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A polynomially computable upper bound for the weighted independence number 
of a graph is studied. This gives rise to a convex body containing the vertex packing 
polytope of the graph. This body is a polytope if and only if the graph is perfect. As 
an application of these notions, we show that the maximum weight independent set 
of an h-perfect graph can be found in polynomial time. ,. 1986 Academic Press, Inc. 

I. VERTEX PACKING AND ITS RELAXATIONS 

Throughout the paper we assume that all graphs we consider have no 
loops, no multiple edges, and are connected. For our purposes, these 
assumptions can be made without loss of generality. 

Let G be a graph and w: V( G)-+ IR + any weighting of its nodes. Let 
a( G; w) denote the maximum weight of an independent set. It is well 
known that to determine a( G; w) even in the special case when w == 1 is 
vf'Jl>-hard. 

A well-known approach to study a( G; w) is to introduce the vertex pack
ing polytope VP( G), which is defined as the convex hull of incidence vectors 
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of independent sets of nodes. Then a( G; w) can be obtained as the 
maximum of the linear function w Tx for x E VP( G). For this observation to 
be of any use, however, we need a description of VP( G} as the solution set 
of a system of linear inequalities. 

The following sets of linear inequalities are obviously all valid for VP( G): 

X;~O for all iE V(G}, 

for all ijE E(G). 

( 1.1 } 

( 1.2) 

It is also easy to see that all integral solutions of ( 1.l }-( 1.2) are incidence 
vectors of independent sets of nodes of G. 

( 1.3) PROPOSITION. The inequalities ( 1.1H1.2) are sufficient to describe 
VP( G} if and only if G is bipartite. 

This assertion follows, e.g., from the results of Egervary [3]. If G is, say, 
a triangle, then the point ( ! , !, ~) is a solution of ( 1.1 )-( 1.2) but does not 
belong to VP(G). So to describe VP(G) we need some further inequalities. 
The example of the triangle suggests the following set of inequalities, which 
are also obviously valid: 

for all complete subgraphs K of G. ( 1.4) 

Unfortunately, even (1.4) is not enough to characterize VP(G). Those 
graphs for which it is were characterized by Fulkerson [6] and Chvatal 
[2]. A graph G is called perfect if for each induced subgraph G' of G, the 
chromatic number of G' equals the maximum size of complete subgraphs of 
G'. For examples and various properties of perfect graphs, see Golumbic 
[8] and Lovasz [ 13]. 

( 1.5) THEOREM. The inequalities ( 1.1) and ( 1.4) are sufficient to describe 
VP( G) if and only if G is perfect. 

We shall call the solution set of ( 1.1) + ( 1.4) the fractional vertex packing 
polytope of the graph G and denote it by FVP(G). 

To get a better description of the relationship between vertex packing 
and fractional vertex packing polytopes let us introduce the following 
notion (Fulkerson [ 5] ). Let P <:;;. IR'~ be any non-empty closed convex set 
with the following property: if x E P and 0 < x' ~ x then x' E P. The 
antiblocker of P is defined as the set 

AB(P) := {x E IR'~: yTx ~ 1 for ally E P}. 

It is easy to see that the antiblocker is also a non-empty closed convex 
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set with the same property and that its antiblocker is the original set P. It 
is also easy to see that if P is a polyhedron then so is its antiblocker. It is 
easy to check that if (} denotes the complement of the graph G, then 
FVP(G) is the antiblocker of VP(G) and vice versa. Note that it follows 
from this observation and Theorem ( 1.5) that the complement of a perfect 
graph is perfect (Lovasz [ 11] ). 

It follows from Theorem (1.5) that VP(G) i= FVP(G) if G is an odd cir
cuit. In fact in this case, the point(!,!, ... , !l is in FVP(G) but not in VP(G). 
This example suggests a new class of inequalities valid for VP( G): 

I X;~JV(C)j-1 
iE V(G) 2 

for each odd circuit C in G. ( 1.6) 

These inequalities are in general neither stronger nor weaker than the 
"clique constraints" (1.4). Motivated by Theorem (1.5) Chvatal [2] 
suggested analogs of the notion of perfectness. 

A graph is t-perfect if VP( G) is the solution set of ( 1.1 ) + ( 1.2) + ( 1.6 ). A 
weaker notion is the following: a graph G is called h-perfect if VP( G) is the 
solution set of ( 1.1) + ( 1.4) + ( 1.6 ). Various classes oft-perfect and h-perfect 
graphs are known; e.g., all series-parallel graphs and all graphs arising from 
a bipartite graph by the contraction of an edge are t-perfect (Fonlupt and 
Uhry [ 4] ). Recently Gerards and Schrijver [7] generalized both of these 
results by showing that every graph which does not contain a homeomorph 
of K4 such that all 4 cycles corresponding to triangles in the original K4 are 
odd is t-perfect. 

Let us define the polytope CVP( G) (for, say, circuit-constrained vertex 
packing polytope) as the solution set of the system of inequalities ( 1.1) + 
( 1.2) + ( 1.6 ). So the graph is I-perfect iff CVP( G) = VP( G ), and h-perfect iff 
CVP(G) (\ FVP(G) = VP(G). 

A nice property of CVP( G) is that one can optimize any linear function 
over it in polynomial time, as we shall show in Section 3. Hence it follows 
that we can find a maximum weight independent set in every t-perfect 
graph in polynomial time. In contrast with this, the problem of optimizing 
a linear objective function over FVP( G) is .V&-hard ( Grotschel, Lovasz, 
and Schrijver [9] ). But for perfect graphs, i.e., if VP( G) = FVP( G), one can 
find a maximum weight independent set in polynomial time [9]. This 
algorithm is less immediate than the algorithm for t-perfect graphs, and it 
involves a weighted version 9( G, x) of an upper bound 9( G) on the 
independence number of a graph, introduced by Lovasz [12]. 

In this paper we first study the function .9( G; x) in greater detail. This 
leads us to a convex body TH(G) such that VP(G) <:; TH(G) <:; FVP(G). 
This set TH( G) is in general not a polytope; in fact we shall prove that it is 
a polytope if and only if G is perfect. But in return it has many nice proper-
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ties: arriong others, we show that TH(G) is the antiblocker of TH(G) and 
that any linear objective function can be maximized over TH(G) in 
polynomial time. It follows then by the general results of [9] that any 
linear objective function can be optimized over TH( G) n CVP( G) in 
polynomial time. In particular, it follows that a maximum weight indepen
dent set can be found in an h-perfect graph in polynomial time. 

We end this introduction with a warning that our algorithms involve the 
Ellipsoid Method and therefore they are not meant to be practical. It is a 
challenging problem to find combinatorial (and hopefully practical) 
algorithms for maximum weight independent sets in perfect, t-perfect, and 
h-perfect graphs. 

2. THE 9 FUNCTION OF A GRAPH 

Let G = ( V, E) be a graph. An orthonormal representation of G is a 
sequence (ui: iE V) such that uiE !RN for some N, lluill =I for all iE V, and 
u T uj = 0 for all pairs ( i, j) of non-adjacent nodes. Let x: V--+ IR + be any 
weighting of V. We then define 

) . ( xi ) 9(G;x :=mm max -( r )2 , 
1e v c ui 

where the mm1mum is taken over all vectors c with llcll = I and all 
orthonormal representations (ui) of G. If X;=O then we take xJ(crui) 2 =0 
even if cTui=O. If X;>O but cTui=O then we take x;/(cTuY= +oo. It is 
easy to see that 9( G; x) > 0 if x ¥- 0 and 9( G; x) < + oo. Furthermore, if 
xi= 0 for some i then 9(G; x) = .9(G- i, xl v-J 

For the case when each x 1 = 1, this function .9(G) was introduced by 
Lovasz [12] in order to estimate the Shannon capacity of a graph. In [9] 
the weighted version was also introduced and used to derive a polynomial
time algorithm to find maximum weight independent sets in perfect graphs. 
Here we shall prove several basic properties of 9(G; x). Many of these are 
straightforward generalizations of results from Lovasz [ 12] to the weighted 
case; in these cases, we shall not give the proofs. 

Let us introduce some notation. For x=(xi: iE V)EIRv, we set 
x: = (~: i E V) E IR v and X: = diag(~: i E V) E IR vx v. Let ,Q/'(G) denote 
the set of all symmetric matrices A E IR vx v such that (A )u = I for all i and 
also (A )if= 1 for all non-adjacents pairs (i,j) of nodes. Let 86'( G) denote the 
set of those positive semidefinite symmetric matrices BE IR vx v for which 
Tr B= 1 and (B)ii=O for all adjacent pairs (i,j) of nodes. We denote by 
A(A) the largest eigenvalue of a symmetric matrix A. Then one has the 
following formulas for .9( G; x ): 

'' ,, 
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(2.1) THEOREM. .9(G; x) = min{A(XAX): A E d(G) }. 

Proof Straightforward extension from the unweighted case. I 

(2.2) THEOREM. .9(G; x) = rnax{.XTRx: BE ~(G) }. 

Proof Straightforward extension from the unweighted case. I 
Note that Theorems (2.2) and (2.1) provide a min-max formula and 

thereby-in some sense-a good characterization of .9( G; x ). 

(2.3) THEOREM . .9(G;x)=maxL;evX;(dTv;)2, where the maximum is 
taken over all vectors d with lldll = 1 and over all orthonormal representations 
(v;) of the complement of G. 

Proof Straightforward extension from the unweighted case. I 
Let us prove some properties of 9. These will follow quite easily from the 

characterizations given by the previous theorems. 

(2.4) LEMMA. 9(G;x)·9(G;y)~xTyforallx,y~0. 

Proof The lemma is obvious if x = 0. Suppose x #- 0, then clearly 
9( G; x) > 0. Let c be a unit vector and let (u;) be an orthonormal represen
tation ofG such that .9(G;x)=max;evx;/(cTu;)2. 

Then by Theorem (2.3 ), 

from which the assertion follows. I 

(2.5) LEMMA. For every vector xe!R~, x#-0, there exists a vector 
yEIR~, y#-0, such that .9(G;x)·9(G;y)=x1y. 

Proof Let d be a unit vector and (v;) an orthonormal representation of 
G such that 9(G;x)=L;evX;(dTv;) 2• Choose Y;=(dTv;)2. Clearly y#O. 
Then by definition, 

o - Y; 
.,.( G; y) :;:;; rnax (dT )2 = 1, 

IE v V; 

and so 

xTy= I, X;Y;=9(G;x)~.9(G;x)·.9(G;y). 
ie V 

By Lemma (2.4), we have equality. I 
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(2.6) LEMMA. If x ~ y ~ 0, then ,9( G; x) ~ [::)( G; y ). Moreover, for any 
x, y ~ 0, and any a ~ 0, we have 

9(G; ax) = a9(G; x) 

and 

,9(G; x + y)::;:; 9(G; x) + 9(G; y). 

Proof The first two assertions are obvious. To verify the third, let d be 
a unit vector and let (v;) be an orthonormal representation of G such that 

9( G; x + y) = L;E v (x; + Y;)(drv;)2. Then 

9(G;x+y)= L X;(drv;)2+ L y;(drv;)2::;;9(G;x)+9(G;y). I 
iE V ie V 

Lemma (2.6) implies that 9( G; ·) can be viewed as a "norm" on the non
negative orthant of IR v. Moreover, Lemma (2.4) can be interpreted as a 
type of mixed Cauchy-Schwarz inequality for the "norms" ,9(G; ·) and 
9( G; ·) with respect to the Euclidean inner product. 

(2.7) LEMMA. Let d be a unit vector and (v;) an orthonormal represen
tation of G such that ,9(G; x) = L;Ef X;(drv;f. Then 

L x,(drv;)v,=9(G;x)·d. 
ie V 

Proof By Theorem (2.3) we have 

L x,(yrv,)2 ~ .9(G; x) 
iE V 

for all unit vectors y, and so the left-hand side is maximized by y =d. But 
the left-hand side can be written as a quadratic form in y: 

I x;(.1Jv;)2 =yr ( L x,v,vT) y. 
iE V iE V 

As is well known, the maximum of this quadratic form is attained at an 
eigenvector, say, y, and the maximum value is the corresponding eigen
value: 

( L x,v;vj)y=.9(G;x)y. I 
iE V 

Finally, let us recall the following result from [9]; see also (Gri:itschel, 
Lovasz, and Schrijver [10]). 
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(2.8) THEOREM. Given a graph G, a weighting x: V-+ Q +, and rational 

e > 0, one can compute in polynomial time a rational matrix BE dB( G) such 

that .eR\'~ (1-c;} .9(G; x). 

Let us remark that the input size of the problem is IV( G)l 2 +the number 
of digits in the binary expansion of each numerator and denominator in x 

and £. It is necessary to allow an error c; since it may happen that all 
matrices BE dB( G) maximizing x T Bx are irrational. This is the case, e.g., 

when x = 1 and G is a pentagon, since then .9( G; x) = ..jS. 
Let us also remark that for any vector x E IR ~ , 

max{x;:iEV(G)}<.9(G;x)< I X;. 

iE V(G) 

This in particular implies that in Theorem (2.8) we could as well con
sider an absolute error instead of a relative error. 

We may use this result to derive an algorithmic version of Lemma (2.5 ), 
which we will use in the next section. 

(2.9) LEMMA. Given a graph G, a vector x E (Ji~, and a rational e > 0, 

one can jind in polynomial time another vector y E (Ji~, y # 0, such that 

Proof We may assume c; < 1. By Theorem (2.8 ), we can find in 
polynomial time a matrix B=(hu)E~(G) such that .9(G;x)< 
(I + c;/3) -~ T Bx. Without loss of generality we may assume that b;, > 0 for all 
i. Set t:=.XTB.\:, u:=B.i, and z;:= u~/t 2bii. We claim that xTz;?:I and 

/J.(G; z) < l/t. To show the first of these inequalities, we use the Cauchy
Schwarz inequality: 

T '\' u; (" )(" x ;u;) 
X Z = L. X; t2b = L. b;; L. t2b 

l ll / I II 

?: (I. A Fx ;;)2 =~(I. A U;) 2 = 1. 
I t y h;; t / 

The second inequality follows by considering the matrices Z : = 

diag(A: i E V) and U: = diag(l/u;: i E V). Let J be the all ones matrix and 
I be the identity matrix then 

and 

l 
A:=!+- Z 2 -tUBUEsi(G} 

t 

1 1 
- I- ZAZ = -ZJZ + tZUBUZ =- Z(XJ- tU)T B(XJ- tU) Z 
t t 
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is positive semidefinite. (The last equation above follows from JXBXJ = tJ 

and JXBU=J= UBXJ.) Hence A(ZAZ):( l/t and so by Theorem (2.1), 
9(G; z) :( A(ZAZ) :( l/t. 

To finish our argument, let us round each weight z, to a non-negative 
rational number y 1=z1 +h, such that 0:(h1<min{1, e/9t llAll llZll 2 } z,. Set 
Y: = diag(~: i E V), then II Yll :( 2 llZll and 

and hence 

A(YA Y) :( A(ZAZ) + A(YAY-ZAZ) 

1 :( - + II YA Y - ZAZll 
t 

1 
~ - + II YA Y - Y AZll + II Y AZ - ZAZll 

t 

~~+llYll llAll llY-Zll+llY-Zll llAll llZll 
t 

:(~+ 3 llZll llAll 11 Y- Zll 
t 

1 e 
<-+

( 3t 

3. A NON-POLYHEDRAL RELAXATION OF VERTEX PACKING 

Given a graph G = ( V, E), define the following set of vectors: 

TH(G):= {xEIR~:9(G;x):(1}. 

From the properties of 9, it will be easy to derive the following equivalent 
definition of this set. 

(3.1) THEOREM. TH(G) = {xE IR~: y1x ~ 9(G; y) for al/ yE IR~ }. 
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Proof (I) Let xe TH(G), i.e., let x ~ 0 and .9(G; x) ~ 1. Then for any 
y~O, 

yrx~ .9(G; y) .9(G; x) ~ .9(G;y) 

by Lemma (2.4 ). 

(II) Conversely, assume that x~O and yrx~.9(G;y) holds of all 
y ~ 0. By Lemma (2.5), there exists a vector y ~ 0, y # 0 such that 

.9( G; x) .9( G; y) = y T x ~ .9( G; y) 

and hence 

.9(G; x) ~ 1, 

i.e., x e TH( G). I 
The formula in Theorem (3.1) represents TH(G) as the intersection of 

(infinitely many) halfspaces. We can obtain another such representation 
which avoids .9(G;y) if we use that .9(G;x)=maxL:;evX;(cTu;)2, where 
llcll = 1 and (u;) is an orthonormal representation of G. Hence we obtain 
the following description of TH( G): 

(3.2) THEOREM. TH(G) consists of those vectors xe IRv which are non
negative and which satisfy L;e v (cTu;)2 X; ~ 1 for every c e !RN with llcll = l 
and every orthonormal representation (u;) of G in !RN. 

Note that all the "clique constraints" (1.4) occur here: for, if Kr;;. V spans 
a complete subgraph of G, then let c and u; (i e V - K) be mutually 
orthogonal unit vectors and u; = c for i e K. Then ( u;) is an orthonormal 
representation ofG and L;evx;(cTuY=L:;eKX;, so we get the clique con
straint belonging to K. Since 0 and also all the unit vectors trivially satisfy 
the inequalities in Theorem (3.2), it follows that TH(G) is full-dimensional. 

(3.3) COROLLARY. TH(G) is a convex set. 

Note that by Lemma (2.6 ), if 0 ~ x ~ y and ye TH( G) then x e TH( G). 
The following result gives the antiblocker of TH ( G ). 

(3.4) COROLLARY. AB(TH(G)) = TH(G). 

Proof Let ye AB(TH( G) ). Then xTy ~ 1 for each x e TH(G). Let x ~ 0, 
x#O. Then x0 =x/.9(G;x)eTH(G) (and so xcf y~ 1). But then 
xTy=.9(G;x)xcf y~.9(G;x) and hence yeTH(G). 

Conversely, let yeTH(G), then for any xeTH(G) we have xry~ 
.9(G;x)~l and soyeAB(TH(G)). I 
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From this antiblocking relation, we obtain from Theorem (3.2) a further 
description of TH( G), which is perhaps conceptually the simplest, but not 
so well-suited to work with. (Note that from this description, it is not even 
straightforward to see that x ETH( G) and 0:::::; y:::::; x imply y ETH( G).) 

(3.5) THEOREM. For any graph G, TH(G)= {((dTv;)2: iE V(G))EJR~<G>: 
[[d[[ = 1, (v;) is an orthonormal representation of G}. 

As a further application of Theorem (3.1 ), we show 

(3.6) THEOREM. VP(G)s;;;TH(G)s;;;FVP(G). 

Proof Let x be the incidence vector of an independent set A of nodes. 
Then .9(G;x)=.9(G[A]; ~)= l since G[A] is a complete graph. So every 
vertex of VP(G) is contained in TH(G). By convexity, VP(G) <;;;; TH(G). 

Applying this to the complement graph, we obtain that VP( G) <;; TH(G). 
Taking antiblockers, we obtain that FVP(G)2TH(G). I 

The next theorem will imply that TH(G) is in general not a polytope. Let 
Ps;;;!Rn be a convex set of dimension n and aTx::::;IY. an inequality (aElR"). 
We say that arx:::::; 1Y. determines a facet of P if it is valid for all xE P and, 
moreover, the set { x E P: a r x = 1Y.} has dimension n - 1. 

(3.7) THEOREM. If an inequality determines a facet ofTH(G) then it is a 
positive multiple of one of the non-negativity constraints ( 1.1 ) or one of the 
clique constraints ( 1.4 ). 

Proof Suppose that a T x:::::; 1Y. determines a facet of TH ( G ), and let z be a 
point in the relative interior of F: = { x ETH( G ): a Tx = IY. }. Then either 
z; = 0 for some i or .9( G; z) = 1. In the first case a T x:::::; 1Y. is trivially 
equivalent to x;;;?::O. So suppose that .9(G;z)=l. By Theorem (2.3) there 
exists an orthonormal representation (u;) of G and a unit vector c such that 

L z;(cT u;}2 = l. 
iE V 

Since 

I x;(cTu;)2:::::; I (3.8) 
iE V 

is a valid inequality for all x ETH( G ), it follows that it must be equivalent 
with arx:::::; IY., and hence we may assume that ex= I and a;= (er u;f·. We 
also see that 

L X;(CT U;) 2 = 1 (3.9) 
ie V 

for all xEF. 



340 GROTSCHEL, LOY ASZ, AND SCHRIJVER 

By Lemma (2.7) 

holds for all x E F, i.e., 

L X;(CTU;) U; = c 
iE V 

L X;(cTu;)(u;)j= cj 
ie v 

for all j E V. Since F is (n - 1 )-dimensional, these equations must follow 
from (3.9), and hence ci(cTu;)2=(cTu;)(u;)i. If we consider any ie V such 
that cTu;=l=O then this implies that (cru;)c=u;. Since llu;ll=llcll=l, this 
yields that u; = ±c. Clearly, we may assume that u; =c. 

So we see that for each i, either cT u; = 0 or u; =c. Let u; = c for i EK and 
c Tu;= 0 for i E V - K. Then K is a complete subgraph, since for any two 
nodes i, j EK, uJ'u; = c2 = 1 ;6 0. So (3.8) is just 

L X;~ 1, 
ieK 

which proves the theorem. I 

(3.10) COROLLARY. TH(G) is a po/ytope iff G is perfect. 

Proof If G is perfect then VP(G)=TH(G)=FVP(G) by Theorems 
(1.5) and (3.6). Conversely, suppose that TH(G) is a polytope. Then 
TH(G) is the solution set of all inequalities determining a facet of TH(G). 
By Theorem (3.7), all these inequalities occur in (1.1) and (1.4), and so 
TH(G) = FVP(G). Since TH(G) = AB(TH(G)) is also a polytope, it follows 
that TH(G)=FVP(G) and so, taking antiblockers, TH(G)=VP(G). So 
VP(G) = FVP(G) and by Theorem (1.5), G is perfect. I 

Two immediate corollaries are the following. 

(3.11) COROLLARY. TH(G) = VP(G) iff G is perfect. 

(3.12) COROLLARY. TH(G) = FVP(G) iff G is perfect. 

4. OPTIMIZATION OVER TH(G) AND CVP(G) 

We are going to show that every linear objective function can be 
maximized over TH(G) as well as over CVP(G) in polynomial time. Let us 
formulate this task more precisely, by recalling two definitions from [9]. 

Let K be a non-empty convex compact set in !Rn, and for z E !Rn let 
d(z, K) := min{llz-xll: xe K}. 
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(4.1) STRONG OPTIMIZATION PROBLEM. Given a vector cEQn, find a 
rational vector z EK which maximizes cTx over K. 

( 4.2) WEAK OPTIMIZATION PROBLEM. Given a vector c E Qn and a 
positive rational number e, find a vector z Eon such that d(z, K) ~ e and 
cTz";;3 max{cTx: xE K}- e. 

This latter problem is needed because the vector maximizing crx over a 
nonpolyhedral convex body like TH( G) may not be rational. 

We start with a lemma. 

( 4.3) LEMMA. For any c ~ 0, 

max{ cTx: xE TH(G)} = .9(G; c). 

Proof By Theorem (3.1), cTx~.9(G;c) is valid for TH(G), so the 
maximum above cannot be larger than 9( G; c) On the other hand, if 
0<t<.9(G;c) then (1/t)c<;ETH(G) and hence by Corollary (3.4) there 
exists an x ETH( G) such that (1/t) er x > 1, i.e., cT x > t. I 

( 4.4) THEOREM. Let G = ( V, E) be a graph. Then the weak optimization 
problem for TH( G) can be solved in polynomial time. 

Proof Let c E Q' and e > 0. We may assume that c ~ 0 since if c; < 0 for 
some i E V then obviously X; = 0 for every vector x maximizing crx and so 
we can delete i from G. 

By Lemma (2.9 ), we can find in polynomial time a vector 0 ""d E Q ~ 
such that .9( G; d) .9( G; c) ~ ( 1 + t:) c r d. Then for y : = ( 1/.9( G, d)) d we have 
that yETH(G) and cry~(I/(1 +e)).9(G;c)= (1/(1 +e))max{crx: xE TH(G) }. 
By Theorem (2.8) we can compute a rational approximation of y with 
arbitrary precision. I 

Our next lemma is a preparation for the treatment of CVP( G). This 
result is well known, but for the sake of completeness we give a short proof. 

( 4.5) LEMMA. Let G = ( V, E) be a graph and let ::: E ~ IR + be "lengths" 
assigned to its edges. Then a shortest odd circuit in G can be found in 
polynomial time. 

Proof Replace each v E V by two points v', v"; for each edge uv E £, 
connect u' to v" and u" to v'. Let G' be the graph obtained this way. Also 
define a "length" of each edge of G' by l(u'v") := l(u"v') := z(uv). Find a 
shortest v'v"-path in G' for each v E V. A shortest among all these paths 
gives a shortest odd circuit in G. I 
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( 4.6) THEOREM. Let G = ( V, £) he a graph. Then the strong optimization 
problem for CVP( G) can he solved in polynomial time. Moreover, an 
optimum vertex solution can be found in polynomial time. 

By Theorems (3.8) and (3.9) of [9], it suffices to prove the following. 

( 4. 7) LEMMA. Let G = ( V, E) be a graph and y E ()) v a vector. Then there 
is an algorithm which concludes in polynomial time with one of the following: 

(a) yECVP(G), 

(b) finding an inequality from ( 1.1 ), ( 1.2 ), or ( 1.6) violated by x = y. 

Proof The inequalities in ( 1.1) and ( 1.2) are easily checked by sub
stitution. So we may assume that y ~ 0, and for each edge uv E £, 
y,,+ y,,~ 1. 

Define, for each edge e = uv E £, ::: e : = 1 - y,, - y". So ::: e ~ 0. Then ( 1.6) 
is equivalent to the following set of inequalities: 

I :::"~ 1 for each odd circuit C. (4.8) 
eE E(C) 

If we view :::" as the '"length" of edge e, then ( 4.8) says that the length of a 
shortest odd circuit is at least 1. But a shortest odd circuit can be found in 
polynomial time by Lemma ( 4.5 ). This proves the Lemma and thereby also 
Theorem ( 4.6 ). I 

( 4.9) COROLLARY. There is a polynomial time algorithm for the 
maximum weight independent set problem for t-perfect graphs. 

By combining the algorithms in Theorems ( 4.4) and ( 4.6 ), we can prove 
the following stronger result: 

( 4.10) THEOREM. There is a polynomial time algorithm for the maximum 
weight independent set problem for h-perfect graphs. 

Proof Let G be an Ii-perfect graph. Then VP(G)= FVP(G)nCVP(G) 
and hence also VP(G)=TH(G)nCVP(G). By Theorems (4.4) and (4.6), 
we can solve the weak optimization problem for both of TH( G) and 
CVP( G ). Hence the weak optimization problem can also be solved for their 
intersection by Corollary (3.4) of [9]. But then by Theorem (3.8) of [9], 
the strong optimization problem can also be solved in polynomial time and 
by Theorem (3.9) of [9], an optimum vertex can also be found in 
polynomial time. I 
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