8, 49) (9, 88) 

0.4 dO 1.610--06 5.2,,-10 6.0,0-13 
di 1.610--06 5.2,.-10 5.810-13 

(n, N) (6, 18) (8, 44) (9, 81} 

0.6 dO 1.6,.--06 5.2,.-10 6.010-13 

di 1.610--06 5.210-10 5.9,.-13 
(n, N) (7, 18) (8, 44) (9, 81) 

0.8 dO 1.610--06 5.7,.-10 6.610-13 
di 1.6,.--06 5.7,.-10 6.510-13 
(n, N) (6, 21) (8, 49) (9, 88) 

1.0 dO 1.4,.--06 6.1,.-10 6.810-13 

di 1.4,.--06 6.1,.-10 6.8,.-13 
(n, N) (6, 22) (8, 50) (9, 89) 

real procedure recip gamma(x, odd, even); value x; real x, odd, even; 
begin integer i; real a/fa, beta, x2; array b[I :12]; 

b[ I]:= -.28387 65422 76024; b[ 2]:= -.07685 28408 44786; 
b[ 3]:= +.00170 63050 71096; b[ 4]:= +.00127 19271 36655; 
b[ 5]:= +.00007 63095 97586; b[ 6]:= -.00000 49717 36704; 
b[ 7]:= -.00000 08659 20800; b[ 8]:= -.00000 00331 26120; 
b[ 9]: = +.00000 00017 45136; b[IO]:= +.00000 00002 42310; 
b[I I]:= +.00000 00000 09161; b[l2]:= -.00000 00000 00170; 
x2: = x x x x 8; a/fa:= - .00000 00000 00001 ; beta:= O; 
for i:= 12 step -2 untll 2 do 
begin beta:= -(a/fa x 2 +beta); alfa:= -beta x x2 - a/fa + b[i] end; 
eien:= (beta/2 +a/fa) x x2 - a/fa + .92187 02936 50453; 
alfa:= -.00000 00000 00034; beta:= O; 
for i: = II step -2 until I do 
begin beta:= -(a/fa X 2 + beta); alfa: = -beta x x2 - alfa + b[i] end; 
odd:= (a/fa + beta) x 2; recip gamma: =odd x x + even 

end recip gamma; 
real procedure sinh(x); value x; real x; 
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5.010-14 

8.4,.-15 

3.5,.-14 
(10, 122) 

4.2,,-15 

2.0,,-14 
(10, 120) 

1.6,.-14 

2.5,.-14 
(10, 112) 

7.4,.-15 

1.410-14 
(10, 112) 

o.o,,+oo 

1.7,.-14 
(10, 120) 

7.1,.-14 
7.0,,-14 

(10, 122) 
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begin real ax, y; 
ax: = ahs(x); 
if ax < .3 then 

MODIFIED BESSEL FUNCTION 

Table II (continued) 

begin y: = if ax < .I then x x x else x x x/9; 
x:= (((1)5040 x y + 1/120) x y + 1/6) x y + I) x x; 
sinh:= if ax < .1 then x else x x (I+ 4 X x x x/27) 

end else 
begin ax:= exp(ax); sinlz:= sign(x) x .5 x (ax-1/ax) end 

end sinh; 

procedure besska(.a, x, eps, ka, kal); value a, x, eps; real a, x, eps, ka, kal; 
begin real al, b, c, d, e, f, g, h, p, pi, q, s; integer n, na; boolean rec, rev; 

pi:= 4 x arctan (!); 
re·L':= a <-.5;ifrevtbena:= -a-1; 
rec::, a> .5; if rec then begin na:= entier(a+.5); a:= a - na end; 
if a= -.5 then/:= g:= sqrt(pi/xi2) x exp(-x) else 
ifx<lthen 
begin b:= x/2; d:= -ln(b); e:= a x d; c:= a x pi; 

c:= if abs(x) < 10-15 then I else cisin(c); 
s: = if abs(e) < 10-15 then I else sinh(e)/e; 
e: = exp(e); al:= (e + l/e)/2; g: = recip gamma(a, p, q) x e; 
ka:=f:= c x (p X al+ q >< s x d);e:= a x a; 
p:= .5 x g x c; q:= .5'g; c:= I; d:= b x b; kal:= p; 
for n:= 1, n + I while h/ka + abs(g)/kal > eps do 
beginf: = (f x n + p + q)j(n X n - e); c:= c x d/n; 

p:= pf(n - a); q:= q/(n +a); g: = c x (p - n x f); 
iz:= c x f;ka:= ka + h; kal:= kal + g 

end; 
/:= ka; g:= kal/b 

end else 
begin c:= .25 - a X a;g:= !;/:= O; e:= x x cos(a x pi)/pi/eps; 

for n:= I, n + I while h >< n < e do 
begin h: = (2 X (n + x) x g - (n - I + c/n) x f)/(n + !); 

f:= g; g:= h 
end; 
p:= q:= f;g; h:= x + x; e:= b - 2; 
for n:= n, n - I while n > 0 do 

beginp:= (n - I+ c/n)/(e + (n + 1) x (2 - p)); q:= p x (q +I) end; 
f:= sqrt(pi/b) >< exp(-x)/(I + q); g:= f x (a + x + .5 - p)/x 
end; 

if rec then 
begin x:= 2!x; 

for n: = I step l until na do 
beginh:=/+(a+n) xx Xg;f:=g;g:=lzend 

end; 
if ret• then begin kal: = /; ka: =g end else 
begin ka: = /; kal: = g end 

end besska; 
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values of N will result in v-neighbourhoods of ±!. This phenomenon will not 
disturb the actual algorithm. As can be verified (see the ALGOL procedure besska), 
in the limit v = ±i the correct values are computed. 

IV. ALGOL 60 Procedures 

The algorithms described in Sections II and III are given as an ALGOL 60 
procedure for real values of the parameters. For convenience we write z = x and 
v = a. The procedure besska computes for x > 0 and a e IR the Bessel functions 
K.(x) and K 0 +i(x); besska makes use of two nonlocal procedures sinh and recip
gamma. The latter computes l/I'(I - a) and the functions I'i(a) and I'2(a) defined 
in (2.11) for -! ::;;; a ::;;; t· 

By choosing eps the procedure besska can be used up to any (relative) tolerance. 
The two procedures recipgamma and sinh are supplied with fixed relative accuracy 
(about J0-14). By only modifying these two procedures, the set of three procedures 
presented here can be adapted to any computer and to any accuracy. 

The procedures are tested on the CD CYBER 73 of SARA, Amsterdam. For 

we computed the numerical values of the expressions 

d0 = {K0(x-) - K.(x+)}/K.(x-), 

d1 = {K.+l(x-) - K.+1(x+)}/K.+l(x-). 

In Table II we give d0 , d1 , the maximum number of terms (n) used in (2.1), and 
the starting index N for the Miller algorithm. 
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On the Numerical Evaluation of the Ordinary Bessel Function of 
the Second Kind 

N. M. TEMME 

I. INTRODUCTION 

I. I. Definitions and Relevant Properties 

The ordinary Bessel function of the first kind 

"' (-z2/4)• 
J,(z) = (z/2)' '{;0 I'(v + k + I) k! (1.1) 

and the ordinary Bessel function of the second kind 

Y,(z) = [cos V1T J,(z) - J_.(z)]/sin vrr (1.2) 

are two linearly independent solutions of the difference equation 

/.+1 - (2v/z)f, + f,_1 = 0. (1.3) 

This equation can be used to compute Y,+• for n = 2, 3, ... when Y, and Y,+1 are 
given. In the forward direction the recurrence formula ( 1.3) for Y, is numerically 
stable, whereas it is unstable for J, (see Gautschi [l]). 

The ordinary Bessel functions of the third kind are the Hankel functions 

H~1>(z) = J,(z) + iY,(z), H;2>(z) = J,(z) - iY,(z). (1.4) 

Important for the representation of the Hankel functions for large I z I are the 
functions P(v, z) and Q(v, z) defined by 

H!1•2>(z) = [2/(77Z)]1 i 2 e±'•[P(v, z) ± iQ(v, z)], (1.5) 

where the + sign is used for H!'l, the - sign is used for H!21 and 

X = z - 1T(2v + 1)/4. (1.6) 

For large I z I , P and Q are slowly varying and the oscillatory behavior of H;1> and 
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H:'' is contained in the exponential function in (1.5). From (1.4) and (1.5) we 
obtain 

Y,(z) = [2/(wz)]112 [P(v, z) sin x + Q(v, z) cos xl 
J,(z) = [2/(wz)]112 [P(v, z) cos x - Q(v, z) sin x]. 

(1.7) 

Again, the oscillatory behavior of J, and Y, is fully described by the circular 
functions in (l.7). 

The connection between the ordinary Bessel functions and the modified Bessel 
functions follows from 

H;u(z) = -2iw-1e-'"'''K,(ze-'"12) 

H;'>(z) = 2iw-1e""'12K,(ze'"1 2) 

From the Wronskian 

( -tn" < arg z < 7T), 

(-TT < arg z < tn"). 

J,+i(z) Y,(z) - J,(z) Y,+,(z) = 2/(wz) 

and (1.7) it easily follows that 

P(v, z) P(v + I, z) + Q(11, z) Q(v + 1, z) = I. 

1.2. Contents of the Paper 

(1.8) 

(1.9) 

We give algorithms for the computation of Y, and Y,+1 and we use the methods 
of our previous paper on the computation of K, and K,+i (see Temme [6]). Our 
results in [6] can be used for complex values of z. Here we give the explicit results 
for Y, and Y,+1 and these results follow immediately from [6] by using (1.8). 

For the computation of J, the reader is referred to Gautschi [I], where an 
algorithm is given for the computation of J,+n(z), n = 0, I, 2, ... , N. See also 
Gautschi [2]. In Luke [4) rational approximations for J, and Y, are given based 
on Pade-representations for large I z I . In Luke [5] a double series of Chebyshev 
polynomials and values of the coefficients are given for both Y, J, for z ~ 5. In 
Goldstein and Thaler [3) the computation of Y, is based on series expansions in 
ordinary Bessel functions of the first kind, but the treatment of small I v I-values 
is not satisfactory. 

2. THE COMPUTATION FOR SMALL I z I 

In order to obtain a more symmetric representation in (1.2) we write 

cos vw J,(z) - J_,(z) = J,(z) - J_,(z) - 2 sin2(V'IT/2) J,(z). (2.1) 
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Furthermore we introduce the following notation 

ck = (-z2/4)k/k!, 

Pk = (v/sin J.11T) (z/2)-'/I'(k + I - v), 

qk = (v/sin v7r) (z/2)'/I'(k + 1 + v), 

fk = (Pk - q.)/v, 
gk = fk + 2v-1 sin2(v.,,./2) qk , 

hk = -kgk + P• , 

where k = 0, !, .... We have fork = I, 2, ... the recurrence relations 

Pk = p._,/(k - v), qk = q._1/(k + v), 

f• = (kfk-1 +Pk-I + q._1)/(k' - v2). 

Substitution of (1.1) in (1.2) and using (2.1) yields 

00 

Y,(z) = - L ckgk. 
k-0 

Considering (2.1) with v replaced by v + I and using (1.3) we have 

cos(v + I).,,. J,+i(z) - J_,_i(z) 

= -[l,+1(z) - J_,+i(z)] + (211/z) J_,(z) + 2 sin2(=/2) J,+i(z). 

We obtain by substitution of (I.I) 
00 

Y,+i(z) = - (2/z) L c.hk . 
k-0 
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(2.2) 

(2.3) 

As in (6], fo can be represented in such a way that it can be computed with a 
satisfactorily small relative error. 

For small values of I z I the series in (2.2) and (2.3) converge rapidly. But cancel
lation may occur in summing the series numerically. A strict error analysis, as for 
the modified Bessel function, can not easily be given, but from numerical experi
ments it turns out that for I z I < 3 the computation is stable. 

3. THE COMPUTATION FOR I z I ~ 3 

For I z I ~ 3 we compute P(v, z), P(v + I, z), Q(v, z) and Q(v + I, z), by using 
the functions kn(z) introduced in our previous paper [6]. For K, and K,+1 we needed 
k0(z) and k1(z). From (1.8) it turns out that for the P- and Q-functions the func
tions k0( ±iz) and k,( ±iz) can be used. The application of the method in [6] is 
straightforward. However, the determination of the starting index N for the Miller 
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algorithm caused some trouble, since our error analysis in [6] was based on the 
case of real variables. But trying out the results of [ 6] for the P- and Q-functions 
we noticed that the determination of the starting index N can indeed be based upon 
the estimations given in [6). 

4. ALGOL 60 PROCEDURES 

The algorithms for the computation of Y,(z) and Y,+i(z) are given as an ALGOL 
60 procedure for the case of real values of v and z, z > 0. For convenience we 
write v = a and z = x. 

The procedure bessya computes for x > 0 and a e lR the functions Y0 (x) and 
Y.+t(x); bessya calls for three nonlocal procedures sinh, recip gamma, and 
besspqa. For the text of sinh, and recip gamma the reader is referred to [6]. In 
besspqa the functions P(a, x), P(a + 1, x), Q(a, x) and Q(a + 1, x) are computed. 
We supply besspqa as a separate procedure since it can also be used for the com
putation of the Bessel functions J.(x) and J0 +i(x) (see (I. 7)). In bessya the procedure 
besspqa is called for x;;;:: 3 and I a I < .5, but the algorithm in besspqa converges 
for all x and a (x > 0). It is recommended, however, to take x > max(I a I , 3). 
For I a I > x the recurrence relations 

P(a +I, x) = P(a - 1, x) - 2a/x Q(a, x) 

Q(a + I, x) = Q(a - I, x) + 2a/x P(a, x) 

can be used. These relations are valid for real a and x. They can be derived by 
substitution of (1.5) in (1.3). However, for I a I + 1 > x, computation of J0 (x) and 
J.+i(x) by using (1.7) will cause a loss of correct significant digits. 

The precision in the procedures bessya and besspqa can be controlled by using 
the variable eps. For besspqa its entry value corresponds to the desired relative 
accuracy in pa, pa I, qa and qa I. Also inbessya it corresponds to relative accuracy, 
except in the neighborhoods of zeros of Y.(x) or Y.+i(x). In that case ya or ya 1 are 
given with absolute accuracy eps. 

The procedures bessya and besspqa were tested on the CD CYBER 73 of SARA, 
Amsterdam. For a= 0, 0.2, 0.4, x = .5, 1, 2, 3, 5, 7, 10, 20, 50, 100 and eps = 
10-1• we checked relation (1.9). The output of I pa.pa I + qa.qa 1 - 1 I is given in 
Table I. The procedure bessya was also tested in the neighborhood of x = 3. For 
x± = 3 ± 2-44 we computed the numerical values of the expressions 

d0 = {Y.(.x-) - Y0(x+)}, 

d1 = {Ya+1(x-) - Y0 +l(x+)}. 

In Table II we give d0 , d,, the maximum number of terms (n) used in (2.1), and the 
starting index N for the Miller algorithm. 
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TABLE I ~i 
~ 0.0 0.2 0.4 Bf!' 

I' o.s 1.4,. - 14 7.1,. - 15 o.o,. + 00 '~ 
i~ 1.0 o.o,. + 00 1.1,. - 15 1.1,. - 15 ~' .' 

2.0 1.1,. - 15 2.8,. - 14 7.110 - IS ~1 t"'t:: 
3.0 7.1 10 - IS o.o,. + 00 o.o,. + 00 ~: 
5.0 7.1 10 - IS I: 1.4,. - 14 o.o,. + 00 t]J 
7.0 1.1,. - IS 7.1 10 - IS 1.4,. - 14 f 10.0 7.1 10 - IS 7.1 10 - IS 7.1 10 - IS 

~ 20.0 o.o,. + 00 7.1 10 - IS o.o,. + 00 
50.0 2.1 .. - 14 1.410 - 14 o.o,. + 00 

100.0 2.1,. - 14 7.110 - IS 1.1,. - 15 
:.it 

TABLE II I' l 
eps s.o •• -06 5.0,. - 09 s.o,. - 12 5.o,. - 14 r~: 

'",*" 'vt: 

a :;rt~ 
0.0 dO 5.210 - 08 4.310 - II 3.4,. - 14 5.310 - IS ;:f 

di 6.4,. - 08 J.810 - II 3.6,. - 14 5.310 - IS 

(n,N) (9, 17) (II, 37) (13, 64) (14, 87) 

0.2 dO 4.8 •• - 08 S.310 - II 5.o,. - 14 1.8,. - 15 

di 9.4,, - 08 4.910 - II 2.2,. - 14 1.310 -14 

(n,N) (9, 17) (JI, 36) (13, 63) (14, 86) 

0.4 dO 6.8,. - 09 2.2,.. - IJ 2.1,. - 14 8.9 .. - 15 

di 2.3,. - 08 l.110 - JO 2.5,. - 14 2.3,. - 14 

(n,N) (10, 15) (II, 33) (13, 59) (14, 81) 

0.6 dO 2.010 - 07 8.2 .. - 12 3.4,. - 14 1.6,. - 14 

di 9.9,. - 08 4.810 - II 1.6,0 - 14 2.410 - 14 

(n,N) (8, 15) (JI, 33) (13, 59) (14, 81) 

0.8 dO 3.510 - 08 4.7,. - 12 4.1,.-14 1.1,. - 14 

di 5.7,. - 08 4.710 - II 0.0,. + 00 2.1,. - 14 

(n,N) (9, 17) (II, 36) (13, 63) (14, 86) 

1.0 dO 6.4,. - 08 l.810 - 11 3.2,. - 14 3.6" - IS 

di 9.s,. - 08 s.s,. - 11 7.1,. - 15 1.4,. - 14 

(n,N) (9, 17) (II, 37) (13,64) (14, 87) 
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procedure bessya(a,x,eps,ya,yal); value a,x,eps; real a,x,eps,ya,ya I; 
begin real b,c,d,ej,g,h,p,pi,q,r,s; integer n,na; Boolean rec, rev; 

pi:= 4 x arctan(I); na:= entier(a+.5); rec:= a;;:,, .5; 
rev:= a< -.5; if rev v rec then a:= a-na; 
if a = -.5 then 
begin p: = sqrt(2/pi/x); /:= p x sin(x); g:= -p x cos(x) end else 
ifx<3then 
begin b:= x/2; d:= -/n(b); e:= a x d; 

c:= if abs(a) < 10-15 then I/pi else a/sin(a x pi); 
s:= if abs(e) < 10 -15 then I else sinh(e)/e; 
e:= exp(e); g:= recipgamma(a,p, q) x e; e:= (e + 1/e)/2; 
/:= 2 x c x (p X e + q x s x d); e:= a X a; 
p:= g x c; q:= l/g/pi; c:= a X pi/2; 
r:= if abs(c) < 10-15 then I else sin(c)/c; r:= pi x c X r X r; 
c:= l;d:= -b X b;ya:=f+r x q;yal:=p; 
for n:= I, n +I while 
abs(g/(I + abs(ya))) + abs(h/(I + abs(yal))) > eps do 
begin/:= (f X n + p + q)/(n X n - e); c: = c x d/n; 

end; 

p:= p/(n - a); q:= q/(n +a); 
g:= c x (f + r X q); h:= c x p - n x g; 
ya:= ya + g; yal:= yal + h 

/:= -ya; g:= -yal/b 
end else 
begin b: = x - pi X (a + .5)/2; c: = cos(b); s: = sin(b); 

d: = sqrt(2/x/pi); 
besspqa(a,x,eps,p,q,b,h); 
/:= d X (p X s + q X c); g:= d x (h X s - b x c) 

end; 
if rev then 
begin x: = 2/x; na: = -na - I ; 

for n: = 0 step I until na do 
begin h:= x x (a - n) x f- g; g:=f;f:= h end 

end else if rec then 
begin x: = 2/x; 

for n: = I step 1 until na do 

begin h:= x X (a+ n) X g - /;/:= g; g:= h end 
end; 
ya:=f;yal:=g 

end bessya; 
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procedure besspqa(a,x,eps,pa,qa,pal,qal); value a,x,eps; 
real a,x,eps,pa,qa,pal,qal; 

begin real b,c,d,e,f ,g,p,pO,q,qO;r,s; integer n,na; Boolean rec,rev; 
rev:= a< -.5; If rev then a:= -a-1; 
rec:= a~ .5; if rec then 
begin na:= entier(a+.5); a:= a - na end; 
If a = -.5 then 
begin pa:= pal:= l; qa:= qal:= 0 end else 
begin c:= .25 - a x a; b:= x + x;p:= 4 x arctan(l); 
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e:= (x x cos(a x p)/p/eps)j2; p:= l; q:= -x; r:= s:= 1 + x x x; 
for n:= 2, n + 1 while r x n x n < e do 

end; 

begin d: = (n - I + c/n)/s; p: = (2 X n - p x d)/(n + !); 
q:= (-b + q X d)/(n +I); s:= p X p + q x q; r:= r X s 

end; 
/:= p:= p/s; g:= q:= -q/s; 
for n:= n, n - 1whilen>0 do 
begin r:= (n+I) x (2-p) - 2; s:= b + (n+I) X q; d:= (n - 1 + c/n)/ 

(r X r + s x s); p: = d X r; q: = d x s; e: = f; 
/:= p x (e + 1) - g x q; g:= q x (e +I)+ p x g 

end; 
f: = 1 + ! ; d: =I x I+ g x g; 
pa:= f/d; qa:= -g/d; d:= a+ .5 - p; q:= q + x; 
pal:= (pa x q - qa x d)/x; 
qal:= (qa x q +pa x d)/x 

If rec then 
begin x:= 2/x; b:= (a+ I) x x; 

for n: = I step I until na do 

end; 

begin pO: =pa - qal x b; qO: = qa +pal x b; 
pa:= pal; pal:= pO; qa:= qal, qal:= qO; b:= b + x 

end 

if rev then 
beginpO:= pal; pal:= pa; pa:= pO; 

qO:= qal; qal:= qa; qa:= qO 
end 

end besspqa; 
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REMARKS ON A PAPER OF A. ERDELYI 

N. M. TEMME 

Abstract. An alternative asymptotic expansion is given ror an integral. which was recently con· 
sidered by Erdelyi by means of fractional derivatives. The new expansion is simpler and the bounds of 
the remainder terms are of the same kind. 

I. Introduction. In a recent paper [3], Professor Erdelyi considered integrals 
of the form 

( 1.1) 

where a~ 0, 0 < ,l < I, and z is a large parameter. In order to obtain an asymp
totic expansion for z - oo, uniformly valid for a ~ 0, he replaeed the function 
t'- 1g(t) by a fractional integral J' ·· 1f(t), the operator J• being defined by 

1 f.' l"f(t) = r(a) 
0 

(t - s)'- 1/(s) ds. 

By an integration by parts procedure, Erdelyi obtained the uniform expansion 

n- l n- 1 

(1.2) F(z,a) = Q L r(k + ..1.)g•(O)z-t/k! + ~ =-•1'j'k1(a) + R •. 
k=O k=l 

where Q is related to the incomplete gamma function and is given by 

(1.3) 

The remainder R. is estimated uniformly in a for a ~ 0. The expression /;p•1(a) 
is explicitly given in terms of derivatives of the function g(r) at r = 0 and t = a as 

_ !:"~ __ + ,l - m) (k-ml(O)J 
r(,l - m + l)g , 

k=l,2, .... 

As remarked by Erdelyi, the expansion (1.2) could.have been obtained via in
tegration by parts of(l.l), but the explicit form (1.4) in (1.2) is not easily obtained 
in that way. 

~n this note we give an alternative expansion of F(z. a). which is simpler than 
( 1.2), and in which the bounds of the remainder terms are of the same kind. Both 
expansions may be derived from each other by formal rearrangement of infinite 
series. 

65 ! .• 
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2. From a numerical point of view, (l.2) is not attractive because of the 
IY'k'(al in the second series. Recurrence relations for these factors based on 
(cf. (3, (2.3)]) 

1;.- 1f(c) = !!..ef(c) = f(~Jr;.- 1 + l'f'(r) 
. dt r(1.) 

are not suitable for numerical evaluation ofa sequence of I'j'k1(a), k = 0, 1, · · ·, n. 
Furthermore, the terms g1k1(0) in (1.2) are somewhat surprising. Of course, 

the singularity at t = 0 due tor'-- 1 gives a hint that this point may significantly 
contribute to the asymptotic expansion. especially when a is small. But for moderate 
and large values of a, we cannot expect relevant information from the function 
values at t = 0. 

In our opinion, the expansion (l.2) can be considerably simplified. Let us 

suppose that g and its first n derivatives are continuous and bounded on [O, oo). 

We write 

Then we have 

(21) 

with 

(2.2) 

(2.3) 

• - 1 

g(t) = 2: ck(t - a)• + r.(r), 
k=O 

n - I 

F(z,a) = 2: c•F• + R. 
k=O 

F. = f."' e-=1< -aic;.- 1(t - a)k dr, 

R. =f."' e-z(r-a)t;.-ir.(t)dt. 

The first few functions Fk are easily computed. It turns out that 

(2.4) F0 = r(ic)Q, 

where Q is essentially an incomplete gamma function and is defined in (1.3). 
By partial integration of (2.2) we obtain 

(2.5) Fk+ 1 = z- 1[(k + ). - az)F• + akF._ 1], k;;; I. 

Hence, if F0 is computed, the remaining F. can be generated by (2.5). 
The functions F. are confluent hypergeometric functions. In the notation of 

[l), we have 

(2.6) 
Fk = k!ak+;.U(k + 1.k +I+ ).,az) 

= k!z-•-;.U(I - )., I - I. - k,az). 

The second representation enables us to write for O < ic < I, 

k' ,-k-). x 

(2.7) F.= -~--,-J e-""r-•(1 + 1)-•- 1 dt, 
r(I - 1.) 0 
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from which follows, by majorizing the exponential function in the integrand 
by I, 

(2.8) F• ;:ii =-k-"l(k +i.). 

As follows from (2.2), this bound is also valid for i. = I. 
Ifon [O, :x:) an estimate is known for g<kl, say lg1• 1(t)I ;:ii ak, and a, i. and z are 

real, then R. in (2.3) may be majorized by IR.I ;:ii a.F,/n!. Using {2.8), we obtain 
uniformly in a for a ~ 0, 

IR.J :ii a.z-•-"nn + ).)/n!. 

Consequently, in the notation of [2], we have 

F(z, a) - ~::CkF• (z-k-l} as z ..... ::c. 

This shows that (2.1) is an asymptotic expansion, holding uniformly in a for a ~ 0, 
with respect to the asymptotic sequence {z-•-•}, which does not depend on a. 

From a practical point of view, the expansion in (2.1) is more suitable than 
(1.2), since the coefficients ck are simply expressed in terms of g1k1(a). Both ex
pansions have the same bounds for the remainders. As a minor improvement, 
our expansion is also uniformly valid with respect to }. on compact subintervals 
of (0, l]. 

3. The numerical analyst may wonder if the sequence {Fk} can be generated 
in a stable way by using{2.5). The answer is affirmative, as one easily deduces from 
the qualitative behavior of the linearly independent solutions of the second order 
difference equation (2.5). With 

(3.1) Gk = I: e-"(t - a)ktl- 1 dt = aA+k( - J)k ~:~):(~: ::M(}., k + i. + I. -a:). 

the functions F., G, constitute a linearly independent pair of solutions of (2.5), 
as follows from the asymptotic behavior 

(3.2) F,-n!z-•-•o +a/n)H 1n"- 1, n ..... oo, uniformlyina~O, 

and from the inequality, 

(3.3) JG.I~ a"+'f(J.)f(n + l)/l(n +i.+ I), n = 0, I,···. 

Formula (3.2) is easily derived with saddle point techniques from (2.7), and (3.3) 
follows from (3.1) by majorizing the exponential function by l. 

The relations (3.2) and (3.3) show that, in the sense of (4], the solution G, 
is a minimal solution of (2.5) and F, a dominant solution. 

4. The relation between Erdelyi's expansion (l.2) and our expansion (2.1) 
can be illustrated by writing 

k = 0. I. .... 

P• and Qk are polynomials in=- 1 satisfying (2.5) with initial values P0 = I. Q0 = 0, 
P1 = A.z- 1 - a, Q1 = I. By using the recurrence relation it can be proved that 

(4.1) • ·(k) P. = =-·L (-a:)•- 1 • n;, +j)/f(i.), 
j= 0 J 

k = 0. I.···. 

67 
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Hence. in a formal way, our expansion (2.1) can be written as 

(4.2) F(z, a) - F0 'L:CtPt + a;z- 1 'L:CtQk. 

With the substitution of (4.1) and using the (formal) expansion 

« k! . 
g(J)(t) = L c4 -.-.-(t - a'f"-' 

k=j. (k - J)! 

at t == 0, we obtain, by interchanging the order of summation, 

F(z,a)- QLz-4f(k + ).)g'41(0)/k! + alz- 1 LctQk. 

The first series in this expression is exactly the first series of Erdelyi in (1.2). The 
second series is much more complicated, but probably it can be identified with the 
corresponding series of Erdelyi. 

Ac:knowledgment. The author wishes to thank the referees for some valuable 
suggestions and criticism of the first version of the paper. 
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New asymptotic expansions are derived for the confluent hypergeometric 

functions M(a,b,x) and U(a,b,x) for large b. The results are uniformly valid 

with respect to x in a neighbourhood containing x • b; a is a fixed param

eter. The expansions contain parabolic cylinder functions and asymptotic 

series. 
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72 

I. INTRODUCTION 

In a recent paper [7], we derived new asymptotic expansions for the in

complete gamma functions 

y(a,x) 

x 

f a-1 -t 
t e dt, r(a,x) f a-1 -t 

t e dt 

0 x 

and for the incomplete beta function 

- r(p+q) 
Ix(p,q) - r(p)f(q) 

x 

I 
0 

p-1 q-1 t (1-t) dt. 

In each case, the expansion contains the complementary error function de
fined by 

(I. I) erf c (x) f 
x 

and an asymptotic series. The expansions are uniformly valid with respect to 
certain domains of the parameters. 

The incomplete gamma functions may be considered as special cases of the 
confluent hypergeometric functions, which, in the notation of ABRAMOWITZ & 
STEGUN [I], are denoted as M(a,b,x) and U(a,b,x). Explicitly we have 

(I. 2) 
y(a,x) 

r(a,x) 

-I a a x M(a,a+l,-x) 

xa e-x U(l,a+l,x) 

a-lxa e-x M(l,a+l,x), 

e-x U(l-a, 1-a,x). 

For large values of a and x with x ~ a, the functions y(a,x) and r(a,x) 
exhibit a nonuniform behaviour. The expansions given in TEMME [7] describe 
this behaviour adequately. The same phenomena are expected for M(a,b,x) and 
U(a,b,x) for large values of x and b with x ~b. 

In this paper, we are concerned with the asymptotic expansions of the 
confluent hypergeometric functions for large positive values of b and/or 
x, which are uniformly valid with respect to A = x/b in a A-interval con
taining A= 1; a is considered as a fixed parameter. 

The Whittaker functions are closely connected with the confluent hyper
geometric functions. The relations are 



M (zj K,µ 
m-x/2 xµ .. +! ~ M(!+µ-K,1+2µ,x) 

w w K,µ e-x/ 2 xµ+! U(!+µ-K,1+2µ,x). 

There is a vast literature on confluent hypergeometric functions and 

Whittaker functions and on asymptotic expansions of these functions. A 

recent book with many references is DINGLE [3]. Apart from the well-known 

expansions in inverse powers of the large argument x, expansions may be 

found which are uniformly valid with respect to certain parameters. The 

theory for large x and b, however, is still incomplete. 
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The results in the present paper can be considered as an extension of 

some of the results of Dingle, who gives expansions of M(a,b,x) and U(a,b,x) 

for b < x, b > x and also in a neighbourhood of the transition point b = x. 

From Dingle's expansions, we learn that the qualitative behaviour of M and 

U in this neighbourhood can be described by parabolic cylinder functions of 

which the error function in (I.I) is a special case. The parabolic cylinder 

functions, which are also important in our paper, are special cases of the 

confluent hypergeometric functions. Explicitly, we have 

D (x) 
v 

As in our previous paper, the starting point of the investigations will 

be an integral, which can be considered as an Laplace-type inversion formula. 

This representation turns out to be very suitable for obtaining uniform 

asymptotic expansions. For b - x, the saddle point of the integrand lies 

near by a singularity. By expanding the integrand or by integrating by parts 

as suggested by BLEISTEIN [2], we obtain two types of uniform asymptotic ex

pansions in terms of functions allied to parabolic cylinder functions. 

WONG [8] gives an asymptotic expansion of the Whittaker function 

W (z) for large values of the three parameters. In his expansion, parabolic 
K,µ 

cylinder functions also occur. For z + 00 , jarg zl <TI - o, K = o(z), 

µ = o(z!) the expansion is 

2 1-K ! W (z ) - 2 4 z K,µ 

00 
\ r(!+2µ+n) 
l n!r(~+2µ-n) 

n=O 
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2 
In our expansions we can take both Kandµ of order O(z ), but we have the 

condition lµ-KI ~ M for some positive constant M. 

Some of the above mentioned results of Dingle are based on the work of 

JORNA [5], who gave the results for the U-function only. Jorna's expansion, 

however, is valid for b +=under the restriction x/b - I = o(I) (for b + ~), 

whereas in our expansions the x-variable is not restricted to a small neigh

bourhood of x = b. Moreover, Jorna's treatment is rather formal. 

KAZARINOFF [6] investigated the Whittaker functions for complex 

variables and for large IKI, lµI and x unrestricted, under the hypothesis 

that (µ 2-K2)/K be bounded. His rigorous analysis is based upon the methods 

of R.E. Langer for differential equations. Therefore, his method is quite 

different from ours, while his expansions contain first order approximations 

only. But our approximations are of the same kind, with essentially the 

same argument in the parabolic cylinder functions. 

2. CONTOUR INTEGRALS 

U(a,b,x) and M(a,b,x) are solutions of Kuumer's differential equation 

(2. I) x y" + (b-x) y' - ay o. 

If a~ 0,-1,-2, ••. , Mand U are linearly independent. In general, U is 

singular at x = 0, whereas M is an entire function with the expansion 

(2.2) M(a,b,x) I r(a+n) r(b) xn 
n=O ~ r (b+n) Ii!" 

For fixed values of a,b and as x + = we have 

(2. 3) 

(2. 4) 

M(a,b,x) 

U(a,b,x) 

In this section, we consider integrals of the type 

2rri f es sc (s-x)-a ds, 

L 
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where a,c and x are real numbers. Throughout this paper we take x ~ o and 

c = a -. b; 

a and b are the parameters of the confluent hypergeometric functions. L is 

a contour either so that it is a closed circuit such that the integrand of 

(2.4) returns to its initial value after s has described the circuit, or so 

that the integrand vanishes at each limit. Of course the integral is sup

posed to converge on L. 

LEMMA 2.1. Let L be speaified as above. Then the integraZ in (2.4), aon

sidered as a function of x, satisfies Kummer's equation (2.1). 

~Denoting the function in (2.4) by y(x), we obtain by standard methods 

(cf. HOCHSTADT [4, p. 100]). 

xy" + (b-x) y' - ay -a = 21Ti I d S C+I -a-1 
ds [e s (s-x) ] ds, 

L 

from which the leIIDD.a follows. 0 

After a further specification of L, we wish to write the integral (2.4) 

as a linear combination of the M- and U-function. In the following three 

leIIDD.as, the many-valued functions are supposed to be real for positive values 

of their arguments. 

LEMMA 2.2. Let L be given as in figu.re 2.1. On L the phase of s inareases 

from -1T to 1T as s desaribes the aontour. L enaircZes the point x in positive 
c -a direation. Let the branah-auts of s and (s-x) be ahosen from 0, respea-

tiveiy x, to-®, suah that they are both'enaiosed by L. Then 

(2.5) -a I ( ) (s-x) ds = r(b) M a,b,x • 

~ By considering the behaviour of U and M near x 0, and using Hankel's 

integral 
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(O+) 

2rri f es s-21 ds J/r(z), 

the lemma is easily verified. D 

LEMMA 2.3. Let Land the branch-cuts of sc and (x-s)-a be as indicated in 

figure 2. 2 • Then 

(2.6) 211i 
s c -a I ( ) e s (x-s) ds = r(-c) U a,b,x • 

-oo 

PROOF. In this case we consider (2.3) and we use Watson's lemma for loop 
integrals. El 

LEMMA 2.4. For E = ± I, let L be as indicated in figures 2.3 and 2.4. L e: e: 
encloses the branch-cut of (s-x)-a and it passes above (beneath) the origin 
fore:=+ 1(-1). Then 

(2. 7) 
-a (s-x) 

e:inc+x 
e -e:iTI -r-(.,.._a..,..)- U (-c,b,e x). 

PROOF. After a shifts+ s + x in (2.6), we obtain an integrand resembling 
that of (2.6). Next, the value of x is changed into ee:inx, which gives 
(2.7). D 

x 

Figure 2.1 Figure 2.2 
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Figure 2.3 
Figure 2.4 

REMARK 2.5. The confluent hypergeometric functions in (2.5), (2.6) and (2.7) 

are related to each other, as follows from the connection formula 

(2.8) M(a,b,x) r(b) iETiaU( b ) + r(b) iTIEC+X...(b- b -iETI ) 
r(b-a) e a, ,x r(a) e u a, ,e x 

where E = ± 1. This formula follows from our results by deforming the con

tour in figure 2.1 into the contours of figures 2.2 and 2.3 (for E = -1) or 

into those of figures 2.2 and 2.4 (for E = + 1). 

More integral representations can be derived from (2.1), but in this 

paper we only use the above ones. Of course, the results (2.5) through (2.7) 

are valid for wider ranges of the parameters. 

The following function is important in the asymptotic expansions of 

this paper 

(2.9) f 

with a € lR, v e C. The contour of integration passes the singularity at 

u = v as in the.following picture. 
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Figure 2. 5 

As follows from ABRAMOWITZ & STEGUN [I, p. 688], Wa(v) is related to the 

parabolic cylinder function, this relation being given by 

(2. 10) W (v) = (211)! expC-!v2+Harr) D (-iv). 
a -a 

Clearly, we have 

(2. l 1) 

Furthermore, we use the functions 

Fk(v) I -!u2 e k k-a 
u (u-v) du, 

(2. ! 2) -oo 

"' 

I 2 
Gk (v) -!u k+I ( )k-ad 

e u u-v u 

fork= 0,1, ... , where, again, the integration is as in figure 2.5. By ex

panding uk = [(u-v)+v]k in a finite binomial series, Fk(v) and Gk(v) can 

be expressed as finite linear combinations of W (v). By integration by 
a-n 

parts, recurrence relations can be derived, for instance 

(2. 13) 

(2k-a)Gk-I (v) - vk Fk-I (v), 

(2k-a-l)Fk-l (v) - v(k-l)[Gk_ 2 (v) - vFk_ 2 (v)]. 
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3. UNIFORM EXPANSIONS 

3.1. Saddle point contours. Let us start with M(a,b,x). We derive an asymp

totic expansion of this function for x + 00 and/or b + oo, uniformly valid 

with respect to A, where 

(3.1) A= x/b. 

From (2.5) we obtain 
(A+) 

(3. 2) M(a,b,x) J eb$(t) (1-A/t)-adt, 

-oo 

where 

(3.3) cl>( t) t - 1 - .ln t. 

Let us suppose temporarily A < 1. As in [7], we choose the contour in (3.2) 

through the saddle point of $ at t = 1 along the steepest descent curve L 

given by Im $(t) = O, or explicitly 

(3.4) a = T cotg T, -71 < T < 71, 

71 

CJ + 

L 

------------------- 71 

Figure 3.1 

F. 
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where t = 0 + i 1 (o, 1 e IR), see figure 3. I. On L the function cp is real and 

non-positive. Next, we define a mapping of the t-plane into the u-plane by 

the equation 

(3.5) 2 
-!u = cp(t) 

with the condition that t E L corresponds with u E JR., and u < 0 if -r < 0, 

u > O if -r > O. From these conditions it follows that 

(3.6) u = i(l-t) [2(t-l-ln t)/(l-t) 2J!, 

where the square root is positive for positive values of its argument. 

(3. 7) 

Integration with respect to u gives for (3.2) 

M(a,b,x) I 
2 

-!bu 
e dt du 

du ~( -1 _-;>.__/_t_)_a_ 

The singular points of the integrand in (3. 7) are of two different types. 

First, we have the singularity due to the factor (1-;lJ t) -a (of course, a 

singularity will only occur if a 1' 0,-1,-2, ..• ). The singular point t =A 

in the t-plane corresponds with a point u = u(A) = u 1, say, in the u-plane 

explicitly given by (cf. (3.6)) 

(3.8) 

and if).+ 1, then u1 + O. The contour in (3.7) is as in figure 2.5, with 

v = u 1• If Im u1 > 0, an ideal contour of integration is the steepest des

cent path Im u = O. If Im u 1 $ 0, the contour in (3. 7) will be deformed 

around the branch-cut of (1-:>._/t)-a. Hence, we may dispose of the condition 

0 :::; A < 1 and we suppose henceforth ;>._ ~ O. 

The second type of singularities of the integrand are due to the factor 

dt/du, which, by using (3.3) and (3.5) can be written as 

(3.9) 



The point t = 1, corresponding to u = O, gives a regular point. But, on 

account of the many-valuedness of the logarithm in (3.3), we also must 

consider the points exp(2nin), for integer values of n, giving a sequence 

of singular points 

(3.10) 
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in the u-plane. When distorting the contour in (3.7) in order to allow non

positive values of Im u 1, the singularities (3.10) must be avoided. 

It is important to note that the singularities of the second type, 

given in (3.10), are fixed points in the u-plane, whereas u1 given in (3.8) 

may be close to the origin (the saddle point). The point u 1 causes a non

uniform behaviour iL (3.7) while the points in (3.10) are of a secundary 

interest. 

The standard method for obtaining an asymptotic expansion via (3.7) is 

based on the substitution of the expansion 

in (3.7) followed by termwise integration. Owing to the singularity at u1, a 

non-uniform expansion is obtained in this way. In fact, all ~(A) are 

singular for A= I. In the following subsections, we give two types of 

uniform asymptotic expansions. 

3.2. BZeistein's method. In the first place, we use an integration by parts 

procedure suggested by BLEISTEIN [2]. The integral in (3.7) is written as 

(3. 11) 

where 

(3. 12) 

00 

J e-ibu2 G(u) du a 
(u-u 1) 

a dt 
G(u) = [(u-u1)/(A/t-1)] du· 

Except for the points given in (3.10), G is a holomorphic function of u. 

Especially, it is regular at u = u 1. Let us write 
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(3. 13) 

where y0 , y 1 and G1 must be determined. Substituting u u 1, u 0 res-

pectively, we obtain 

(3. 14) 

and with y0 and y 1, G1 follows from (3.13). As G, it is regdar except 

for the points in (3. 10). 

Upon inserting (3.13) into (3.11), we can rewrite J(a,b,u 1) in the 

form 

(3. 15) 

where Wais defined in (2.7) and 

(3. 16) ( I00 

-!bu2 -a+I J 1 a,b,u 1) = e u(u-u 1) G1 (u) du. 

-oo 

We integrate by parts in (3.15) and obtain 

b ( I -!bu2 -a 
JI a,b,u 1) = e (u-u 1) [(1-a)G 1(u) + ( )G'( )] d u-u 1 1 u u. 

The procedure of (3.15) and (3.16) b i· d J ( b ) "f can now e app ie to b 1 a, , u 1 i 
we set 

It then follows that 

J(a,b,ul) = bHa-l)[(yO + Y2 b-l)Wa(ulb!) + b-i (yl + Y3b-l)Wa-I (ulbi)J 

-I 
+ b J 2 (a,b,u 1), 
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This process can be continued to obtain an arbitrary number of terms. The 

final result is the asymptotic expansion 

(3. 17) 
r(b+l)ebb-b+Ha-l) [ ! ~ -n 

M(a,b,x) - 2 . W (u 1b ) l y 2nb + 
tri a n=O 

\' -n l 
l y2n+lb j" 

n=O 

From (3.14), (3.12) and (3.8) it follows that 

(3. 18) 

In general, 

0. [(1-A.)/u Ja-I 
1 - i 

the functions Gn are determined recursively from the equations 

(3. 19) 

n = 0,1, ••• , with G0 (u) = G(u) given in (3.12). By inspection yk = 0(1) in 

A. if A. -+ I. 

By using the more familiar parabolic cylinder functions we obtain, by 

considering (2.8) and the recurrence relation 

D 1(x) = (x/2) D (x) - D'(x), 
v+ \! \! 

the asymptotic expansion in which all variables are real 
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(3.20) M(a,o,x) -

+ b-! D' (1;) 
-a 

where 

(3.21) 

REMARK 3. J. For a = I, the confluent hypergeometric functions can be ex

pressed as incomplete gamma functions, see (1 .2). For this case 

w0 (u 1b!) = (2rr)!, w1(u 1b!) =in exp(-!bu 1
2)erfc(1;//2), y 0 = \, Yzn = 0 

(n > 9). As can be verified, expansion (3 .17) reduces indeed to the result 

of our previous paper. 

Bleistein showed that an expansion like (3.17) is uniform1y valid with 

respect to >. in a neighbourhood of !.. = I. In the case of the incomplete gam-

ma functions, the expansions turned out to be uniformly valid for >. ::?: O, 

and we might expect the expansion (3.17) to hold in the same \-domain. In 

terms of 1; given in (3.21), the expansions then are expected to hold uni

formly for all real t;. For that purpose, the following properties have to be 

verified. 

(i) The sequences {y2nb-n} and hzn+lb-n} are uniform asymptotic sequences. 

That is to say, the elements of the sequences have to satisfy 

-n-1 
Yzn+2 b 

n = 0,1,2, .•. , for b + oo, uniform in t; E lR. 

(ii) There are sequences fo 2n}, { a 2n+ 1}, which are uniform asymptotic 

sequences for b + '''. uniformly in t; E lR, such that for n, m = 0, I , 2, •.• 

M(a,b,x) 

for b + "'• uniform in 1; E IR. 
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A drawback of Bleistein's method is a lack of an explicit expression for 

the coefficients y and the functions G , which are only given recursively. n n 
As a consequence, it is difficult to verify the properties in (i) and (ii), 

even in our case where the function G is given explicitly. However, inspec

tion of the first ratio y2/y0 for s + ± oo indicates that the uniformity 

with respect to s cannot be given for the whole domain JR. The most we can 

expect is uniformity with respect to an interval [-A,B], where A,B depend 

on a,b, such that A,B + for b + oo (a fixed). 
A pleasant feature of Bleistein's method is the form of the asymptotic 

expansion, in which only two parabolic cylinder functions occur. In the 

following section, we give an alternative expansion, but first we give the 

results for U(a,b,x) corresponding to (3.17). 

The starting point is (2.6). After some transformations, we obtain 

U(a,b,x) 
2 

e-~bu G(u) du 

where G and u 1 are given in (3.12) and (3.8). The contour passes the singu

larity at u = u 1 as in figure 3.2. 

Figure 3.2 

The asymptotic expansion now contains functions of the type 
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If we make the change of variable u + -u, it turns out that this integral 

equals W (-v). 
a 

Proceeding as before, we arrive at the expansion 

(3.22) 

-nl L Y2n+1 b j 
n=O 

The coefficients yn are the same as those for M(a,b,x) in (3.17). 

The expansions for the integrals along the contours in figures 2.3 and 

2.4 follow now from (2.8). By using (3.17), (3.20) and a connection formula 

for the parabolic cylinder functions, viz. 

-e:iv11 i -1 ( . ) -d11(v+l)/2 
Dv(z) = e Dv(-z) + (211) r(-v) D-v-l e:iz e , 

with e: = :I: 1, we obtain 

(3. 23) -e:ill U(b-a,b,e x) -! !(a+l)-b -iv2+!in[2a+e:(l-a+2b)]+b-x 
(211) b e 

REMARK 3.2. The expansions in (3.17), (3.22) and (3.23) are given as series 

of inverse powers of b. The results are valid for b + oo, uniformly valid 

with respect to A in a neighbourhood of A= I. By considering in (2.5) and 

(2.6) x as a large parameter, we can derive asymptotic expansions for 

U(a,b,x) and M(a,b,x) with series in inverse powers of x for x + oo, uniform

ly valid with respect to A, again in a neighbourhood of A= 1. 

3.3. AZternative e;r;pansions. If we expand the function G in (3. 12) in a two

points Maclaurin expansion 
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(3. 24) 

were the ck and dk are to be determined, we obtain by termwise integration in 

(3. 1 I) 

(3. 25) 

The functions Fk and Gk are given in (2.12) and recursion relations between 

them in (2.13). The coefficients ck and dk may be obtained by substituting 

the values u = 0 and u = u 1 and differentiating the series. The first few 

are 

c0 = G(O), 

The following lemma gives an explicit formula for ck and ~ for general k. 

LEMMA 3.3. Let w(v) = (v + !u12)! and let the functions H1 and H2 be given 

by 

[G(!u 1 + w(v)) - G(!u 1 - w(v))]/w(v), 

where the square root in w is real for positive arguments, then the coeffi

cients ck a:n.d dk in (3.24) are given by 

(3.25) 

1 J Hz(v) 
2Ck = 211i ~ dv, 

v 

I 
2~ = 2rri 

Cz 

I HI (v) 
--dv, 

k+l 
c v 

I 
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where c. are simple closed contours encircling v 
l. 

O but not encircling any 

singularity of Hi, i = 1,2. 

PROOF. If we substitute u = !u 1 + v in (3.24), we obtain 

Splitting up the right-hand side in odd and even parts (with respect to v) 

and using Cauchy's integral formula for the coefficients of the MacLaurin 

expansion of holomorphic functions we obtain the representations for ck and 

dk. Since G is holomorphic except at the points (3. 10), H1 and H2 are holo

morphic in a neighbourhood of v = O. D 
-k 

It is not difficult to prove that the sequences {ckFkb } and 
-k 

{dkGkb } are uniform asymptotic sequences for b + 00 , uniform in a neighbour-

hood of A= I, and that (3.25) gives a uniform asymptotic expansion. An 

optimal interval of uniformity has not been obtained, but we expect that the 

investigations on this subject are carria out easier with (3.25) than by 

using the expansion of the previous subsection. 
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The Asymptotic Expansion of the Incomplete Gamma Functions 

by 

N.M. Temme 

ABSTRACT 

Earlier investigations on uniform asymptotic expansions of the incom

plete gamma functions are reconsidered. The new results include estimations 

for the remainder and the extension of the results to complex variables. 

Furthermore asymptotic expansions of the inverse functions are given. 

KEY WORDS & PHRASES: inaorrrplete gamma funation~ asymptotia expansion, 

inverse inaorrrpZete gamma functions. 
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I . INTRODUCTION 

We consider the incomplete gamma functions ratios P and Q defined by 

x 

P(a,x) = r~a) J 
a-1 -t dt, t e 

(I. 1) 0 

"" 
Q(a,x) = r~a) J 

a-1 -t dt. t e 

x 

We suppose first that x and a are real with 

(!. 2) x <!: O, a > O. 

In TEMME [5] we derived asymptotic expansions of P and Q for a -+ "'• 

uniformly valid for x <!: O. In this paper we reconsider these expansions. 

Our new results concern the representations of the remainder in the asymp

totic expansion, representations for the coefficients of the expansion for 

numerical applications, numerical upper bounds for the remainder of the case 

of real variables, and extension of the asymptotic expansions to the case 

of complex variables. Furthermore we give an asymptotic expansion of the 

inverse function. 

To describe the expansions given in [5] we introduce the following 

parameters 

(1.3) x/a, µ = ).. - I, {2[µ -£.n(l + µ) ]}! ' 

with the convention that the square root has the sign ofµ(µ> -1). As a 

function of \J, n is monotone and infinitely differentiable on (-1,=). 

Analytic properties of n(µ) for complex µ are considered in §5. 

The asymptotic expansions of P and Q derived in [5] follow from the 

representations 

P(a,x) 

(I. 4) 

Q(a,x) ! erfc[n(a/2)!] + R (n) a 



with 

(!. 5) (211a) -! 
2 

-!an e 
00 

-k a 
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for a + 00 , uniformly valid with respect to n e: E. ; erfc is the complemen

tary error function defined by 

(I. 6) erfc(x) = 211-i j e-t2 dt. 

x 

The expansion (1.5) was derived by using saddle point methods. In §2 

we use a different method which yields recurrence relations for the coefficients 

ck and a representation for the remainder of (1.5). In §3 we discuss repre

sentations for ck that can be used for numerical applications. In §4 

numerical error bounds are constructed for the remainder of the series in 

( 1. 5) when the first n terms in the series are used. Bounds are given up to 

n = 10. As a side result this section gives bounds for the remainder of the 

asymptotic expansion of the reciprocal gamma function l/r(x) for real x. 

In § 5 the results are extended to complex values of a and x. In § 6 a new 

asymptotic expansion for the inverse of the incomplete gamma functions is 

derived. To describe this, let q e: [0,1]. Then the function x(q,a) implicitly 

defined by the equation Q(a,x) q is called the inverse. We give an asymp

totic expansion of the form 

(I. 7) 

for a + 00 • This expansion is based on inversion of the uniform asymptotic 

expansion for Q. The analysis is formal but it appears that (1.7) is valid 

in q € (0,1]. Some information is given about the first coefficients in 

(1.7). 

ACKNOWLEDGEMENTS. Thanks are due to Mr. F.J. Burger who did nice and help

ful work on writing programs for computing the coefficients and the error 

bounds. 
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2. RECURRENCE RELATIONS FOR THE COEFFICIENTS 

AND REPRESENTATION OF THE REMAINDER. 

First we remark that the asymptotic expansion for a+ oo, of dR (n)/dn 
a 

may be obtained by formal differentiation of (1.5). This is not proved 

here, but it follows from the representation of R (n) in our previous 
a 

paper (formula (2.10) of TEMME [5]). The result is 

(2.1) 

with 

(2.2) 

dRa(n) -· _1 _1an2 
·- a(21Ta) 2 e 2 

dn 

d ck-I (n) 
-nck(n) + dn 

-k 
a 

k ?: I. 

Secondly, we need the coefficients of the asymptotic expansion of 

the complete gaI11ID.a function. Let us define 

(2. 3) a > 0. 

Then r * and l/r* have the well-known asymptotic expansions for a + 00 

r *(a) ~ l (-1 )k -k 
yk a 

k=O 
(2.4) 

l/r*(a) ~ l yk 
-k a 

k=O 

The first few coefficients are 

I • 
I I 139 y = YI = - TI• '2 = 288' Y3 = 51840 0 

Further coefficients follow from SPIRA [3] and WRENCH [6]. Wrench gives 

(-lfyk up to k = 20 in rational form, Spira the remaining up to k = 30. 

Decimal representations are also given in both references. 

With these preparations we have 
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~REM I. Let {yk} be defined by (2.4). Then the aoeffiaients ck of (1.5) 

~;sfy the reau:rTenae reiation 

5) 

co(n) =-;; - Ti 

d ck-I 
nck (n) = dn 

(n) 
+.!ly, 

µ k 
k ~ I. 

oOF. By differentiating one of the formulas in (1.4) with respect ton 
;:;---
0 by using (2.1) it follows that 

.6) 

·om (1.4) we have 

~. 7) 
dµ (µ+I )n 
dn = µ 

2 -ian e • 

id substituting (2.1) and the second relation of· (2.4) we obtain {2.5) 
-I r collecting equal powers of a and using (2.2). 0 

As follows from [5], the coefficients ck are holomorphic in a neigh-

:;,urhood of n = o. In fact the singularities of I/µ and 1/n in c0 cancel 

a.eh other. So the limiting value of c0 for n + 0 is well defined. 

Owing to the derivative of ck-I in (2. S) this formula cannot be 

andled easily from a numerical point of view. Further, the above mentioned 

ancellation of singular parts in c0 occurs in all ck when working with 

2.5). Therefore other representations are given for these coefficients. In 

he next section we discuss some aspects of the Taylor expansions for small 

nl-values, while for larger lnl-values a recurrence relation is constructed 

·rom which the coefficients can be computed directly. But first we give 

:epresentations of the remainder in the asymptotic expansion (1.S). 

From (1.4) it follows that R (oo) = R (-oo) = 0. Hence, integration 
a a 

>f (2.6) gives 

(:2.8) 

-= 

l 
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-(a/2µ)! f [I-~ r~a) J 

' 
whereµ as a function of n is defined implicitly in (1.4). From these 

representations and the recurrence relations for ck a simple expression 

for the remainder follows. For this purpose we introduce the notation 

(2.9) 

a> 0, n E JR, N = 0,1,2, •••. Furthermore, we need a notation for the 

remainder in the asymptotic expansion of I /r *ea), which is written as 

(2. 10) 
N-1 * I -k -N 

l/r (a)= l yk a +a ~(a), 
k=O 

a>O,N=0,1,2, •••• 

TiiEOREM 2. Let GN and HN be defined by (2.9) and (2.10). Then 

(2. 11) 

+ ~+I (a) 
oof n -!an2 

- e dn. 
µ 

1;; 

PROOF. Follows immediately from substitution of (2.9) and (2.10) in (2.6) 

(and by using (2.5) and (2.7)). O 

The second integral in (2.11) can be expressed in Q(a,x). From 

representations of ck to be given in the following sections it follows 

that I ck (n) I is a bounded function of n " 1R • For numerical applications 

the following is important. 

COROLLARY I • If I ck ( n) I is bounded on JR. then for N = 0, I , 2, •.• 

(2. I 2) IQ(a,x) - erfc[n(a/2)!] 

with 

2 
- 1an e 2 

- ---r 
(211a) 2 

N-1 -k QN(n;a) -N 
I ck (n) a [ s a 

k=O (211a) 2 
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(2. 13) 

~here the upper term is for n ~ O, the lower one for n $ 0, and where 

(2. 14) 

In §4 we give nmnerical values of CN and bounds for HN' 0 $ N $ JO, 

With these values we have strict and realistic error bounds for the 

remainder of the uniform asymptotic expansion of Q(a,x). Similar results 

hold for the function P(a,x). For N = 0,1,2, ••• we have 

(2. 15) 

with 

(2. 16) 

-lan2 

!P(a,x) - ! erfc[-n(a/2)i] + ~ 
(211a) 

{ 
2 

C (2 - e -ian ) 
N 

I I a -a 
+ HN+ 1(a) ea r(a) P(a,x), 

where the upper term is for n ~ O, the lower one for n $ O. 

REMARK I. The functions multiplying the constants CN in (2.13) and (2.16) 

have quite different behaviour for n < 0 and n > O. This, however, is in 

agreement with the behaviour of the functions P and Q in the same formula. 

In fact, the bounds PN and QN give a measure for the relative accuracy 

for the error in the uniform expansions. 

REMARK 2. The asymptotic expansion (1.5) and the representation for the 

remainder is easily obtained by partial integration of one of the integrals 

in (2.8) and by using the recursions (2.5) and 1\(a) = yk +± 1\+i (a). 
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3. REPRESENTATIONS OF ck. 

Using (2.5) with k = I we obtain 

(3. I) 

and using (2.7) we have 

(3. 2) 

Computing higher order coefficients we notice the following structure 

(3.3) 

where Qk is a polynomial in µ of ciegree 2k and ~ 

~ = (2k-1)~-1' k ~ I. 

We obtain for Qk a recurrence relation with respect to k by substituting 

(3.3) in (2.5). The result is 

(3. 4) 

where the derivative is with respect to µ. The first few polynomials are 

Qo(µ) 

(3.5) QI(µ)= + J_ µ 2 + µ 
12 

Q2(µ) 3 + 5µ + 25 2 I 3 I 4 
TIµ +TIµ + 288 µ . 

Again, the recurrence relation (3.4) contains the derivative of Qk-I' but 

now Qk-I is a polynomial. In order to preserve accuracy for µ = -I we write 

(3. 6) k 2k (I+µ) Pk(µ) + (-1) yk µ 
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and we proceed with Pk' Writing 

(3.7) 

we have the relation (which is easily obtained by substituting (3.7) and 

(3.6) in (3.4)) 

p (k) = (2k-1) p (k-1) 
0 0 

(3.8) (k) = (2k-1-j)[p~k-l) (k-1) 
j l,2, ••• ,2k-4 P· + Pj-1 ] • J J 

(k) 2 (k-1) (k) k-1 
p2k-3 = p2k-4 p2k-2 (-l) yk-1' 

with as starting polynomial P1(µ) =I, or p~I) = 1. 

I T bl I . h ff. . (k) f (3 7) f k 2 5 n a e we give t e coe icients p. o • or = I, , ••• , , 
J 

j O, I, ••• ,2k-2 

k 

2 

3 

4 

5 

3, 2, 1/12 

(k) 
p. 

J 

15, 20, 25/4, 1/6, 1/288 

TABLE I 

105, 210, 525/4, 77/3, 49/96, 1/144, -139/51840 

945, 2520, 9555/4, 1883/2, 12565/96, 149/72, 221/17280, -139/25920, 

-571 /2488320. 

At this stage, it is not clear for which ri-values direct com

putation of ck via (3.3) is safe. This depends of course on the desired 

accuracy. In applications, the desired accuracy in ck will depend on k. 

For, when using the asymptotic expansion, first terms (i.e., terms ck(ri)a-k 

with k small) are needed with higher accuracy than late terms. Since the 

terms in the asymptotic expansion are decreasing in absolute value (if a 

is large) the coefficient c0 is needed in good relative accuracy, while 
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for the remaining terms a criterion based on absolute accuracy can be used. 

In Table II we give the µ-part and then-part of ck (cf.(3.3)) for k=0.1,2, 

and n =±I. The µ-values corresponding with n = ± 1 are µ(-1) = -0.698 ••. , 

µ(I) = 1.35 .... 

TABLE II 

k 11 

0 

-I 

-I 

2 

-I 

11-part 

-1 

-1 

-3 

3 

µ-part 

0.74 

-1.43 

-1.0034 

1.0054 

3.0022 

2.9926 

It appears that 11 = ± I are safe values for suillllling the asymptotic 

series as far as it concerns coefficients ck up to and including k = 2. 

To give an indication for the ck with k ~ 2, we notice that absolute accu

racy in subtracting the n-part from the µ-part in (3. 3) is preserved if 

both parts are in absolute value not larger than I. From Stirling's 

approximation for ~ it follows that the 11-part is in absolute value 

approximately (2k/en2)k. This expression is smaller than I if !11! > (2k/e)i. 

Fork= 10 the righthand side is 2.71 ••• 

If In! is small it is preferred to use expansions either in terms of 

n or in terms of µ. We advise expansions in 11, since it gives better con

vergence properties. When expanding ck in powers of µ we need (among others) 

the expansion of n in powers of µ. Due to the singularity of the logarithm 

in (1.3), the radius of convergence of this series is 1. Other singular

ities for 11 are zeros ofµ - £n(I+µ), but they are outside the domain 

lµI s I. This follows from straightforward analysis. The reader may also 

consult an interesting note of DIEKMANN [2]. The expansion of µ in powers 
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of n has radius of convergence 2/~ ~ 3.54. This follows from the analysis 

of §5. From the recurrenc~ relation (2.5) it is easily seen that the radius 

of convergence of the power series for ck either in µ or in n is the :;ame 

for all k. 

We conclude this section with information on the construction of the 

coefficients for the expansion of ~ in powers of n. 
It is convenient to start with the computation of the ak in 

(3.9) µ(n) 

whereµ is defined implicitly in (1.3). Substitution of (3.9) in (2.7) 

yields the recurrence relation 

k-1 
(k+I) ak = ak-1 - l jaJ. ak-J'+I'· 

j=2 

The first few are 

k <: 2. 

a 1 =I, a 2 = 1/3, a3 = 1/36, a4 = -1/270, a 5 = 1/4320. 

With ak we also have available the yk of (2.4), which are also needed in 

(2.5). The relation between ak and yµ is 

k yk = (-1) 1.3.5 •.•• (2k+I) a2k+I' k .. 0,1,2, •••• 

In fact, the expansion (3.9) is of importance for the derivation of the 

expansion in (2.4) (see also §4), By using (2.7) and 

(3. I 0) µ - .ln(l+µ), 

it follows that the expansion of n/µ(n) occurring in (2.5) is given by 

(3. 11) + .... 

This gives the coefficients of c0 of (2.5) 

~ ' ' 
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(O) (O) (O) 2 
(3.12) co(11) co + cl n + C2 n + .•. 

with 

(0) l (0) 
= (k+2)ak+2• k ;;>: 1. co -3· ck 

By repeated use of (2.5) we obtain the recursion for the coefficients in 

ck (n) 
(k) + c(k)n (k) 2 + ..• co l 

+ c2 n 

(3.13) n :1: 0, k ;;>: 1. 

(k) b d i·n terms of c(O) Th lati·on i's Of course, each en can e expresse n e re 

for n 2 0 and k ~ I 

(3. 14) 
(O) + ..• y0(n+2) •.• (n+2k) cn+2k. 

Other functions may be used for expanding the coefficients ck, for 

instance Chebyshev polynomials. In that case recurrence relations for 

corresponding coefficients can be constructed again. But the Taylor case 

gives simple relations and the coefficients can also be used for complex 

values of the parameters. 

On account of the convergence properties of (3.12) (with radius 2/n) 

successive terms in (3.14) are decreasing in absolute value. Hence no 
(k) instability problems arise when using (3.14) for the computation of c. • 
n 

4. BOUNDS FOR THE REMAINDER IN THE ASYMPTOTIC EXPANSION 

In Table III we give the numbers Ck defined in (2. 14). These bounds 

were obtained numerically by using representations of ck given in the fore

going section. From (3.3) it follows that 
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lim c.k(n) lim ck(n) 
k+l 

0, (-) Q1«-l) -yk. 
n++oo n+-co 

TABLE III 

k c2k c2k+l 

0 3.510-3 

9.210-3 6.910-4 

2 2.110-3 3.510-4 

3 1.310-3 3.510-4 

4 1.710-3 6.010-4 

5 3.410-3 

Next we give details for computing the bounds Hk (defined in (2.10)) 

fork= 0,1, ..• ,JO. It is convenient to start with details for obtaining 

the asymptotic expansion of 1/f(a). Again, a is a positive number. Starting 

point is Hankel's integral 

(0 +) 

(4. II) r!a) = 2!i f et t-a dt. 

As in our previous paper [5] this can be written as 

(4. 2) 

with 

(4. 3) 
ut 

f(u) = 1-t ' 

-!au2 
e f(u) du 

-:o 

2 -!u t - 1 - ln t. 

The relation between u and t must be specified in more detail. Let L be 

the saddle point contour for (4.1) in the t-plane. That is 
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(4. 4) 
·.p 

L = { t I t = -,t._ e l. -11 < <P < 11} • 
Sln <j> ' 

Then u defined in (4.3) is real if t e L, and sign(u) = sign [Im(t)]. The 

asymptotic expansion of l/r(a) is obtained by expanding 

(4.5) 
1 g(u) = 2i [f(u) + f(-u)] 

in powers of u and termwise integration. Let us define the function gN 

by writing 

(4.6) 

with 

(4. 7) 

g(u) 

a = _1 _ g(2k) (O) ,· 
k (2k)! 

N = 0,1,2, ••• , 

all ak are different from zero. Then the function HN of (2.10) is given by 

(4.8) 

Suppose that we have bounds 

then a bound for HN is given by 

(4. I O) a > 0, 

where yk are the coefficients in (2.10). 

As yet it is not clear that gN is bounded on R. But it follows from 

(4.6) that gN is bounded if g is bounded. The function f of (4.3) is not 

bounded on R , but its even part g is. This follows from using the repre

sentation oft e Las given in (4.4). In terms of u and <j>, g is given by 



(4.11) g(u) 

with 

• 2 
u(j>sin cj> 

2 . 2 . 2 
cj> + Sl.n (j> - cj> Sl.n cj> 

1- cp ctg cp + ln ~.<P~ 
sin cp 

105 

-rr < ~ < rr 

sign(u) sign((j>) , 

from which it follows that g is bounded if u + ± oo or cp ~ ± rr. Table IV 

gives the nm!lber GN for N = 0,1, ..• ,11. 

Table IV 

occur at u = O; for N = 2,4,6,8,10 the maxima occur in the neighbourhood 

of u = ± 2/rr. These latter points are the points on the real axis marking 

the domain of convergence of the Taylor series of g. 

With the data of Table III and Table IV and relation (4.10) the 

bounds QN and PN defined in (2.13) and (2.16) are easily computed. 

5. EXTENSION TO COMPLEX VARIABLES 

In this section we will show that the asymptotic expansion for P 

and Q given by (1.4) and (1.5) are valid for a+ oo uniformly in larg al $ 

rr - E1, larg x/al $ 2rr - E2 where El and E2 are positive numbers, 

0 < El < rr, 0 < E 2 < 2rr. 
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The condition on the argument of a follows from the validity of the 

expansions in (2.4), which are known to be uniformly valid when Jarg aJ s 

n - € 1• As noticed in Remark 2 of §2 the asymptotic expansion of Ra(n) can 

be obtained by partial integration of one of (2.8). If we consider the 

second integral, one of the assumptions by partial integration will be that 

exp(-ian2) vanishes at infinity in a certain direction of the n-plane. If 

Jarg aJ < rr and if it is allowed to use n-values at infinity with arg(an2) 

< I then the convergence of the integral is established for I arg a I s n - € 1• 

From these inequalities it follows that it is sufficient to show that for 

I I . 3n 3n 
large n we can take arg n in (- '4"", '4""). A second aspect of using the 

second integral of (2.8~ is the possibility of joining the point ~ with oo 

such that the function µ(n) of the integral is holomorphic along this path 

and such that the point ~ can be associated unequivocally with a point in 

the µ-plane. In order to settle this we discuss the relation between n and 

the parameter µ (or A) for complex values. 

It is convenient to consider 

(5.1) 

For A> 0 the function n is to be interpreted as drawn in Figure J. This 

implies a choice of the square root. 

n 

Figure I. 



We obtain a clear.insight in the mapping A~ n(A) and its inverse if we 

draw images of the half-lines lcp defined by 
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where cp is real, lcJ>\ s 2n. Writing n 

is governed by the equations 

a+ iS the image of l cp in the n-plane 

p cos cp - I - .f.n p 

aS p sin cp - cp. 

Taking into account the convention about the choice of the square root in 

(5.1) we obtain Figure 2, which contains images of lcp for 0 s ~ s 2n. The 

complete picture for -2n s cp s 2n is synnuetric with respect to the a-axis. 

CL 

Figure 2. 
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The shown directions correspond to increasing values of p on l~. 

The half-lines l 2 are mapped on part of the hyperbolae aS = +211. The 
+ lT 

points n± = e±311I/4 2/11 are singular points of the mapping. Other singular 

points are located in other Riemann sheets of the n-plane. Convenient 

branch-cuts for the function A(n) are the parts of the hyperbolae aS 

t211 with a s -/2TI"". With the n-plane cut along these curves, lines l~ with 

the values of ~ outside the interval [-211,211] can be traced, but for our 

problem this is superfluous. 

It is concluded that any point in the finite n-plane (not on the 

branch-cuts), corresponds to a point in the A-plane with larg Al < 211. 

Consequently, if we integrate the second integral of (2.8) along a path 

that avoids the branch-cuts in the n-plane, the function µ(n) = A(n)-1 is 

holomorphic. The conditions for al lowing values of arg a in (-11, 11) are 

amply satisfied, since admissable directions in the n-plane can be found 

in the sector -11 < arg n < 11. 

REMARK. Singular points of the mapping n + A(n) can also be found by 

considering the derivative dA/dn = An/(A-1); A= I gives a regular point 
211in . 

but A= e (n = ±1, ±2, ... ) gives (due to the many-valuedness of the 

logarithm in (S.l)) singular points n satisfying !n2 = - 211in, 
n n 

n = ±I, ±2, .... 

The integration by parts procedure leads eventually to (2.9) and 

(2.11). From the properties of the coefficients ck and by taking appropriate 

contours in (2.11) it follows that for N = 0,1,2, ••• 

0 ( l)' a + oo 

6. ASYMPTOTIC EXPANSION OF THE INVERSE FUNCTION 

The incomplete gamma functions are basic for the chi-square probabi

lity function and the Poisson distribution. Applications in this field 
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lead us to the investigations of reliable and accurate algorithms for the 

computation of the functions discussed in this paper. Existing methods 

are not efficient if both parameters x and a are large. In statistics the 

inverses of the probability functions are very important. In practice the 

inversion is usually carried out by Newton-like methods. However, if large 

parameters must be considered, they are not reliable and not efficient. Our 

numerical experiments with the inversion of the incomplete gamma functions 

by using the expansions of this paper are promising, especially if the 

parameters are large. Since our method is based on uniform expansions, 

the range of application is satisfactorily large .. Owing to the uniform 

character of our results, the coefficients of the expansion are rather 

complicated. But for implementation in software packages this aspect is 

not very important. 

In [5] we also derived asymptotic expansions for the incomplete 

beta function. This function can be inverted by the same methods as those 

for the incomplete gammma function described in this section. 

6.1 We consider real values of x and a satisfying (1.2). Let q € [0,1]. 

We describe a procedure for obtaining the asymptotic expansion of the 

function x(q,a) implicitly defined by the equation 

(6.1) Q(a,x) q. 

We use the representation of Q given in (1.4). If we have inverted Q then 

P is also inverted. The solution of P(a,x) = p, 0 s p s 1, is simply 

x(l-p,a), where x(q,a) is the solution of (6.1), with p + q = I. 
First we describe the inversion in terms of the parameter n. Suppose 

we have available the value of n0 , which solves the equation 

i erfc [n0 (a/2)i] = q, where q is the same as in (6.1). This requires an 

inversion of the error function, but this problem is solved satisfactorily 

in the literature. See for instance BLAIR et.al.[ I] or STRECOK [4]. 

The value for n implicitly defined by the equation 

(6.2) 
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is for large values of a approximated by n0 • Hence we write 

(6.3) 

and try to determine c. From the previous section it follows that Ra(n) is 

analytic for every n E lR. Substituting (6.3), we find by expansion 

"' 
(6.4) l 

k=l 

e:k dk ! e:k dk 
k '. -k erfc[n(a/2) J + l k.' -k R (n) 

dn k=O dn a 
0, 

where the derivatives are evaluated at n = n0 . In this formula we substitute 

for the derivatives of Ra (n) the derivatives of the asymptotic expansion 

(J.5). As remarked in §2, the series can be differentiated, giving (2.1). 

But it can be differentiated any number of times, giving 

dk k -~ -!an 
2 00 

c (k) ( ) (6.5) l -n - R (n) ~ a (211a) e a 
dnk a n=O 

n n 

with c (O) (n) = cn(n), and for k ?: (compare (2.2)) n 

(6.6) (k-1) ( ) -n c0 n , c(k)(n) 
n 

d (k-1) ( ) 
dn en-I n ' 

n ?: I . 

The derivatives of the error function in (6.4) can be replaced by Hermite 

polynomials, viz. 

dk ! 
~ erfc[n(a/2) J 
dn 

For a similar series as in (6.5) let us write 

(6.7) dk ! 
! ~ erfc[n(a/2) ] 

dn 

This series contains as many terms as the Hermi'te polynomials Hk_ 1(x) when 
expanding it in powers of x. From well-known properties of these poly-

nomials we derive fork= 1,2, •.. , o J [(k )/] n = , ,. •• , -I 2 

--



(6.8) h(k)(n) = (-l)k+n nk-l-2n 2-n(k-J)!/[n!(k-1-2n)!]. 
n . 

Substituting (6.5) and (6.7) we obtain the asymptotic equality 
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(6.9) "' c (n)a-n + (e:a) 
n I! 

"' 2 "' 
e (I) (n)a-n + (e:2a

1
) \' (2) ( ) -n 0 le na ••• -, 

n • n=O n 
l 

n=O 
l 

n=O 

with n no and 

(6. 10) n2:0, k2:1. 

From this point the analysis is continued formally. We assume that e: 

in (6.3) can be developed in an asymptotic expansion. Let us make the 

"Ansatz" 

(6.11) 

where a and a. are to be determined. This will be done in §6.2. With (6.11) 
1 

an expansion for x defined in (6.1) can be obtained as follows. We have 

(6. 12) x(q,a) = aA(n) = a[l+µ(n)J = a[l+µ(n 0)+e:µ'(n 0)+ ••. J 

-I -2 
-a[x0(n0)+x1(n0)a +x2<n0)a + ••• ], 

the first coefficients xi being given by 

xo(n) + µ(n), 

x1(n) µ'(n)a(n) 

(6.13) 2 
x2(n) !a (n)µ"(n) + a 1(n)a(n)µ'(n) 

x3(n) = -k.3(n)µ"'(n) 
2 + a2(n)a(n)µ'(n). 

6 
+ a 1 (n)a (n)µ"(n) 

The primes denote differentiation with respect to n. The value of µ(n 0) 

can be obtained by the inversion of the relation between µ and n given 
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in (1.3).Derivatives of µ(n) can be obtained via (2.7), but they also follow 

from the coefficients ck and (2.5). For instance, µ'{n) = [l+µ{n)][l+nc 0{n)J. 

As will be seen in §6.2, the coefficients ck are also needed in a(n), ai(n). 

From the representations of a, a 1 and a 2 to be given in §6.2, the coefficients 

x0 , ••. ,x2 of (6.13) can be determined. 

6.2 The coefficients a and a. of (6.11) are computed by substitution of 
l. 

(6.11) in (6.9) and by collecting equal powers of the large.parameter a. By 

considering coefficients multiplying a0 we obtain 

(6. 14) o. 

From (6.6) and (6.8) it follows that for k ~ 1 

(6. 15) 

(k) So, e0 of (6.14) defined in (6.10) is known and a is obtained by summation. 

The result is 

(6. 16) I 1 
a(n) ='Ti ln[l+n co(n)J = nf.n(n/µ). 

From this representation we conclude that a is a well-defined bounded func

tion of n e: JR with a(n) + 0 if n + :!: "'· 

For higher order coefficients a. we need representations of c(k) in 
l. n 

terms of ck and their derivatives. For n = 0 this relation is given by the 

first of (6. 15), for n = I it is given by 

(6. 17) c(k)(n) 
1 

and the general formula is 

(6. 18) c(k)(n) 
n 

n µ 

l l 
µ=O v=O 



, 
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These relations follow from induction. In the last formula the summations 

are carried out for those µ and v such that k- µ - v :<: 0. 

Collecting in (6.9) coefficients of a-I we obtain for a 1 the equation 

which gives after SUllllllation 

(6.19) a ( n) [ I + n c0 ( n) J 

The function rn is for n 0,1,2, ... defined by 

r (x) 
n 

x I 2 n +I 
[e - (I +x+ZT x + ••• :! )]/xn 

The result for a 2 is 

(6.20) 

where r 4 has the argument na(n) and the remaining functions have argument n. 

In (6.19) and (6.20) the primes denote differentiation with respect ton. 

Derivatives of ck can be replaced by combinations of ck by using (2.5). The 

first few relations are 

cj (n) 

c"(n) 
0 

I 
+ - + 12 
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6.3 Example for q = !. 

If q = ~ the relations are quite simple. In that case n0 = 0 and xi 

can be determined by computing limiting values of ~ and ~i for n ~ O. The 

following expression gives the values of x0 , x1, x2 of (6.12), viz. 

(6.21) 
I -I 8 -2 

xO ,a) ~ a(I - 3 a + 405 a ••• ) . 

Table V shows some results of numerical experiments. For the values of a 

indicated in the table we computed x(i,a) from (6.21). Then we computed 

y = Q[a,x(i,a)] with accuracy of about 12 significant digits. The table 

gives the difference IY - !I. 

Table V 

a Jy - i I 
10 0.9310-5 

so 0.1610-6 

100 0.2910-7 

250 0.2910-8 

500 0.5110-9 

1000 0.9110-10 

Further experiments showed that for other q-values the results are 

of the same kind. In fact they show the uniform character of our expansion 

(6.12) with respect to q € [O,J]. 
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SAMENVATTING 

Dit proefschrift bestaat uit acht artikelen, waarvan er zes in weten

schappelijke tijdschriften zijn verschenen terwijl de overige twee artike

len geaccepteerd zijn voor publikatie. In de Introduction worden enige al

gemene kenmerken van het onderzoek besproken, in de Summaries worden samen

vattingen van de artikelen gegeven. 

In de Introduction worden de artikelen vermeld waarbij ze aangeduid 

worden met [1], .•. ,[8]. De artikelen [1], [3], [6], [7] en [8] handelen 

voornamelijk over asymptotische problemen, [2], [4] en [5] voornamelijk 

over de berekening van speciale functies. Het eerste artikel staat nogal 

los van de overige zeven aangezien er een asymptotisch probleem op het ge

bied van de partiele differentiaalvergelijkingen in wordt behandeld, ter

wij l in de andere artikelen vooral Speciale functies aan de orde komen. 

Bij de behandeling van asymptotische problemen wordt in dit proef

schrift vooral de nadruk gelegd op asymptotische ontwikkelingen die uniform 

geldig zijn t.o.v. bepaalde parameters. Een belangrijk voorbeeld is de ont

wikkeling van de incomplete gammafuncties in [3] en [81. In [7] wordt uit

eengezet hoe analoge ontwikkelingen kunnen worden afgeleid voor de conflu

en te hypergeometrische functies, waarvan de incomplete gammafuncties spe

ciale gevallen zijn. In [4] en [5] worden algoritmen voor de berekening 

van de Besselfuncties Kv(z) en Yv(z) gegeven. Speciale aandacht krijgt de 

berekening van deze functies voor kleine waarden van lzl. De berekeningen 

zijn in dat geval gebaseerd op combinaties van de Taylorreeksen voor de 

Besselfuncties Jv{z) en J_v(z). Om de berekening voor de waarden 

v = 0,1, .•. net zoals die voor andere (complexe) v-waarden te laten ver

lopen wordt een uniforrne methode t.o.v. v gegeven. Voor de overige z-waar

den wordt een recurrente betrekking gebruikt die, via de algoritme van 

Miller, een efficiente numerieke methode oplevert. Deze methode wordt ook 

in [2] gebruikt om functies te berekenen die in wezen speciale confluente 

hypergeornetrische functies zijn. 

In [6] worden voor zekere integralen uniforme asyrnptotische ontwikke

lingen gegeven, waarin als bouwstenen incomplete gammafuncties optreden. 

In een van de stellingen behorende bij dit proefschrift wordt voor de 

incomplete betafunctie een toepassing gegeven van de resultaten uit [61. 

In [8] worden de eerder verkregen resultaten voor de incomplete gamma

functies nader bestudeerd. Voor de coefficienten in de asymptotische ont-
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wikkeling wordt een recurrente betrekking afgeleid en voor de restterm in 

de ontwikkeling wordt een numerieke schatting gegeven. Tevens worden de 

resultaten bestudeerd voor complexe waarden van de parameters. 
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I 

Laat de incomplete betafunctie gedefinieerd zijn door 

x 

I (p,q) = _(_l_) f tp-l0-t)q-ldt, p > 0, q > 0, 0 :> x :S 1, 
x B p,q 

0 

waarin B(p,q) = f(p)f(q)/f(p+q). Zij voor k = 0,1, ••• gegeven 

"' 
Fk f e-(p-a)ttq-l(t-a)kdt, 

k -t q-11 d 1-e 
ck= k (-t-) t=a' dt . 

a = -ln x, 

a 

(dus c0 = ~]q-l en F0 = p-q(l-x)-pf (q,-plnx), incomplete gammafunctie). 

Dan geldt voor p + "'• q vast en uniform in x, x E [0,1], de asymptotische 

ontwikkeling 

n = 1,2, ..• ; 

als q ~ 1, dan bestaan er getallen an (onafhankelijk van p en x) zodat 

IR I s; a p-n-q f(n+q)/n!, 
n n n = 1,2, ••.. 

II 

a. Voor de incomplete betafunctie (zie Stelling I) geldt de integraalrepre-

sentatie 

I (p,q) = ~ f 
x (211i) L 

s 

f 
L a 

a+x(s-a) 
e 

hierin stellen Ls en La verticalen voor in het complexe s-, respectievelijk 

a-vlak, te weten 

L 
s 

{c + it I t E lR}, 
s L a {c + it I t E lR} 

(J 

met c0 < cs' of contouren die op grond van de stelling van Cauchy door ver

vorming van La en Ls kunnen worden verkregen. Indien ca > cs dan is de in

tegraal gelijk aan -I 1_x(q,p). 



------- - - ------

b. Bovenstaande integraal kan beschouwd warden als een meer-dimensionale 

variant op de integraalvoorstelling voor de incomplete gaJI1111afunctie, name

lijk 

y(a,x) 

c+i00 

real I 
21Ti 

x(s-1) 
_e ___ ds, 

sa(s-1) 
c > O, 

waarmee in dit proefschrift de uniforme ontwikkeling van deze laatste func

tie is verkregen. 

Verwacht wordt dat (*) een geschikt uitgangspunt zal zijn voor de construc

tie van de asymptotische ontwikkeling van Ix(p,q) voor p +""(of q-+«>), 

welke ontwikkeling uniform geldig is ten opzichte van x E [0,1] en ten op

zichte van q ~ o > O (of p~o>O). 

III 

Laat q en v niet-negatieve getallen zijn en n een niet-negatief geheel ge

tal. Laat de functie Tn(v,q) gedefinieerd zijn 

2!;q 
Tn(v,q) = e-q(2q)-n I 

0 

door 

waarin Iv(x) de genodificeerde Besselfunctie is. Dan geldt voor n + ""• 

uniform ten opzichte van q ~ 0 en v ~ 0 

Tn(v,q) 
-I; 2 -12 

12 erfc(~) + 0(e n ) , 

waarin 

2 12 
n+(n +4qv) } 2 12]~ sign(q+n-v)[q+v+nln{ 2v - (n +4qv) 

2 
en erfc(x) = 2rr-~ J"" e-t dt de complementaire errorfunctie. X I 

(Tn(v,q) is een cumulatieve distributie van n variaties van signaal plus 

ruis en komt voor in radar- en sonarproblemen bij het detecteren van vals 

alarm. 

J. de Vries, Physisch Laboratorium TNO, Den Haag). 



IV 

De studie van het asymptotisch gedrag van de nulpunten van de incomplete 

gammafunctie, zie bijv. Kolbig, verdient een nieuwe aanpak met de resulta

ten uit dit proefschrift. 

K.S. KOLBIG, On the zeros of the incomplete gamma function, Math. Comp. 

26, 751-755, 1972. 

v 

De schattingen voor de startwaarde van de algoritme van Miller voor de be

rekening van Besselfuncties zijn in Gautschi (1967) gebaseerd op niet-uni

forme asymptotische formules voor de Besselfuncties. Een realistischer 

schatting wordt verkregen door uniforme benaderingen (bijv. die van Debye) 

te gebruiken. 

w. GAUTSCH!, Computational aspects of three-term recurrence relations, 

SIAM Rev. 9, 24-82, 1967. 
aEE"i'M! ~!fi!lil 
iii ff i£ fl ~ :;!;: t M 

Vol. 14, 23-29, 1973. 

NUMAL, Hoofdstuk 6 (Revisie 1978), Mathematisch Centrum, Amsterdam. 

VI 

Bij het kiezen van een numerieke methode voor de berekening van integralen 

wordt de trapeziumregel nogal eens over het hoofd gezien. 

N.M. TEMME, The numerical computation of special functions by use of 

quadrature rules for saddle point integrals I. Trapezoidal inte

gration rules, Rapport TW 164, Mathernatisch Centrum, Amsterdam, 

1977. 

VII 

Voor de berekening van een functie f, die gerepresenteerd wordt door 



n 
f(x) l ak ~k(x) 

k"'O 

waarbij ~k aan een homogene recursierelatie voldoet waarvan de coef ficien

ten niet van k afhangen, wordt vaak een algoritme gebruikt die ten onrechte 

naar Clenshaw is vernoemd; de algoritme is een Horner-schema voor een po

lynoom waarvan het argument een matrix is. 

C.G. VAN DER LAAN, Approximatie van functies en data in Colloquium 

numerieke programmatuur, deel 2 (H.J.J. te Riele (red.)), MC 

Syllabus 29.2, Mathematisch Centrum, Amsterdam, 1977. 

VIII 

Zij gegeven een L2-functie g: IR+ x IR+ + lR met de eigenschap g(E,T) = 0 

als T > yE, met 0 < y < 1. Laat de rij functies {g } gegeven zijn door 
n 

gl (E,T) g(E,T), 

T 

gn(E,T) "'f gn-l(E,T)g(E-T,T-T)dT 

0 

Dan is gn(E,T) 0 voor T > [1-(1-y)n]E. 

(n 2,3, .•• ). 

(Deze functies treden op bij de beschrijving van de energieoverdracht bij 

botsingen van ionen van twee verschillende metalen; g is dan een kansdicht

heidsfunctie. J.B. Sanders, FOM-instituut, Amsterdam). 

IX 

Luke's sceptische opmerkingen over de mogelijkheid om met groepentheore

tische methoden nieuwe resultaten op het gebied van speciale functies te 

verkrijgen zijn door het werk van o.a. Koornwinder achterhaald. 

Y.L. LUKE, Math. Comp., 24, p.231, 1970, bespreking van 

J.D. TALMAN, Special Functions, A Group Theoretic Approach, New York, 

1969. 



x 

Pirsig's boek Zen and the art of motorcycle maintenance is een geslaagde 

paging inzichten op het gebied van de filosofie, natuurwetenschappen en 

hedendaagse maatschappelijke dilemma's in romanvorm onder de aandacht te 

brengen. 

XI 

Om te voorkomen dat een schaaladviesdienst een verwijsbureau naar het bui

tengewoan anderwijs wardt, dienen bij het gewoan lager onderwijs magelijk

heden aanwezig te zijn om kinderen met leermoeilijkheden te begeleiden. 

XII 

De opzet van consumentenbladen, waarin produkten besproken warden die voor 

een groot aantal lezers niet van belang zijn, dient zo herzien te warden 

dat het initiatief van de lezer uit meet gaan om aan te geven over welk 

specifiek produkt hij informatie wenst te antvangen. 


